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Abstract

It is shown that, for all p ∈ (1,∞), the eigenfunctions of the Dirichlet problem for
the p-Laplacian on [0, 1] form a basis of Lq(0, 1) for all q ∈ (1,∞).
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1 Introduction

Let q ∈ (1,∞). It is a standard fact that the functions sin nπx and cos nπx
form a basis of Lq(−1, 1): see, for example, [6], pp. 342-5. Given any f ∈
Lq(0, 1), it follows that its odd extension to Lq(−1, 1) has a unique represen-
tation in terms of the sin nπx. This means that the sin nπx form a basis of
Lq(0, 1). In this paper we show that the same is true when the sines are re-
placed by the p-sine functions, for any p ∈ (1,∞). We recall that these may
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be defined by setting

Fp(x) =
∫ x

0
(1− tp)−1/pdt, x ∈ [0, 1] (1.1)

and

πp = 2
∫ 1

0
(1− tp)−1/pdt. (1.2)

The p-sine function, sinp, is defined on [0, πp/2] by

sinp x = F−1
p (x); (1.3)

it is extended to R by standard procedures. Note that sin2 is simply the usual
sine function. These sinp functions have attracted a great deal of attention
recently, especially in connection with the one-dimensional p-Laplacian and
with the sharp estimation of the approximation numbers of embeddings. For
example, the functions sinp(nπpx) turn out to be the eigenfunctions of the
p-Laplacian eigenvalue problem

−(|u′|p−2u′)′ = λ|u|p−2u on (0, 1),

u(0) = u(1) = 0,

 (1.4)

corresponding to eigenvalues λn = (p− 1)(nπp)
p (n ∈ N). We refer to [2],

[3] and [4] for further information and additional references on these functions
and their applications. A fascinating account of early work on generalisations
of trigonometric functions, is given in [5].

The only paper of which we are aware that deals with the basis properties
of the sinp functions is that of Binding et al [1], in which it is shown that
if 12/11 ≤ p < ∞, they form a basis of Lq(0, 1) for all q ∈ (1,∞). The
proof proceeds by constructing a homeomorphism of Lq(0, 1) onto itself that
maps sin(nπx) onto sinp(nπpx) (n ∈ N), and while this method allows a
slightly smaller value than 12/11 to be obtained, it does not enable the basis
property to be established for p arbitrarily close to 1. In contrast to this, we
construct a basis of the dual of Lq(0, 1) that forms a biorthogonal system with
the sinp(nπpx) functions. This enables us to conclude, by means of a general
theorem about bases in Banach spaces, that the sinp(nπpx) functions form a
basis of Lq(0, 1) for all p, q ∈ (1,∞).

2 Preliminaries and technical results

Throughout the paper p will stand for a number in (1,∞), p′ = p/(p − 1),
I = [0, 1] and ‖.‖p will denote the usual norm on the Lebesgue space Lp(I).
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The function sinp is defined on [0, πp/2] by (1.3): note that Fp is strictly in-
creasing, as is sinp. Extension to [0, πp] is achieved by setting

sinp(t) = sinp(πp − t) for t ∈ [πp/2, πp];

further extension to [−πp, πp] is made by oddness, and finally sinp is extended
to R by 2πp-periodicity. This extension is in C1(R). Note that sinp(0) = 0 and
sinp(πp/2) = 1. We define cosp : R → R by

cosp t =
d

dt
sinp t, t ∈ R; (2.1)

cosp is even, 2πp-periodic and odd about πp/2. Moreover,

| sinp t|p + | cosp t|p = 1, t ∈ R. (2.2)

The number πp is easily shown to be given by

πp = 2p−1Γ(1/p′)Γ(1/p) =
2π

p sin(π/p)
. (2.3)

For shortness we shall write

en(t) = sin(nπt), xn(t) = sinp(nπpt) (n ∈ N, t ∈ I). (2.4)

We recall that a sequence {yn}n∈N of elements of a Banach space Y is called
a (Schauder) basis if, for every y ∈ Y , there is a unique sequence {an}n∈N of
scalars such that

y =
∞∑

n=1

anyn, (2.5)

the series converging in the norm of Y . It can be shown (see [7], Proposition
II.B.6, p.37) that the partial sum projections PN : Y → Y defined by

PN

( ∞∑
n=1

anyn

)
=

N∑
n=1

anyn (N ∈ N) (2.6)

have the property that
sup
N∈N

‖PN‖ < ∞. (2.7)

Since each xn is continuous on I it is in every Lq(I) (1 < q < ∞); and as the
ek form a basis in Lq(I), xn has a Fourier sine expansion, converging in each
Lq(I):

xn(t) =
∞∑

k=1

x̂n(k) sin(kπt), (2.8)

where

x̂n(k) = 2
∫ 1

0
xn(t) sin(kπt)dt. (2.9)
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The symmetry of x1 about t = 1/2 means that

x̂1(k) = 0 when k is odd, (2.10)

and that

x̂n(k) = 2
∫ 1

0
x1(nt) sin(kπt)dt

= 2
∞∑

m=1

x̂1(m)
∫ 1

0
sin(kπt) sin(mnπt)dt

=

 x̂1(m), if mn = k for some odd m,

0, otherwise.
(2.11)

