Functions of trigonometric type and bases in L_{q}

D.E. Edmunds
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 $4 Y H, U K$

J. Lang

The Ohio State University, Department of Mathematics, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174, USA

Abstract

It is shown that, for all $p \in(1, \infty)$, the eigenfunctions of the Dirichlet problem for the p-Laplacian on $[0,1]$ form a basis of $L_{q}(0,1)$ for all $q \in(1, \infty)$.

Key words: Eigenfunction expansions, completeness of eigenfunctions, p-Laplace operator, Schauder basis, L_{p} spaces, biorthogonal system 1991 MSC: 34L10, 34L10, 42A65

1 Introduction

Let $q \in(1, \infty)$. It is a standard fact that the functions $\sin n \pi x$ and $\cos n \pi x$ form a basis of $L_{q}(-1,1)$: see, for example, [6], pp. 342-5. Given any $f \in$ $L_{q}(0,1)$, it follows that its odd extension to $L_{q}(-1,1)$ has a unique representation in terms of the $\sin n \pi x$. This means that the $\sin n \pi x$ form a basis of $L_{q}(0,1)$. In this paper we show that the same is true when the sines are replaced by the p-sine functions, for any $p \in(1, \infty)$. We recall that these may

[^0]be defined by setting
\[

$$
\begin{equation*}
F_{p}(x)=\int_{0}^{x}\left(1-t^{p}\right)^{-1 / p} d t, \quad x \in[0,1] \tag{1.1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\pi_{p}=2 \int_{0}^{1}\left(1-t^{p}\right)^{-1 / p} d t \tag{1.2}
\end{equation*}
$$

The p-sine function, $\sin _{p}$, is defined on $\left[0, \pi_{p} / 2\right]$ by

$$
\begin{equation*}
\sin _{p} x=F_{p}^{-1}(x) ; \tag{1.3}
\end{equation*}
$$

it is extended to \mathbf{R} by standard procedures. Note that $\sin _{2}$ is simply the usual sine function. These $\sin _{p}$ functions have attracted a great deal of attention recently, especially in connection with the one-dimensional p-Laplacian and with the sharp estimation of the approximation numbers of embeddings. For example, the functions $\sin _{p}\left(n \pi_{p} x\right)$ turn out to be the eigenfunctions of the p-Laplacian eigenvalue problem

$$
\left.\begin{array}{l}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda|u|^{p-2} u \text { on }(0,1) \tag{1.4}\\
u(0)=u(1)=0,
\end{array}\right\}
$$

corresponding to eigenvalues $\lambda_{n}=(p-1)\left(n \pi_{p}\right)^{p} \quad(n \in \mathbf{N})$. We refer to [2], [3] and [4] for further information and additional references on these functions and their applications. A fascinating account of early work on generalisations of trigonometric functions, is given in [5].

The only paper of which we are aware that deals with the basis properties of the $\sin _{p}$ functions is that of Binding et al [1], in which it is shown that if $12 / 11 \leq p<\infty$, they form a basis of $L_{q}(0,1)$ for all $q \in(1, \infty)$. The proof proceeds by constructing a homeomorphism of $L_{q}(0,1)$ onto itself that maps $\sin (n \pi x)$ onto $\sin _{p}\left(n \pi_{p} x\right) \quad(n \in \mathbf{N})$, and while this method allows a slightly smaller value than $12 / 11$ to be obtained, it does not enable the basis property to be established for p arbitrarily close to 1 . In contrast to this, we construct a basis of the dual of $L_{q}(0,1)$ that forms a biorthogonal system with the $\sin _{p}\left(n \pi_{p} x\right)$ functions. This enables us to conclude, by means of a general theorem about bases in Banach spaces, that the $\sin _{p}\left(n \pi_{p} x\right)$ functions form a basis of $L_{q}(0,1)$ for all $p, q \in(1, \infty)$.

2 Preliminaries and technical results

Throughout the paper p will stand for a number in $(1, \infty), p^{\prime}=p /(p-1)$, $I=[0,1]$ and $\|\cdot\|_{p}$ will denote the usual norm on the Lebesgue space $L_{p}(I)$.

