Functions of trigonometric type and bases in L_q

D.E. Edmunds

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4YH, UK

J. Lang

The Ohio State University, Department of Mathematics, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174, USA

Abstract

It is shown that, for all $p \in (1, \infty)$, the eigenfunctions of the Dirichlet problem for the *p*-Laplacian on [0, 1] form a basis of $L_q(0, 1)$ for all $q \in (1, \infty)$.

Key words: Eigenfunction expansions, completeness of eigenfunctions, p-Laplace operator, Schauder basis, L_p spaces, biorthogonal system 1991 MSC: 34L10, 34L10, 42A65

1 Introduction

Let $q \in (1, \infty)$. It is a standard fact that the functions $\sin n\pi x$ and $\cos n\pi x$ form a basis of $L_q(-1, 1)$: see, for example, [6], pp. 342-5. Given any $f \in L_q(0, 1)$, it follows that its odd extension to $L_q(-1, 1)$ has a unique representation in terms of the $\sin n\pi x$. This means that the $\sin n\pi x$ form a basis of $L_q(0, 1)$. In this paper we show that the same is true when the sines are replaced by the *p*-sine functions, for any $p \in (1, \infty)$. We recall that these may

Email addresses: davideedmunds@aol.com (D.E. Edmunds), lang@math.ohio-state.edu (J. Lang).

be defined by setting

$$F_p(x) = \int_0^x (1 - t^p)^{-1/p} dt, \qquad x \in [0, 1]$$
(1.1)

and

$$\pi_p = 2 \int_0^1 (1 - t^p)^{-1/p} dt.$$
(1.2)

The *p*-sine function, \sin_p , is defined on $[0, \pi_p/2]$ by

$$\sin_p x = F_p^{-1}(x); (1.3)$$

it is extended to \mathbf{R} by standard procedures. Note that \sin_2 is simply the usual sine function. These \sin_p functions have attracted a great deal of attention recently, especially in connection with the one-dimensional *p*-Laplacian and with the sharp estimation of the approximation numbers of embeddings. For example, the functions $\sin_p(n\pi_p x)$ turn out to be the eigenfunctions of the *p*-Laplacian eigenvalue problem

$$-(|u'|^{p-2}u')' = \lambda |u|^{p-2}u \text{ on } (0,1), u(0) = u(1) = 0,$$
 (1.4)

corresponding to eigenvalues $\lambda_n = (p-1)(n\pi_p)^p$ $(n \in \mathbf{N})$. We refer to [2], [3] and [4] for further information and additional references on these functions and their applications. A fascinating account of early work on generalisations of trigonometric functions, is given in [5].

The only paper of which we are aware that deals with the basis properties of the \sin_p functions is that of Binding et al [1], in which it is shown that if $12/11 \leq p < \infty$, they form a basis of $L_q(0,1)$ for all $q \in (1,\infty)$. The proof proceeds by constructing a homeomorphism of $L_q(0,1)$ onto itself that maps $\sin(n\pi x)$ onto $\sin_p(n\pi_p x)$ $(n \in \mathbf{N})$, and while this method allows a slightly smaller value than 12/11 to be obtained, it does not enable the basis property to be established for p arbitrarily close to 1. In contrast to this, we construct a basis of the dual of $L_q(0,1)$ that forms a biorthogonal system with the $\sin_p(n\pi_p x)$ functions. This enables us to conclude, by means of a general theorem about bases in Banach spaces, that the $\sin_p(n\pi_p x)$ functions form a basis of $L_q(0,1)$ for all $p, q \in (1,\infty)$.

2 Preliminaries and technical results

Throughout the paper p will stand for a number in $(1, \infty)$, p' = p/(p-1), I = [0, 1] and $\|.\|_p$ will denote the usual norm on the Lebesgue space $L_p(I)$.

