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Abstract

It is shown that, for all p € (1,00), the eigenfunctions of the Dirichlet problem for
the p-Laplacian on [0, 1] form a basis of Ly(0, 1) for all ¢ € (1, c0).
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1 Introduction

Let ¢ € (1,00). It is a standard fact that the functions sinnmx and cosnmrx
form a basis of L,(—1,1): see, for example, [6], pp. 342-5. Given any f €
L,(0,1), it follows that its odd extension to L,(—1,1) has a unique represen-
tation in terms of the sinnmz. This means that the sinnmz form a basis of
L,(0,1). In this paper we show that the same is true when the sines are re-
placed by the p-sine functions, for any p € (1,00). We recall that these may
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be defined by setting

F(z) = / (1—#)"Vrdt, 2 €0,1] (1.1)
0
and )
T, = 2/ (1— /)~ Vrdy, (1.2)
0
The p-sine function, sin,, is defined on [0, 7,/2] by
sin, © = F, ' (2); (1.3)

it is extended to R by standard procedures. Note that sins is simply the usual
sine function. These sin, functions have attracted a great deal of attention
recently, especially in connection with the one-dimensional p-Laplacian and
with the sharp estimation of the approximation numbers of embeddings. For
example, the functions sin,(nm,z) turn out to be the eigenfunctions of the
p-Laplacian eigenvalue problem

—(Ju/[P72u’) = AJu[P~*u on (0,1),

(1.4)
u(0) = u(1) = 0,
corresponding to eigenvalues A\, = (p — 1)(nm,)? (n € N). We refer to [2],
[3] and [4] for further information and additional references on these functions
and their applications. A fascinating account of early work on generalisations
of trigonometric functions, is given in [5].

The only paper of which we are aware that deals with the basis properties
of the sin, functions is that of Binding et al [1], in which it is shown that
if 12/11 < p < oo, they form a basis of L,(0,1) for all ¢ € (1,00). The
proof proceeds by constructing a homeomorphism of L,(0,1) onto itself that
maps sin(nmz) onto sin,(nm,x) (n € N), and while this method allows a
slightly smaller value than 12/11 to be obtained, it does not enable the basis
property to be established for p arbitrarily close to 1. In contrast to this, we
construct a basis of the dual of L,(0, 1) that forms a biorthogonal system with
the sin,(nm,x) functions. This enables us to conclude, by means of a general
theorem about bases in Banach spaces, that the sin,(nm,z) functions form a
basis of L,(0,1) for all p,q € (1, 00).

2 Preliminaries and technical results

Throughout the paper p will stand for a number in (1,00), p' = p/(p — 1),
I =10,1] and ||.||, will denote the usual norm on the Lebesgue space L,(I).



The function sin, is defined on [0, 7,/2] by (1.3): note that F), is strictly in-
creasing, as is sin,. Extension to [0, m,] is achieved by setting

sing(t) = sin,(m, —t)  for ¢ € [m,/2,m,];

further extension to [—m,, 7] is made by oddness, and finally sin, is extended
to R by 2m,-periodicity. This extension is in C''(R). Note that sin,(0) = 0 and
sin,(m,/2) = 1. We define cos, : R — R by

d
cos,t = —sin,t, te€R; (2.1)
dt
cos, is even, 2m,-periodic and odd about 7,/2. Moreover,
| sin, t|P + | cos, t|F =1, teR. (2.2)

The number 7, is easily shown to be given by

2T
7, =2p 'T(1/pI(1/p) = ——r—. 2.3
P ( / ) ( / ) pSlH(ﬂ'/p) ( )
For shortness we shall write
en(t) = sin(nmt), x,(t) = sin,(nmpt) (n €N, t € I). (2.4)

We recall that a sequence {y, }nen of elements of a Banach space Y is called
a (Schauder) basis if, for every y € Y, there is a unique sequence {a, }nen of
scalars such that