The function $\sin _{p}$ is defined on $\left[0, \pi_{p} / 2\right]$ by (1.3): note that F_{p} is strictly increasing, as is $\sin _{p}$. Extension to $\left[0, \pi_{p}\right]$ is achieved by setting

$$
\sin _{p}(t)=\sin _{p}\left(\pi_{p}-t\right) \quad \text { for } t \in\left[\pi_{p} / 2, \pi_{p}\right]
$$

further extension to $\left[-\pi_{p}, \pi_{p}\right]$ is made by oddness, and finally $\sin _{p}$ is extended to \mathbf{R} by $2 \pi_{p}$-periodicity. This extension is in $C^{1}(\mathbf{R})$. Note that $\sin _{p}(0)=0$ and $\sin _{p}\left(\pi_{p} / 2\right)=1$. We define $\cos _{p}: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
\cos _{p} t=\frac{d}{d t} \sin _{p} t, \quad t \in \mathbf{R} ; \tag{2.1}
\end{equation*}
$$

$\cos _{p}$ is even, $2 \pi_{p}$-periodic and odd about $\pi_{p} / 2$. Moreover,

$$
\begin{equation*}
\left|\sin _{p} t\right|^{p}+\left|\cos _{p} t\right|^{p}=1, \quad t \in \mathbf{R} \tag{2.2}
\end{equation*}
$$

The number π_{p} is easily shown to be given by

$$
\begin{equation*}
\pi_{p}=2 p^{-1} \Gamma\left(1 / p^{\prime}\right) \Gamma(1 / p)=\frac{2 \pi}{p \sin (\pi / p)} \tag{2.3}
\end{equation*}
$$

For shortness we shall write

$$
\begin{equation*}
e_{n}(t)=\sin (n \pi t), x_{n}(t)=\sin _{p}\left(n \pi_{p} t\right) \quad(n \in \mathbf{N}, t \in I) \tag{2.4}
\end{equation*}
$$

We recall that a sequence $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ of elements of a Banach space Y is called a (Schauder) basis if, for every $y \in Y$, there is a unique sequence $\left\{a_{n}\right\}_{n \in \mathbf{N}}$ of scalars such that

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} a_{n} y_{n} \tag{2.5}
\end{equation*}
$$

the series converging in the norm of Y. It can be shown (see [7], Proposition II.B.6, p.37) that the partial sum projections $P_{N}: Y \rightarrow Y$ defined by

$$
\begin{equation*}
P_{N}\left(\sum_{n=1}^{\infty} a_{n} y_{n}\right)=\sum_{n=1}^{N} a_{n} y_{n} \quad(N \in \mathbf{N}) \tag{2.6}
\end{equation*}
$$

have the property that

$$
\begin{equation*}
\sup _{N \in \mathbf{N}}\left\|P_{N}\right\|<\infty \tag{2.7}
\end{equation*}
$$

Since each x_{n} is continuous on I it is in every $L_{q}(I)(1<q<\infty)$; and as the e_{k} form a basis in $L_{q}(I), x_{n}$ has a Fourier sine expansion, converging in each $L_{q}(I)$:

$$
\begin{equation*}
x_{n}(t)=\sum_{k=1}^{\infty} \hat{x}_{n}(k) \sin (k \pi t), \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{x}_{n}(k)=2 \int_{0}^{1} x_{n}(t) \sin (k \pi t) d t \tag{2.9}
\end{equation*}
$$

The symmetry of x_{1} about $t=1 / 2$ means that

$$
\begin{equation*}
\hat{x}_{1}(k)=0 \quad \text { when } k \text { is odd, } \tag{2.10}
\end{equation*}
$$

and that

$$
\begin{align*}
\hat{x}_{n}(k) & =2 \int_{0}^{1} x_{1}(n t) \sin (k \pi t) d t \\
& =2 \sum_{m=1}^{\infty} \hat{x}_{1}(m) \int_{0}^{1} \sin (k \pi t) \sin (m n \pi t) d t \\
& = \begin{cases}\hat{x}_{1}(m), & \text { if } m n=k \text { for some odd } m, \\
0, & \text { otherwise }\end{cases} \tag{2.11}
\end{align*}
$$