The function \sin_p is defined on $[0, \pi_p/2]$ by (1.3): note that F_p is strictly increasing, as is \sin_p . Extension to $[0, \pi_p]$ is achieved by setting

$$\sin_p(t) = \sin_p(\pi_p - t) \quad \text{for } t \in [\pi_p/2, \pi_p];$$

further extension to $[-\pi_p, \pi_p]$ is made by oddness, and finally \sin_p is extended to **R** by $2\pi_p$ -periodicity. This extension is in $C^1(\mathbf{R})$. Note that $\sin_p(0) = 0$ and $\sin_p(\pi_p/2) = 1$. We define $\cos_p : \mathbf{R} \to \mathbf{R}$ by

$$\cos_p t = \frac{d}{dt} \sin_p t, \quad t \in \mathbf{R};$$
(2.1)

 \cos_p is even, $2\pi_p$ -periodic and odd about $\pi_p/2$. Moreover,

$$|\sin_p t|^p + |\cos_p t|^p = 1, \quad t \in \mathbf{R}.$$
 (2.2)

The number π_p is easily shown to be given by

$$\pi_p = 2p^{-1}\Gamma(1/p')\Gamma(1/p) = \frac{2\pi}{p\sin(\pi/p)}.$$
(2.3)

For shortness we shall write

$$e_n(t) = \sin(n\pi t), \ x_n(t) = \sin_p(n\pi_p t) \quad (n \in \mathbf{N}, \ t \in I).$$
 (2.4)

We recall that a sequence $\{y_n\}_{n \in \mathbb{N}}$ of elements of a Banach space Y is called a (Schauder) basis if, for every $y \in Y$, there is a unique sequence $\{a_n\}_{n \in \mathbb{N}}$ of scalars such that

$$y = \sum_{n=1}^{\infty} a_n y_n, \tag{2.5}$$

the series converging in the norm of Y. It can be shown (see [7], Proposition II.B.6, p.37) that the partial sum projections $P_N: Y \to Y$ defined by

$$P_N\left(\sum_{n=1}^{\infty} a_n y_n\right) = \sum_{n=1}^{N} a_n y_n \quad (N \in \mathbf{N})$$
(2.6)

have the property that

$$\sup_{N \in \mathbf{N}} \|P_N\| < \infty. \tag{2.7}$$

Since each x_n is continuous on I it is in every $L_q(I)$ $(1 < q < \infty)$; and as the e_k form a basis in $L_q(I)$, x_n has a Fourier sine expansion, converging in each $L_q(I)$:

$$x_n(t) = \sum_{k=1}^{\infty} \hat{x}_n(k) \sin(k\pi t),$$
 (2.8)

where

$$\hat{x}_n(k) = 2 \int_0^1 x_n(t) \sin(k\pi t) dt.$$
 (2.9)

The symmetry of x_1 about t = 1/2 means that

$$\hat{x}_1(k) = 0$$
 when k is odd, (2.10)

and that

$$\hat{x}_n(k) = 2 \int_0^1 x_1(nt) \sin(k\pi t) dt$$

= $2 \sum_{m=1}^\infty \hat{x}_1(m) \int_0^1 \sin(k\pi t) \sin(mn\pi t) dt$
= $\begin{cases} \hat{x}_1(m), & \text{if } mn = k \text{ for some odd } m, \\ 0, & \text{otherwise.} \end{cases}$ (2.11)

To estimate $\hat{x}_1(m)$, we follow [1] and note that since $x''_1(t) < 0$ for all $t \in (0, 1/2)$, integration by parts twice gives

$$\begin{aligned} |\hat{x}_{1}(m)| &= 4 \left| \int_{0}^{1/2} x_{1}(t) \sin(m\pi t) dt \right| \\ &= \left| \frac{-4}{(m\pi)^{2}} \int_{0}^{1/2} x_{1}''(t) \sin(m\pi t) dt \right| \\ &\leq \frac{-4}{(m\pi)^{2}} \int_{0}^{1/2} x_{1}''(t) dt \\ &= \frac{4\pi_{p}}{(m\pi)^{2}}. \end{aligned}$$
(2.12)

Now let A be the infinite matrix with $(i, j)^{th}$ -entry $a_{i,j}$ $(i, j, \in \mathbf{N})$, where

$$a_{ij} = \begin{cases} \hat{x}_1(m), & \text{if } i = jm \text{ for some odd integer } m, \\ 0, & \text{otherwise.} \end{cases}$$
(2.13)

