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We provide a coordinate-free version of the local classification,
due to A.G. Walker [Quart. J. Math. Oxford (2) 1, 69 (1950)],
of null parallel distributions on pseudo-Riemannian manifolds.
The underlying manifold is realized, locally, as the total space of
a fibre bundle, each fibre of which is an affine principal bundle
over a pseudo-Riemannian manifold. All structures just named
are naturally determined by the distribution and the metric, in
contrast with the noncanonical choice of coordinates in the usual
formulation of Walker’s theorem.

I. Introduction

In 1950 A.G. Walker1 described the local structure of all pseudo-

Riemannian manifolds with null parallel distributions. The present

paper provides a coordinate-free version of Walker’s theorem.

Many authors, beginning with Walker himself,2 have invoked Walker’s

1950 result, often to generalize it or derive other theorems from it. In

our bibliography, which is by no means complete, Refs. 3 – 16 all be-

long to this category. They invariably cite Walker’s result in its original,

local-coordinate form (reproduced in the Appendix).
1
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Such an approach, perfectly suited for the applications just men-

tioned, tends nevertheless to obscure the geometric meaning of Walker’s

theorem. In fact, Walker coordinates are far from unique; choosing

them results in making noncanonical objects a part of the structure.

To keep the picture canonical, some authors3,5 replace a single Walker

coordinate system by a whole maximal atlas of them. What we propose

here, instead, is to use only ingredients such as fibre bundles, widely

seen as more directly “geometric” than a coordinate atlas (even though

one may ultimately need atlases to define them).

In our description, the coordinate-independent content of Walker’s

theorem amounts to realizing the underlying manifold, locally, as a fi-

bre bundle whose fibres are also bundles, namely, affine principal bun-

dles over pseudo-Riemannian manifolds. The bundle structures are

all naturally associated with the original null parallel distribution; the

distribution and the metric can in turn be reconstructed from them.

II. Preliminaries

Throughout this paper, all manifolds, bundles, sections, subbundles,

connections, and mappings, including bundle morphisms, are assumed

to be of class C∞. A bundle morphism may operate only between two

bundles with the same base manifold, and acts by identity on the base.

‘A bundle’ always means ‘a C∞ locally trivial bundle’ and the same

symbol, such as M , is used both for a given bundle and for its total

space; the bundle projection M → Σ onto the base manifold Σ is

denoted by π (or, sometimes, p). We let My stand for the fibre π−1(y)

over any y ∈ Σ, while Ker dπ is the vertical distribution treated as a

vector bundle (namely, a subbundle of the tangent bundle TM).

For real vector bundles X,Y over a manifold Σ and a real vector

space V with dimV <∞, we denote by Hom(X,Y) the vector bundle

over Σ whose sections are vector-bundle morphisms X → Y, and by

Σ × V the product bundle with the fibre V , the sections of which are

functions Σ → V . Thus, X∗ = Hom(X, Σ ×R) is the dual of X.

We will say that a given fibrewise structure in a bundle M over a

manifold Σ depends C∞-differentiably on y ∈ Σ, or varies C∞-dif-

ferentiably with y, if suitable C∞ local trivializations of M make the

structure appear as constant (the same in each fibre).

The symbol ∇ will be used for various connections in vector bun-

dles. Our sign convention about the curvature tensor R = R∇ of a

connection ∇ in a vector bundle X over a manifold Σ is

(1) R(u, v)ψ = ∇v∇uψ − ∇u∇vψ + ∇[u,v]ψ,
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for sections ψ of X and vector fields u, v tangent to Σ. By the Leibniz

rule, when ∇ is the Levi-Civita connection of a pseudo-Riemannian

metric g and u, v, w are tangent vector fields, 2〈∇wv, u〉 equals17

(2) dw〈v, u〉+dv〈w, u〉−du〈w, v〉+ 〈v, [u,w]〉+ 〈u, [w, v]〉−〈w, [v, u]〉,

where dv is the directional derivative and 〈 , 〉 stands for g( , ).

