Math 1149	Name:	
Spring 2013	OSU user name (name.nn):	
	Instructor:	
Midterm 2	Class Time:	
Form A		

The point value of each problem is indicated. To obtain full credit you must have the correct answers along with **the supporting work**. Answers without supporting work will receive no credit, except for multiple choice problems. **CIRCLE YOUR ANSWERS**.

1. (20 points) Circle your answer, or fill in the blank.

(a) The range of the function
$$f(x) = \sin^{-1}(x)$$
 is:

i) [-1, 1] ii) $[0, \pi]$ iii) $[-\frac{\pi}{2}, \frac{\pi}{2}]$ iv) not listed

(b) The statement, " $\cos(\cos^{-1}(x)) = x$ for all real numbers x" is

```
i) True ii) False
```

(c) The exact value of $\cos^{-1}(\cos(\frac{9\pi}{8}))$ is:

- i) $\frac{9\pi}{8}$ ii) $\frac{-\pi}{8}$ iii) $\frac{7\pi}{8}$ iv) not listed
- (d) Given a triangle for which one side and three angles are known, which law is used in solving for the second side?

```
i) Law of Sines ii) Law of Cosines
```

(e) The exact value of $\sin(\sin^{-1}(3))$

i) equals 3 ii) does not exist iii) is not listed

2. (a) (6 points) Rewrite the expression $\cos(\tan^{-1}(x))$ as an <u>algebraic</u> expression.

(b) (6 points) Write the expression $3\csc(x)\tan(x) + \sec(x)$ in terms of $\cos(x)$ only.

(c) (8 points) Find the <u>exact</u> value of $\cos(\frac{x}{2})$ if $\sec(x) = \frac{7}{2}$, and $270^{\circ} < x < 360^{\circ}$.

3. (20 points) Circle your answer.

(a) Simplify
$$\tan(x + \frac{\pi}{4})$$
.
i) $\tan(x) + 1$ ii) $\frac{\tan(x) + 1}{1 - \tan(x)}$ iii) $\frac{\tan(x) - 1}{1 + \tan(x)}$ iv) not listed

- (b) The expression $\sin(x)\cos(50) \cos(x)\sin(50)$ equals:
 - i) $\sin(x-50)$ ii) $\sin(x+50)$ iii) $\sin(50-x)$ iv) not listed

- (c) Write $\cos(2\cos^{-1}(4x))$ in terms of x only.
 - i) $32x^2 1$ ii) 8x iii) $8x^2 1$ iv) not listed

(d) The solutions of the trigonometric equation $\tan(5x) - \sqrt{3} = 0$ are:

i)
$$\frac{\pi}{15} + k\pi$$
 ii) $\frac{\pi}{15} + \frac{k\pi}{5}$ iii) $\frac{5\pi}{3} + 5k\pi$ iv) not listed

where k is an integer.

4. (20 points)

(a) (10 points) A car travels along a straight road for 30 minutes, then travels 20° to the left of its original course for 15 minutes. How far is the car from the starting point if it traveled at a constant speed of 10 mph for the entire trip?

(b) (10 points) Solve the trigonometric equation: $2\cos^2(\theta) - 5\cos(\theta) - 3 = 0$.

- 5. (20 points) Circle your answer.
 - (a) Find the <u>exact</u> value of $\cos(\csc^{-1}(\frac{5}{2}))$.

i)
$$\frac{2}{5}$$
 ii) $\frac{5}{2}$ iii) $\frac{\sqrt{21}}{5}$ iv) not listed

(c) A triangle has sides a = 10, b = 7, and angle $\angle A = 140^{\circ}$. Find angle $\angle B$.

i)
$$66.7^{\circ}$$
 ii) 26.7° iii) no solution iv) not listed

(d) Find
$$\sin(2x)$$
 if $\sin(x) = \frac{3}{7}$ and x is in quadrant II.

i)
$$\frac{12\sqrt{10}}{49}$$
 ii) $\frac{-6\sqrt{10}}{49}$ iii) $\frac{-12\sqrt{10}}{49}$ iv) not listed

Formulas

- $\sin^2(\theta) + \cos^2(\theta) = 1$
- $1 + \tan^2(\theta) = \sec^2(\theta)$

•
$$1 + \cot^2(\theta) = \csc^2(\theta)$$

- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$
- $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 \tan(x)\tan(y)}$
- $\sin(2x) = 2\sin(x)\cos(x)$
- $\cos(2x) = \cos^2(x) \sin^2(x) = 2\cos^2(x) 1 = 1 2\sin^2(x)$

•
$$\sin(\frac{x}{2}) = \pm \sqrt{\frac{1 - \cos(x)}{2}}$$

•
$$\cos(\frac{x}{2}) = \pm \sqrt{\frac{1 + \cos(x)}{2}}$$