Evidently A is lower triangular, with each diagonal element equal to $\hat{x}_1(1)$. In view of the structure of A, there exists a matrix $B = (b_{ij})_{i,j \in \mathbb{N}}$ such that

$$BA = (\delta_{ij}), \tag{2.14}$$

the identity matrix; B is lower triangular, with each diagonal element equal to $1/\hat{x}_1(1)$. We use B to define elements of the dual $L_q(I)^*$ of $L_q(I)$ as follows. Let $f \in L_q(I)$, so that

$$f = \sum_{j=1}^{\infty} \hat{f}(j) e_j.$$

For each $i \in \mathbf{N}$, define a functional f_i^* on $L_q(I)$ by

$$f_i^*(f) = \sum_{j=1}^i b_{ij} \hat{f}(j).$$
(2.15)

We claim that $f_i^* \in L_q(I)^*$. As the linearity of f_i^* is clear, it remains to show that f_i^* is bounded. Since

$$|f_i^*(f)| \le \max_{1 \le j \le i} |b_{ij}| \max_{j \in \mathbf{N}} |\hat{f}(j)|$$

and

$$|\hat{f}(j)| \le 2 \|f\|_1 \le 2 \|f\|_q \quad (j \in \mathbf{N}),$$

it follows that $f_i^* \in L_q(I)^*$.

Next we claim that the systems $\{x_i\}$ and $\{f_i^*\}$ are biorthogonal, by which we mean that

$$f_i^*(x_j) = \delta_{ij} \quad (i, j \in \mathbf{N}). \tag{2.16}$$

To verify this, note that

$$f_i^*(x_j) = \sum_{k=1}^j b_{ik} \hat{x}_j(k) = \sum_{k=1}^\infty b_{ij} a_{kj} = \delta_{ij}.$$

Since $f_i^* \in L_q(I)^*$, there exists $f_i \in L_{q'}(I)$ such that for all $f \in L_q(I)$,

$$f_i^*(f) = \int_0^1 f_i(t)f(t)dt$$

In fact, f_i is given by

$$f_i = \sum_{j=1}^{i} b_{ij} e_j.$$
 (2.17)

To check this, write

$$f = \sum_{k=1}^{\infty} \hat{f}(k) e_k$$

and observe that, with f_i given by (2.17),

$$\int_{0}^{1} f_{i}(t)f(t)dt = \int_{0}^{1} \left(\sum_{j=1}^{i} b_{ij}e_{j}(t)\right) \left(\sum_{k=1}^{\infty} \hat{f}(k)e_{k}(t)\right) dt$$
$$= \sum_{j=1}^{i} b_{ij}\hat{f}(j) = f_{i}^{*}(f).$$

Finally, we note that the $L_q(I)$ -norm of each x_i can be calculated. In fact, with

$$I = \int_0^1 |\sin_p(i\pi_p x)|^q dx = i \int_0^{1/i} (\sin_p(i\pi_p x))^q dx$$
$$= \int_0^1 (\sin_p(\pi_p t))^q dt = 2 \int_0^{1/2} (\sin_p(\pi_p t))^q dt,$$

the substitutions $u = \sin_p(\pi_p t)$ and then $u^p = w$ give

$$\begin{split} I &= \frac{2}{\pi_p} \int_0^1 u^q (1-u^p)^{-1/p} du = \frac{2}{p\pi_p} \int_0^1 u^{(q+1)/p-1} (1-w)^{-1/p} dw \\ &= \frac{2}{p\pi_p} B((q+1)/p, 1/p'), \end{split}$$

where B is the beta function. Hence for all $i \in \mathbf{N}$,

$$\|x_i\|_q = \left\{\frac{2}{p\pi_p}B((q+1)/p, 1/p')\right\}^{1/q}.$$
(2.18)

3 The main result

After the technical preparation of §2, we can now obtain the desired result fairly quickly. The strategy is to show that the f_i^* defined by (2.15) form a basis of $L_q(I)^*$, and then to use the biorthogonality of the systems $\{x_i\}$ and $\{f_i^*\}$ to conclude, via general theorems, that the x_i form a basis of $L_q(I)$.

Lemma 3.1 For any $q \in (1, \infty)$, the sequence $\{f_i^*\}_{i \in \mathbb{N}}$ is complete in $L_q(I)^*$ in the sense that its closed linear span is $L_q(I)^*$.