To estimate x̂1(m), we follow [1] and note that since x′′1(t) < 0 for all t ∈
(0, 1/2), integration by parts twice gives

|x̂1(m)|= 4

∣∣∣∣∣
∫ 1/2

0
x1(t) sin(mπt)dt

∣∣∣∣∣
=

∣∣∣∣∣ −4

(mπ)2

∫ 1/2

0
x′′1(t) sin(mπt)dt

∣∣∣∣∣
≤ −4

(mπ)2

∫ 1/2

0
x′′1(t)dt

=
4πp

(mπ)2
. (2.12)

Now let A be the infinite matrix with (i, j)th-entry ai,j (i, j,∈ N), where

aij =

 x̂1(m), if i = jm for some odd integer m,

0, otherwise.
(2.13)

Evidently A is lower triangular, with each diagonal element equal to x̂1(1). In
view of the structure of A, there exists a matrix B = (bij)i,j∈N such that

BA = (δij), (2.14)

the identity matrix; B is lower triangular, with each diagonal element equal
to 1/x̂1(1). We use B to define elements of the dual Lq(I)∗ of Lq(I) as follows.
Let f ∈ Lq(I), so that

f =
∞∑

j=1

f̂(j)ej.
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For each i ∈ N, define a functional f ∗i on Lq(I) by

f ∗i (f) =
i∑

j=1

bij f̂(j). (2.15)

We claim that f ∗i ∈ Lq(I)∗. As the linearity of f ∗i is clear, it remains to show
that f ∗i is bounded. Since

|f ∗i (f)| ≤ max
1≤j≤i

|bij| max
j∈N

|f̂(j)|

and
|f̂(j)| ≤ 2‖f‖1 ≤ 2‖f‖q (j ∈ N),

it follows that f ∗i ∈ Lq(I)∗.

Next we claim that the systems {xi} and {f ∗i } are biorthogonal, by which we
mean that

f ∗i (xj) = δij (i, j ∈ N). (2.16)

To verify this, note that

f ∗i (xj) =
j∑

k=1

bikx̂j(k) =
∞∑

k=1

bijakj = δij.

Since f ∗i ∈ Lq(I)∗, there exists fi ∈ Lq′(I) such that for all f ∈ Lq(I),

f ∗i (f) =
∫ 1

0
fi(t)f(t)dt.

In fact, fi is given by

fi =
i∑

j=1

bijej. (2.17)

To check this, write

f =
∞∑

k=1

f̂(k)ek

and observe that, with fi given by (2.17),

∫ 1

0
fi(t)f(t)dt =

∫ 1

0

 i∑
j=1

bijej(t)

( ∞∑
k=1

f̂(k)ek(t)

)
dt

=
i∑

j=1

bij f̂(j) = f ∗i (f).

Finally, we note that the Lq(I)-norm of each xi can be calculated. In fact,
with
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I =
∫ 1

0
| sinp(iπpx)|qdx = i

∫ 1/i

0
(sinp(iπpx))q dx

=
∫ 1

0
(sinp(πpt))

q dt = 2
∫ 1/2

0
(sinp(πpt))

q dt,

the substitutions u = sinp(πpt) and then up = w give

I =
2

πp

∫ 1

0
uq(1− up)−1/pdu =

2

pπp

∫ 1

0
u(q+1)/p−1(1− w)−1/pdw

=
2

pπp

B((q + 1)/p, 1/p′),

where B is the beta function. Hence for all i ∈ N,

‖xi‖q =

{
2

pπp

B((q + 1)/p, 1/p′)

}1/q

. (2.18)

3 The main result

After the technical preparation of §2, we can now obtain the desired result
fairly quickly. The strategy is to show that the f ∗i defined by (2.15) form a
basis of Lq(I)∗, and then to use the biorthogonality of the systems {xi} and
{f ∗i } to conclude, via general theorems, that the xi form a basis of Lq(I).

Lemma 3.1 For any q ∈ (1,∞), the sequence {f ∗i }i∈N is complete in Lq(I)∗

in the sense that its closed linear span is Lq(I)∗.

Proof. For each n ∈ N set Pn = sp{f ∗1 , f∗2 , ..., f ∗n}, the span of f ∗1 , f∗2 , ..., f ∗n.
Then s∗ ∈ Pn if and only if there exist d1, ..., dn ∈ R such that for all f =∑∞

j=1 f̂(j)ej ∈ Lq(I),

s∗(f) =
n∑

j=1

dj f̂(j). (3.1)

Moreover,

s∗(f) =
∫ 1

0
s(t)f(t)dt, (3.2)

where

s =
n∑

j=1

djej. (3.3)
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Now let g∗ ∈ Lq(I)∗ and let g ∈ Lq′(I) be such that

g∗(f) =
∫ 1

0
g(t)f(t)dt, f ∈ Lq(I).