Y= Z AnYn, (2.5)
n=1

the series converging in the norm of Y. It can be shown (see [7], Proposition
I1.B.6, p.37) that the partial sum projections Py : Y — Y defined by

Py <i anyn> = Z_: anyn (N €N) (2.6)

n=1

have the property that
sup || Pn|| < 0. (2.7)
NeN

Since each x,, is continuous on [ it is in every L,(I) (1 < ¢ < 00); and as the
ey, form a basis in L,(I), x,, has a Fourier sine expansion, converging in each

L,(I):
x,(t) = Z T (k) sin(kmnt), (2.8)

where

[y

(k) =2 /0 2 (1) sin(kt)dt. (2.9)



The symmetry of x; about ¢ = 1/2 means that

Z1(k) =0 when k is odd, (2.10)
and that
1
(k)= 2/ x1(nt) sin(knt)dt
0
o 1
=2y jrl(m)/ sin(knt) sin(mnt)dt
m=1 0
z1(m), if mn = k for some odd m,
- (2.11)
0, otherwise.

To estimate Z;(m), we follow [1] and note that since x7(¢) < 0 for all ¢ €
(0,1/2), integration by parts twice gives

1/2
/ x1(t) sin(mﬂt)dt|
0

1/2

2 (t) sin(mm)dt‘

I
2
S
e
c\

—~ . (2.12)

Now let A be the infinite matrix with (i, j)"-entry a; ; (i, j, € N), where

z1(m), if © = ym for some odd integer m,
a;; = 1(m) ! s (2.13)
0, otherwise.

Evidently A is lower triangular, with each diagonal element equal to Z1(1). In
view of the structure of A, there exists a matrix B = (b;;); jen such that

BA = (5;)), (2.14)

the identity matrix; B is lower triangular, with each diagonal element equal
to 1/21(1). We use B to define elements of the dual L,(/)* of L,(I) as follows.
Let f € L,(I), so that

= if(j)ej-



For each i € N, define a functional f on L,(I) by
) =i () (2.15)
j=1

We claim that f € L,(I)*. As the linearity of f; is clear, it remains to show
that f is bounded. Since

|f7 ()] < max [by] maXIf( )l

1<5<s

and

FOI<21fl<20flle (€N,
it follows that f* € L,(I)*.

Next we claim that the systems {z;} and {f/} are biorthogonal, by which we
mean that

filz;) =6y (1,5 € N). (2.16)
To verify this, note that

J

o0
Z i (k) =D bijar; = 0
k=1

Since fF € L,(I)*, there exists f; € Ly (I) such that for all f € L,(1),

= [ 1oy s

fi= Zbijej- (2.17)
=1

In fact, f; is given by

To check this, write
= Z f (k)ek
k=1

and observe that, with f; given by (2.17),

Finally, we note that the L,(I)-norm of each z; can be calculated. In fact,
with



1 1/i
I :/ | sin, (impz)|?de = z/ (siny, (im,x))? dx
0 0

- /01 (siny(mpt))? dt = 2 /01/2 (sin, (mpt))? dt,

the substitutions u = sin,(m,t) and then u? = w give

[:2/1 uq(l—up)*l/pdu: 2/1 u(qﬂ)/p*l(l—w)*l/pdw
T Jo pm, Jo
2
=—DB((¢g+1)/p,1/p),
o Blla +1)/p.1/p)

where B is the beta function. Hence for all 7+ € N,

1/q
il = {pfrpB«w 1/p, 1/p'>} | (2.18)

3 The main result

After the technical preparation of §2, we can now obtain the desired result
fairly quickly. The strategy is to show that the f defined by (2.15) form a
basis of L,(I)*, and then to use the biorthogonality of the systems {x;} and
{f#} to conclude, via general theorems, that the z; form a basis of L,([).

Lemma 3.1 For any q € (1,00), the sequence {f; }ien is complete in Ly(I)*
in the sense that its closed linear span is L,(1)*.