Proof. For each $n \in \mathbf{N}$ set $P_n = \sup\{f_1^*, f_2^*, ..., f_n^*\}$, the span of $f_1^*, f_2^*, ..., f_n^*$. Then $s^* \in P_n$ if and only if there exist $d_1, ..., d_n \in \mathbf{R}$ such that for all $f = \sum_{j=1}^{\infty} \hat{f}(j) e_j \in L_q(I)$,

$$s^*(f) = \sum_{j=1}^n d_j \hat{f}(j).$$
(3.1)

Moreover,

$$s^{*}(f) = \int_{0}^{1} s(t)f(t)dt, \qquad (3.2)$$

where

$$s = \sum_{j=1}^{n} d_j e_j.$$
 (3.3)

Now let $g^* \in L_q(I)^*$ and let $g \in L_{q'}(I)$ be such that

$$g^*(f) = \int_0^1 g(t)f(t)dt, \quad f \in L_q(I).$$

Since $g \in L_{q'}(I)$, the basis property of the e_i in $L_{q'}(I)$ means that

$$g = \sum_{i=1}^{\infty} \hat{g}(i)e_i,$$

and for each $N \in \mathbf{N}$,

$$\|g - \sum_{i=1}^{N} \hat{g}(i)e_i\|_{q'} = \|\sum_{i=N+1}^{\infty} \hat{g}(i)e_i\|_{q'} \to 0 \text{ as } N \to \infty.$$
(3.4)

For each $n \in \mathbf{N}$ put

$$g_n = \sum_{i=1}^n \hat{g}(i)e_i \quad (\in L_{q'}(I))$$

and

$$g_n^*(f) = \int_0^1 g_n(t)f(t)dt, \quad f \in L_q(I).$$

From (3.2) we see that $g_n^* \in P_n$. For every $f \in L_q(I)$ we have, with the help of Hölder's inequality,

$$|g^*(f) - g^*_n(f)| = \left| \int_0^1 (g(t) - g_n(t)) f(t) dt \right|$$

$$\leq ||g - g_n||_{q'} ||f||_q.$$

Hence by (3.4),

$$\sup_{\|f\|_q \le 1} |g^*(f) - g^*_n(f)| \le \|g - g_n\|_{q'} \to 0$$

as $n \to \infty$, so that $g_n^* \to g^*$ in $L_q(I)^*$, as required.

Lemma 3.2 Let $q \in (1, \infty)$. There is a sequence $\{u_n^*\}$ of bounded linear maps of $L_q(I)^*$ to itself (i.e. endomorphisms of $L_q(I)^*$) such that (i) $u_n^*(x^*) = x^*$ for all $x^* \in P_n$ $(n \in \mathbf{N})$, (ii) $u_n^*(x^*) = 0$ for all $x^* \in P^{(n)}$ $(n \in \mathbf{N})$ and (iii) $1 \leq C := \sup_{n \in \mathbf{N}} ||u_n^*|| < \infty$.

Here $P_n = sp\{f_1^*, ..., f_n^*\}, P^{(n)} = sp\{f_{n+1}^*, f_{n+2}^*, ...\}$ (the closed linear span of $f_{n+1}^*, f_{n+2}^*, ...$) and the f_i^* are as defined in (2.15).

Proof. Let $s^* \in P_n$ and let $s = \sum_{i=1}^n d_i e_i \in L_{q'}(I)$ be such that

$$s^*(f) = \int_0^1 s(t)f(t)dt, \quad f \in L_q(I).$$

Given $r^* \in P^{(n)}$, there exists $r = \sum_{i=n+1}^{\infty} c_i e_i \in L_{q'}(I)$ such that

$$r^*(f) = \int_0^1 r(t)f(t)dt, \quad f \in L_q(I).$$

For each $n \in \mathbf{N}$, define u_n on $L_{q'}(I)$ by

$$u_n(x) = \sum_{i=1}^n \hat{x}(i)e_i, \quad x = \sum_{i=1}^\infty \hat{x}(i)e_i \in L_{q'}(I).$$

