Math 1149	Name:	
Spring 2013	OSU user name (name.nn):	
	Instructor:	
Midterm 1	Class Time:	
Form A	-	

The point value of each problem is indicated. To obtain full credit you must have the correct answers along with **the supporting work**. Answers without supporting work will receive no credit, except for multiple choice problems. **CIRCLE YOUR ANSWERS**.

1. (20 points) Circle your answer, or fill in the blank.

(a) Find the degree measure of the angle with the radian measure $\frac{19\pi}{12}$.

- i) 570 ii) 285 iii) 0.087 iv) not listed
- (b) Find the radian measure of the angle with the degree measure -130° .

i) -2.269 ii) -7448 iii) -1.134 iv) not listed

- (c) The measures of two angles in standard position are: $\frac{5\pi}{7}$ and $\frac{40\pi}{7}$. Are these two angles coterminal?
 - i) Yes ii) No
- (d) The measure of an angle in standard position is -500° . A positive angle which is coterminal with the given angle is:
 - i) -140° ii) 40° iii) 580° iv) not listed
- (e) Find an angle between 0° and 360° that is coterminal with 1560° .

2. (a) (12 points) **Sketch** a triangle that has an acute angle θ , and find the other trigonometric ratios of θ , if $\sin(\theta) = \frac{5}{7}$.

(b) (8 points) How tall is a building if the angle of elevation from the ground is 25° at a distance of 80m from the base of the building.

- 3. (20 points) Circle your answer.
 - (a) Find the reference angle for 280° .
 - i) 280° ii) 80° iii) 10° iv) not listed
 - (b) Find the quadrant in which an angle θ lies, if $\sin(\theta) < 0$ and $\cos(\theta) > 0$.
 - i) I ii) II iii) III iv) IV
 - (c) Find the value of $\sin(\theta)$ if $\cos(\theta) = \frac{-4}{5}$ and θ is in quadrant II.
 - i) $\frac{1}{5}$ ii) $\frac{-3}{5}$ iii) $\frac{3}{5}$ iv) not listed
 - (d) Find the area of an equilateral triangle with sides of length 5 in.
 - i) 21.6 ii) 6.25 iii) 10.8 iv) not listed
 - (e) Write $\tan(\theta)$ in terms of $\sin(\theta)$, where θ is an angle in quadrant II.

i)
$$\frac{-\sin(\theta)}{\sqrt{1-\sin^2(\theta)}}$$
 ii) $\frac{\sin(\theta)}{\sqrt{1-\sin^2(\theta)}}$ iii) $\frac{-\sqrt{1-\sin^2(\theta)}}{\sin(\theta)}$ iv) not listed

- 4. (20 points) Circle your answer.
 - (a) Find the terminal point P(x, y) on the unit circle determined by $t = \frac{5\pi}{3}$.
 - i) (0.5, -0.87) ii) (-0.87, 0.5) iii) (0.99, 0.09) iv) not listed
 - (b) The terminal point on the unit circle determined by t is the point $P = (\frac{2}{3}, \frac{\sqrt{5}}{3})$. Find the terminal point determined by $t - \pi$.

i)
$$(\frac{-2}{3}, \frac{\sqrt{5}}{3})$$
 ii) $(\frac{-2}{3}, \frac{-\sqrt{5}}{3})$ iii) $(\frac{2}{3}, \frac{-\sqrt{5}}{3})$ iv) not listed

(c) Find the sign of $\csc(t)$ if $\cos(t) > 0$ and $\cot(t) < 0$.

(d) Find
$$\tan(t)$$
 if $\sin(t) = \frac{-3}{4}$ and $\sec(t) < 0$.

i)
$$\frac{3}{\sqrt{7}}$$
 ii) $\frac{-3}{\sqrt{7}}$ iii) 3 iv) not listed

- (e) Determine whether the function $f(x) = 3x^2 + \cos(x)$ is even, odd, or neither.
 - i) Even ii) Odd iii) Neither

5. (a) (8 points) A sector of a circle has an angle of 50°. Find the area of the sector if the radius of the circle is 6 ft. Round your answer to two decimal places.

```
(b) (12 points) Given y = 3\sin(\frac{\pi}{4}x + \frac{\pi}{2}), fill in the blank:
```

Amplitude: _____

Period:

Phase shift: _____

An appropriate interval on which to graph one complete period: _

Graph one complete period, clearly indicating the *x*-intercepts.

Formula Sheet

• Area of a triangle with sides of length a, b, and incuded angle θ :

$$A = \frac{1}{2}ab\sin(\theta)$$

• Trigonometric identities:

$$\sin^{2}(\theta) + \cos^{2}(\theta) = 1$$
$$1 + \tan^{2}(\theta) = \sec^{2}(\theta)$$
$$1 + \cot^{2}(\theta) = \csc^{2}(\theta)$$