To estimate $\hat{x}_{1}(m)$, we follow [1] and note that since $x_{1}^{\prime \prime}(t)<0$ for all $t \in$ $(0,1 / 2)$, integration by parts twice gives

$$
\begin{align*}
\left|\hat{x}_{1}(m)\right| & =4\left|\int_{0}^{1 / 2} x_{1}(t) \sin (m \pi t) d t\right| \\
& =\left|\frac{-4}{(m \pi)^{2}} \int_{0}^{1 / 2} x_{1}^{\prime \prime}(t) \sin (m \pi t) d t\right| \\
& \leq \frac{-4}{(m \pi)^{2}} \int_{0}^{1 / 2} x_{1}^{\prime \prime}(t) d t \\
& =\frac{4 \pi_{p}}{(m \pi)^{2}} \tag{2.12}
\end{align*}
$$

Now let A be the infinite matrix with $(i, j)^{t h}$-entry $a_{i, j}(i, j, \in \mathbf{N})$, where

$$
a_{i j}= \begin{cases}\hat{x}_{1}(m), & \text { if } i=j m \text { for some odd integer } m \tag{2.13}\\ 0, & \text { otherwise }\end{cases}
$$

Evidently A is lower triangular, with each diagonal element equal to $\hat{x}_{1}(1)$. In view of the structure of A, there exists a matrix $B=\left(b_{i j}\right)_{i, j \in \mathbf{N}}$ such that

$$
\begin{equation*}
B A=\left(\delta_{i j}\right) \tag{2.14}
\end{equation*}
$$

the identity matrix; B is lower triangular, with each diagonal element equal to $1 / \hat{x}_{1}(1)$. We use B to define elements of the dual $L_{q}(I)^{*}$ of $L_{q}(I)$ as follows. Let $f \in L_{q}(I)$, so that

$$
f=\sum_{j=1}^{\infty} \hat{f}(j) e_{j} .
$$

For each $i \in \mathbf{N}$, define a functional f_{i}^{*} on $L_{q}(I)$ by

$$
\begin{equation*}
f_{i}^{*}(f)=\sum_{j=1}^{i} b_{i j} \hat{f}(j) \tag{2.15}
\end{equation*}
$$

We claim that $f_{i}^{*} \in L_{q}(I)^{*}$. As the linearity of f_{i}^{*} is clear, it remains to show that f_{i}^{*} is bounded. Since

$$
\left|f_{i}^{*}(f)\right| \leq \max _{1 \leq j \leq i}\left|b_{i j}\right| \max _{j \in \mathrm{~N}}|\hat{f}(j)|
$$

and

$$
|\hat{f}(j)| \leq 2\|f\|_{1} \leq 2\|f\|_{q} \quad(j \in \mathbf{N})
$$

it follows that $f_{i}^{*} \in L_{q}(I)^{*}$.
Next we claim that the systems $\left\{x_{i}\right\}$ and $\left\{f_{i}^{*}\right\}$ are biorthogonal, by which we mean that

$$
\begin{equation*}
f_{i}^{*}\left(x_{j}\right)=\delta_{i j} \quad(i, j \in \mathbf{N}) \tag{2.16}
\end{equation*}
$$

To verify this, note that

$$
f_{i}^{*}\left(x_{j}\right)=\sum_{k=1}^{j} b_{i k} \hat{x}_{j}(k)=\sum_{k=1}^{\infty} b_{i j} a_{k j}=\delta_{i j} .
$$

Since $f_{i}^{*} \in L_{q}(I)^{*}$, there exists $f_{i} \in L_{q^{\prime}}(I)$ such that for all $f \in L_{q}(I)$,

$$
f_{i}^{*}(f)=\int_{0}^{1} f_{i}(t) f(t) d t
$$

In fact, f_{i} is given by

$$
\begin{equation*}
f_{i}=\sum_{j=1}^{i} b_{i j} e_{j} . \tag{2.17}
\end{equation*}
$$

To check this, write

$$
f=\sum_{k=1}^{\infty} \hat{f}(k) e_{k}
$$

and observe that, with f_{i} given by (2.17),

$$
\begin{aligned}
\int_{0}^{1} f_{i}(t) f(t) d t & =\int_{0}^{1}\left(\sum_{j=1}^{i} b_{i j} e_{j}(t)\right)\left(\sum_{k=1}^{\infty} \hat{f}(k) e_{k}(t)\right) d t \\
& =\sum_{j=1}^{i} b_{i j} \hat{f}(j)=f_{i}^{*}(f) .
\end{aligned}
$$