We claim that each u_n is an endomorphism of $L_{q'}(I)$ and that we may define an endomorphism u_n^* of $L_q(I)^*$ by

$$u_n^*(x^*)(f) = \int_0^1 u_n(x)(t)f(t)dt, \quad f \in L_q(I), x^* \in L_q(I)^*,$$

where $x \in L_{q'}(I)$ is such that

$$x^*(f) = \int_0^1 x(t)f(t)dt, \quad f \in L_q(I).$$

Plainly u_n is a linear map from $L_{q'}(I)$; and it is bounded, for as the e_i form a basis of $L_{q'}(I)$, we see from (2.7) that there is a constant C such that for all $n \in \mathbb{N}$,

$$\|u_n(x)\|_{q'} \le C \|x\|_{q'}, \quad x \in L_{q'}(I).$$
Moreover, for every $f = \sum_{i=1}^n c_i e_i, \ g = \sum_{i=n+1}^\infty c_i e_i \in L_{q'}(I)$ we have
$$(3.5)$$

$$u_n(f) = f, \quad u_n(g) = 0.$$

Next we justify the claim that each u_n^* is an endomorphism on $L_q(I)^*$. Linearity is obvious; and for each $x^* \in L_q(I)^* \setminus \{0\}$,

$$\begin{aligned} \|u_n^*(x^*)\|_{L_q(I)^*} / \|x^*\|_{L_q(I)^*} &= \left\{ \sup_{\|f\|_q \le 1} |u_n^*(x^*)(f)| \right\} / \sup_{\|f\|_q \le 1} |x^*(f)| \\ &= \|u_n(x)\|_{q'} / \|x\|_{q'} \le C \end{aligned}$$
(3.6)

the inequality following from (3.5). Hence

$$\|u_n^*\| \le C \quad (n \in \mathbf{N}).$$

To establish a lower bound for the $||u_n^*||$, let $x = e_1$. Then by (3.6),

$$||u_n^*(x^*)||_{L_q(I)^*}/||x^*||_{L_q(I)^*} = ||u_n(x)||_{q'}/||x||_{q'} = 1.$$

The proof is complete. \blacksquare

Theorem 3.3 For each $q \in (1, \infty)$, the system $\{f_i^*\}_{i \in \mathbb{N}}$ defined by (2.15) is a basis of $L_q(I)^*$.

Proof. By Lemma 3.1, $\{f_i^*\}_{i \in \mathbb{N}}$ is complete in $L_q(I)^*$. Now apply Theorem 7.1 of [6], which shows that such a system $\{f_i^*\}$ is a basis if there is a sequence of endomorphisms of $L_q(I)^*$ having the properties ensured by Lemma 3.2.

The main result of the paper is now virtually immediate.

Theorem 3.4 The functions x_i $(i \in \mathbb{N})$ form a basis in $L_q(I)$ for every $q \in (1, \infty)$.

Proof. By (2.16), $\{x_i\}$ and $\{f_j^*\}$ are biorthogonal; by Theorem 3.3, $\{f_j^*\}$ is a basis of $L_q(I)^*$. Corollary 12.1 of [6] tells us that under these conditions, $\{x_i\}$ is a basis of $L_q(I)$.

References

- [1] P.Binding, L. Boulton, J. Čepička, P.Drábek and P. Girg, Basis properties of eigenfunctions of the p-Laplacian, preprint.
- [2] P. Drábek and R. Manásevich, On the solution to some p-Laplacian nonhomogeneous eigenvalue problems, Diff. and Int. Eqns. **12** (1999), 723-740.
- P. Lindqvist, Note on a nonlinear eigenvalue problem, Rocky Mountain J. Math. 23 (1993), 281-288.
- [4] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche di Matematica 44 (1995), 269-290.
- [5] P. Lindqvist and J. Peetre, Comments on Erik Lundberg's 1879 thesis, especially on the work of Göran Dillner and his influence on Lundberg, Mem. dell'Istituto Lombardo, Accad. Sci. e Lett., Classe Sci. Mat. Nat. XXXI, Fasc 1, Milano 2004.
- [6] I. Singer, Basis in Banach spaces I, Springer-Verlag, Berlin, 1970.
- [7] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Univ. Press, Cambridge, 1991.