Since g ∈ Lq′(I), the basis property of the ei in Lq′(I) means that

g =
∞∑
i=1

ĝ(i)ei,

and for each N ∈ N,

‖g −
N∑

i=1

ĝ(i)ei‖q′ = ‖
∞∑

i=N+1

ĝ(i)ei‖q′ → 0 as N →∞. (3.4)

For each n ∈ N put

gn =
n∑

i=1

ĝ(i)ei (∈ Lq′(I))

and

g∗n(f) =
∫ 1

0
gn(t)f(t)dt, f ∈ Lq(I).

From (3.2) we see that g∗n ∈ Pn. For every f ∈ Lq(I) we have, with the help
of Hölder’s inequality,

|g∗(f)− g∗n(f)|=
∣∣∣∣∫ 1

0
(g(t)− gn(t))f(t)dt

∣∣∣∣
≤‖g − gn‖q′‖f‖q.

Hence by (3.4),

sup
‖f‖q≤1

|g∗(f)− g∗n(f)| ≤ ‖g − gn‖q′ → 0

as n →∞, so that g∗n → g∗ in Lq(I)∗, as required.

Lemma 3.2 Let q ∈ (1,∞). There is a sequence {u∗n} of bounded linear maps
of Lq(I)∗ to itself (i.e. endomorphisms of Lq(I)∗ ) such that
(i) u∗n(x∗) = x∗ for all x∗ ∈ Pn (n ∈ N),
(ii) u∗n(x∗) = 0 for all x∗ ∈ P (n) (n ∈ N)
and
(iii) 1 ≤ C := supn∈N ‖u∗n‖ < ∞.

Here Pn = sp{f ∗1 , ..., f ∗n}, P (n) = sp{f ∗n+1, f
∗
n+2, ...} (the closed linear span of

f ∗n+1, f
∗
n+2, ...) and the f ∗i are as defined in (2.15).

Proof. Let s∗ ∈ Pn and let s =
∑n

i=1 diei ∈ Lq′(I) be such that

s∗(f) =
∫ 1

0
s(t)f(t)dt, f ∈ Lq(I).
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Given r∗ ∈ P (n), there exists r =
∑∞

i=n+1 ciei ∈ Lq′(I) such that

r∗(f) =
∫ 1

0
r(t)f(t)dt, f ∈ Lq(I).

For each n ∈ N, define un on Lq′(I) by

un(x) =
n∑

i=1

x̂(i)ei, x =
∞∑
i=1

x̂(i)ei ∈ Lq′(I).

We claim that each un is an endomorphism of Lq′(I) and that we may define
an endomorphism u∗n of Lq(I)∗ by

u∗n(x∗)(f) =
∫ 1

0
un(x)(t)f(t)dt, f ∈ Lq(I), x∗ ∈ Lq(I)∗,

where x ∈ Lq′(I) is such that

x∗(f) =
∫ 1

0
x(t)f(t)dt, f ∈ Lq(I).

Plainly un is a linear map from Lq′(I); and it is bounded, for as the ei form a
basis of Lq′(I), we see from (2.7) that there is a constant C such that for all
n ∈ N,

‖un(x)‖q′ ≤ C‖x‖q′ , x ∈ Lq′(I). (3.5)

Moreover, for every f =
∑n

i=1 ciei, g =
∑∞

i=n+1 ciei ∈ Lq′(I) we have

un(f) = f, un(g) = 0.

Next we justify the claim that each u∗n is an endomorphism on Lq(I)∗. Linearity
is obvious; and for each x∗ ∈ Lq(I)∗ \ {0},

‖u∗n(x∗)‖Lq(I)∗/‖x∗‖Lq(I)∗ =

{
sup
‖f‖q≤1

|u∗n(x∗)(f)|
}

/ sup
‖f‖q≤1

|x∗(f)|

= ‖un(x)‖q′/‖x‖q′ ≤ C (3.6)

the inequality following from (3.5). Hence

‖u∗n‖ ≤ C (n ∈ N).

To establish a lower bound for the ‖u∗n‖, let x = e1. Then by (3.6),

‖u∗n(x∗)‖Lq(I)∗/‖x∗‖Lq(I)∗ = ‖un(x)‖q′/‖x‖q′ = 1.

The proof is complete.
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Theorem 3.3 For each q ∈ (1,∞), the system {f ∗i }i∈N defined by (2.15) is
a basis of Lq(I)∗.

Proof. By Lemma 3.1, {f ∗i }i∈N is complete in Lq(I)∗. Now apply Theorem
7.1 of [6], which shows that such a system {f ∗i } is a basis if there is a sequence
of endomorphisms of Lq(I)∗ having the properties ensured by Lemma 3.2.

The main result of the paper is now virtually immediate.

Theorem 3.4 The functions xi (i ∈ N) form a basis in Lq(I) for every q ∈
(1,∞).

Proof. By (2.16), {xi} and {f ∗j } are biorthogonal; by Theorem 3.3, {f ∗j } is a
basis of Lq(I)∗. Corollary 12.1 of [6] tells us that under these conditions, {xi}
is a basis of Lq(I).
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