Finally, we note that the $L_{q}(I)$-norm of each x_{i} can be calculated. In fact, with

$$
\begin{aligned}
I & =\int_{0}^{1}\left|\sin _{p}\left(i \pi_{p} x\right)\right|^{q} d x=i \int_{0}^{1 / i}\left(\sin _{p}\left(i \pi_{p} x\right)\right)^{q} d x \\
& =\int_{0}^{1}\left(\sin _{p}\left(\pi_{p} t\right)\right)^{q} d t=2 \int_{0}^{1 / 2}\left(\sin _{p}\left(\pi_{p} t\right)\right)^{q} d t
\end{aligned}
$$

the substitutions $u=\sin _{p}\left(\pi_{p} t\right)$ and then $u^{p}=w$ give

$$
\begin{aligned}
I & =\frac{2}{\pi_{p}} \int_{0}^{1} u^{q}\left(1-u^{p}\right)^{-1 / p} d u=\frac{2}{p \pi_{p}} \int_{0}^{1} u^{(q+1) / p-1}(1-w)^{-1 / p} d w \\
& =\frac{2}{p \pi_{p}} B\left((q+1) / p, 1 / p^{\prime}\right)
\end{aligned}
$$

where B is the beta function. Hence for all $i \in \mathbf{N}$,

$$
\begin{equation*}
\left\|x_{i}\right\|_{q}=\left\{\frac{2}{p \pi_{p}} B\left((q+1) / p, 1 / p^{\prime}\right)\right\}^{1 / q} \tag{2.18}
\end{equation*}
$$

3 The main result

After the technical preparation of $\S 2$, we can now obtain the desired result fairly quickly. The strategy is to show that the f_{i}^{*} defined by (2.15) form a basis of $L_{q}(I)^{*}$, and then to use the biorthogonality of the systems $\left\{x_{i}\right\}$ and $\left\{f_{i}^{*}\right\}$ to conclude, via general theorems, that the x_{i} form a basis of $L_{q}(I)$.

Lemma 3.1 For any $q \in(1, \infty)$, the sequence $\left\{f_{i}^{*}\right\}_{i \in \mathbf{N}}$ is complete in $L_{q}(I)^{*}$ in the sense that its closed linear span is $L_{q}(I)^{*}$.

Proof. For each $n \in \mathbf{N}$ set $P_{n}=\operatorname{sp}\left\{f_{1}^{*}, f_{2}^{*}, \ldots, f_{n}^{*}\right\}$, the span of $f_{1}^{*}, f_{2}^{*}, \ldots, f_{n}^{*}$. Then $s^{*} \in P_{n}$ if and only if there exist $d_{1}, \ldots, d_{n} \in \mathbf{R}$ such that for all $f=$ $\sum_{j=1}^{\infty} \hat{f}(j) e_{j} \in L_{q}(I)$,

$$
\begin{equation*}
s^{*}(f)=\sum_{j=1}^{n} d_{j} \hat{f}(j) \tag{3.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
s^{*}(f)=\int_{0}^{1} s(t) f(t) d t \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
s=\sum_{j=1}^{n} d_{j} e_{j} \tag{3.3}
\end{equation*}
$$

Now let $g^{*} \in L_{q}(I)^{*}$ and let $g \in L_{q^{\prime}}(I)$ be such that

$$
g^{*}(f)=\int_{0}^{1} g(t) f(t) d t, \quad f \in L_{q}(I)
$$

Since $g \in L_{q^{\prime}}(I)$, the basis property of the e_{i} in $L_{q^{\prime}}(I)$ means that

$$
g=\sum_{i=1}^{\infty} \hat{g}(i) e_{i},
$$

and for each $N \in \mathbf{N}$,

$$
\begin{equation*}
\left\|g-\sum_{i=1}^{N} \hat{g}(i) e_{i}\right\|_{q^{\prime}}=\left\|\sum_{i=N+1}^{\infty} \hat{g}(i) e_{i}\right\|_{q^{\prime}} \rightarrow 0 \text { as } N \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