Proof. For each n € N set P, = sp{f{, fa,..., [}, the span of f} f5 .. fr
Then s* € P, if and only if there exist di,...,d, € R such that for all f =

% f(i)e; € Ly(I),
s (f) =Y d;f(j). (3.1)

Moreover,

() = [ sof e, (3:2)
where

s=Y dje;. (3.3)



Now let g* € L,(I)* and let g € L, (I) be such that

1
g5 = [ g®fat. e Ly
Since g € Ly(I), the basis property of the e; in L, (/) means that
g= Zg(i)ei,
i=1
and for each N € N,
N 0o
lg =>_a@eilly =11 > glieilly — 0 as N — oo. (3-4)
i=1 i=N+1
For each n € N put
9o =2_g(i)e; (€ Ly(I))
i=1
and .
6:(f) = [ ga0f®)dt,  f € Ly(1).

From (3.2) we see that ¢ € P,. For every f € L,(I) we have, with the help
of Holder’s inequality,

() = Dl =| [ 960) = gute) f001
<llg = gnll 1

Hence by (3.4),

sup |9"(f) = gn(F) < llg = gnlly — 0
Iflla<1

as n — 00, so that g7 — ¢* in L,(I)*, as required. m

Lemma 3.2 Let g € (1,00). There is a sequence {u’} of bounded linear maps
of Ly(I)* to itself (i.e. endomorphisms of L,(I)* ) such that

(i)  wi(z*)=2a* forallz*€ P, (néeN),

(i) wi(z*)=0 forallz* € P™ (n€N)

and

(ili) 1< C:=sup,en ||us| < oo.

Here P, = sp{ff, ... fi}, P™ = sp{fi.1, fiis,...} (the closed linear span of
Joiis frios.o.) and the f are as defined in (2.15).

n

Proof. Let s* € P, and let s =Y.' | d;e; € Ly(I) be such that

() = [ s, f e L)



Given r* € P™_ there exists r = 3.2, ¢;e; € Ly(I) such that

We claim that each w, is an endomorphism of L, (I) and that we may define
an endomorphism u of L,(I)* by

w @) = [ un@)OF e, S € L(D),0" € L(I)"

where x € Ly () is such that

o) = [ ar @, f e L),

Plainly w, is a linear map from Ly (I); and it is bounded, for as the e; form a
basis of Ly (I), we see from (2.7) that there is a constant C' such that for all
n €N,

[un(z)lly < Cllzlly, € Le(l). (3.5)

Moreover, for every f = Y1, ciei, g = > 2,11 i€ € Ly(I) we have

un(f) = f, un(g) =0.

Next we justify the claim that each u is an endomorphism on L, (I)*. Linearity
is obvious; and for each z* € L,(I)*\ {0},

s @) o/l ={ sup |u;:<x*><f>|}/ sup [ (f)]

[fllq<1 [fllq<1

= l[un(@)llg /[l 2]y <C (3.6)
the inequality following from (3.5). Hence
lupll <C (n e N).
To establish a lower bound for the ||u}||, let © = e;. Then by (3.6),
[ ()| oy /2™ g = Nun()llg/llzllg = 1.

The proof is complete. m



Theorem 3.3 For each q € (1,00), the system {f!}ien defined by (2.15) is
a basis of L,(I)*.

Proof. By Lemma 3.1, {f/};en is complete in L,(I)*. Now apply Theorem
7.1 of [6], which shows that such a system {f/} is a basis if there is a sequence
of endomorphisms of L,(I)* having the properties ensured by Lemma 3.2. =

The main result of the paper is now virtually immediate.

Theorem 3.4 The functions x; (i € N) form a basis in Ly(I) for every q €
(1,00).

Proof. By (2.16), {z;} and {f} are biorthogonal; by Theorem 3.3, {f/} is a
basis of L,(I)*. Corollary 12.1 of [6] tells us that under these conditions, {z;}
is a basis of L,(/). m
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