For each $n \in \mathbf{N}$ put

$$
g_{n}=\sum_{i=1}^{n} \hat{g}(i) e_{i} \quad\left(\in L_{q^{\prime}}(I)\right)
$$

and

$$
g_{n}^{*}(f)=\int_{0}^{1} g_{n}(t) f(t) d t, \quad f \in L_{q}(I)
$$

From (3.2) we see that $g_{n}^{*} \in P_{n}$. For every $f \in L_{q}(I)$ we have, with the help of Hölder's inequality,

$$
\begin{aligned}
\left|g^{*}(f)-g_{n}^{*}(f)\right| & =\left|\int_{0}^{1}\left(g(t)-g_{n}(t)\right) f(t) d t\right| \\
& \leq\left\|g-g_{n}\right\|_{q^{\prime}}\|f\|_{q}
\end{aligned}
$$

Hence by (3.4),

$$
\sup _{\|f\|_{q} \leq 1}\left|g^{*}(f)-g_{n}^{*}(f)\right| \leq\left\|g-g_{n}\right\|_{q^{\prime}} \rightarrow 0
$$

as $n \rightarrow \infty$, so that $g_{n}^{*} \rightarrow g^{*}$ in $L_{q}(I)^{*}$, as required.
Lemma 3.2 Let $q \in(1, \infty)$. There is a sequence $\left\{u_{n}^{*}\right\}$ of bounded linear maps of $L_{q}(I)^{*}$ to itself (i.e. endomorphisms of $L_{q}(I)^{*}$) such that
(i) $\quad u_{n}^{*}\left(x^{*}\right)=x^{*} \quad$ for all $x^{*} \in P_{n} \quad(n \in \mathbf{N})$,
(ii) $\quad u_{n}^{*}\left(x^{*}\right)=0 \quad$ for all $x^{*} \in P^{(n)} \quad(n \in \mathbf{N})$
and
(iii) $\quad 1 \leq C:=\sup _{n \in \mathbf{N}}\left\|u_{n}^{*}\right\|<\infty$.

Here $P_{n}=\operatorname{sp}\left\{f_{1}^{*}, \ldots, f_{n}^{*}\right\}, P^{(n)}=\operatorname{sp}\left\{f_{n+1}^{*}, f_{n+2}^{*}, \ldots\right\}$ (the closed linear span of $f_{n+1}^{*}, f_{n+2}^{*}, \ldots$) and the f_{i}^{*} are as defined in (2.15).

Proof. Let $s^{*} \in P_{n}$ and let $s=\sum_{i=1}^{n} d_{i} e_{i} \in L_{q^{\prime}}(I)$ be such that

$$
s^{*}(f)=\int_{0}^{1} s(t) f(t) d t, \quad f \in L_{q}(I)
$$

Given $r^{*} \in P^{(n)}$, there exists $r=\sum_{i=n+1}^{\infty} c_{i} e_{i} \in L_{q^{\prime}}(I)$ such that

$$
r^{*}(f)=\int_{0}^{1} r(t) f(t) d t, \quad f \in L_{q}(I)
$$

For each $n \in \mathbf{N}$, define u_{n} on $L_{q^{\prime}}(I)$ by

$$
u_{n}(x)=\sum_{i=1}^{n} \hat{x}(i) e_{i}, \quad x=\sum_{i=1}^{\infty} \hat{x}(i) e_{i} \in L_{q^{\prime}}(I) .
$$

We claim that each u_{n} is an endomorphism of $L_{q^{\prime}}(I)$ and that we may define an endomorphism u_{n}^{*} of $L_{q}(I)^{*}$ by

$$
u_{n}^{*}\left(x^{*}\right)(f)=\int_{0}^{1} u_{n}(x)(t) f(t) d t, \quad f \in L_{q}(I), x^{*} \in L_{q}(I)^{*},
$$

where $x \in L_{q^{\prime}}(I)$ is such that

$$
x^{*}(f)=\int_{0}^{1} x(t) f(t) d t, \quad f \in L_{q}(I) .
$$

Plainly u_{n} is a linear map from $L_{q^{\prime}}(I)$; and it is bounded, for as the e_{i} form a basis of $L_{q^{\prime}}(I)$, we see from (2.7) that there is a constant C such that for all $n \in \mathbf{N}$,

$$
\begin{equation*}
\left\|u_{n}(x)\right\|_{q^{\prime}} \leq C\|x\|_{q^{\prime}}, \quad x \in L_{q^{\prime}}(I) . \tag{3.5}
\end{equation*}
$$

Moreover, for every $f=\sum_{i=1}^{n} c_{i} e_{i}, g=\sum_{i=n+1}^{\infty} c_{i} e_{i} \in L_{q^{\prime}}(I)$ we have

$$
u_{n}(f)=f, \quad u_{n}(g)=0 .
$$

Next we justify the claim that each u_{n}^{*} is an endomorphism on $L_{q}(I)^{*}$. Linearity is obvious; and for each $x^{*} \in L_{q}(I)^{*} \backslash\{0\}$,

$$
\begin{align*}
\left\|u_{n}^{*}\left(x^{*}\right)\right\|_{L_{q}(I)^{*}} /\left\|x^{*}\right\|_{L_{q}(I)^{*}} & =\left\{\sup _{\|f\|_{q} \leq 1}\left|u_{n}^{*}\left(x^{*}\right)(f)\right|\right\} / \sup _{\|f\|_{q} \leq 1}\left|x^{*}(f)\right| \\
& =\left\|u_{n}(x)\right\|_{q^{\prime}} /\|x\|_{q^{\prime}} \leq C \tag{3.6}
\end{align*}
$$

the inequality following from (3.5). Hence

$$
\left\|u_{n}^{*}\right\| \leq C \quad(n \in \mathbf{N})
$$

To establish a lower bound for the $\left\|u_{n}^{*}\right\|$, let $x=e_{1}$. Then by (3.6),

$$
\left\|u_{n}^{*}\left(x^{*}\right)\right\|_{L_{q}(I)^{*}} /\left\|x^{*}\right\|_{L_{q}(I)^{*}}=\left\|u_{n}(x)\right\|_{q^{\prime}} /\|x\|_{q^{\prime}}=1 .
$$

The proof is complete.

Theorem 3.3 For each $q \in(1, \infty)$, the system $\left\{f_{i}^{*}\right\}_{i \in \mathbf{N}}$ defined by (2.15) is a basis of $L_{q}(I)^{*}$.

Proof. By Lemma 3.1, $\left\{f_{i}^{*}\right\}_{i \in \mathbf{N}}$ is complete in $L_{q}(I)^{*}$. Now apply Theorem 7.1 of [6], which shows that such a system $\left\{f_{i}^{*}\right\}$ is a basis if there is a sequence of endomorphisms of $L_{q}(I)^{*}$ having the properties ensured by Lemma 3.2.

The main result of the paper is now virtually immediate.
Theorem 3.4 The functions $x_{i}(i \in \mathbf{N})$ form a basis in $L_{q}(I)$ for every $q \in$ $(1, \infty)$.

Proof. By (2.16), $\left\{x_{i}\right\}$ and $\left\{f_{j}^{*}\right\}$ are biorthogonal; by Theorem 3.3, $\left\{f_{j}^{*}\right\}$ is a basis of $L_{q}(I)^{*}$. Corollary 12.1 of [6] tells us that under these conditions, $\left\{x_{i}\right\}$ is a basis of $L_{q}(I)$.

References

[1] P.Binding, L. Boulton, J. Čepička, P.Drábek and P. Girg, Basis properties of eigenfunctions of the p-Laplacian, preprint.
[2] P. Drábek and R. Manásevich, On the solution to some p-Laplacian nonhomogeneous eigenvalue problems, Diff. and Int. Eqns. 12 (1999), 723-740.
[3] P. Lindqvist, Note on a nonlinear eigenvalue problem, Rocky Mountain J. Math. 23 (1993), 281-288.
[4] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche di Matematica 44 (1995), 269-290.
[5] P. Lindqvist and J. Peetre, Comments on Erik Lundberg's 1879 thesis, especially on the work of Göran Dillner and his influence on Lundberg, Mem. dell'Istituto Lombardo, Accad. Sci. e Lett., Classe Sci. Mat. Nat. XXXI, Fasc 1, Milano 2004.
[6] I. Singer, Basis in Banach spaces I, Springer-Verlag, Berlin, 1970.
[7] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Univ. Press, Cambridge, 1991.

[^0]: Email addresses: davideedmunds@aol.com (D.E. Edmunds), lang@math.ohio-state.edu (J. Lang).