Remark 2.1. Let π : M → Σ be a bundle projection. A vector field w

on the total space M is π-projectable onto the base manifold Σ if and

only if, for every vertical vector field u on M , the Lie bracket [w, u] is

also vertical. This well-known fact is easily verified in local coordinates

for M which make π appear as a standard Euclidean projection.

III. Affine principal bundles

All principal bundles discussed below have Abelian structure groups

G, so one need not decide whether G acts from the left or right.

Let N be a G-principal bundle over a base manifold L, where G is

an Abelian Lie group. By the N-prolongation of the tangent bundle

TL we mean the vector bundle F over L whose fibre Fc over c ∈ L is

the space of all G-invariant vector fields tangent to N along Nc (and

defined just on Nc), with Nc denoting, as usual, the fibre of N over

c. A vector subbundle G ⊂ F now can be defined by requiring Gc, for

any c ∈ L, to consist of all G-invariant vector fields defined just on Nc

which are vertical (i.e., tangent to Nc). Since each Gc is canonically

isomorphic to the Lie algebra g of G, the vector bundle G is naturally

trivialized, that is, identified with the product bundle L×g. Therefore

(3) L× g = G ⊂ F .

The quotient bundle F/G is in turn naturally isomorphic to TL, via

the differential of the bundle projection N → L.

An affine space is a set A with a simply transitive action on A of

the additive group of a vector space V . One calls V the vector space

of translations of the affine space A.

An affine bundle M over a manifold Σ is a bundle with fibres My,

y ∈ Σ, carrying the structures of affine spaces whose vector spaces Xy

of translations form a vector bundle X over Σ, called the associated

vector bundle of M . We also require the affine-space structure of My

to vary C∞-differentiably with y ∈ Σ, in the sense of Sec. II.

If, in addition, X = Σ × V , that is, the associated vector bundle

of M happens to be a product bundle, then M is also a V -princi-

pal bundle, with the obvious action of the additive group of the vector

space V . Such affine principal bundles are distinguished from arbitrary
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affine bundles by having a structure group that, instead of general affine

transformations of a model fibre, contains only translations.

IV. Partial metrics and extensions

Let C, D and E be real vector bundles over a manifold Q. By an

E-valued pairing of C and D we mean any vector-bundle morphism

β : C ⊗ D → E. This amounts to a C∞ assignment of a bilinear

mapping β(z) : Cz × Dz → Ez to every z ∈ Q. An E-valued partial

pairing of C and D consists, by definition, of two vector subbundles

C ′ ⊂ C and D′ ⊂ D, of some codimensions k and l, along with

pairings γ : C ⊗D′ → E and γ : C ′ ⊗D → E which coincide on the

subbundle C ′ ⊗D′ (and so may be represented by the same symbol γ

without risk of ambiguity). One can obviously restrict a given pairing

β : C ⊗D → E to C ⊗D′ and C ′ ⊗D, so that a partial pairing γ is

obtained; we will then say that β is a total-pairing extension of γ.

Lemma 4.1. For any fixed partial pairing γ, with C,D,E,C ′,D′, k, l

and Q as above, and with m denoting the fibre dimension of E, the

total-pairing extensions of γ coincide with sections of a specific affine

bundle of fibre dimension klm over Q, whose associated vector bundle

is Hom(C/C ′⊗D/D ′,E).

Proof. Our γ is nothing else than a vector-bundle morphism X → E,

where X ⊂ C⊗D is the subbundle spanned by C⊗D′ and C ′⊗D. The

affine bundle in question is the preimage of the section γ under the

(surjective) restriction morphism Hom(C⊗D,E)→ Hom(X,E). �

As usual,5 by a pseudo-Riemannian fibre metric g in a vector bundle

T over a manifold M we mean any family of nondegenerate symmetric

bilinear forms g(x) in the fibres Tx that constitutes a C∞ section of

the symmetric power (T∗)�2. Equivalently, such g is a pairing of T and

T valued in the product bundle M×R, symmetric and nondegenerate

at every point of M .

Let T again be a vector bundle over a manifold M . We define a

partial fibre metric in T to be a triple (P,P′, α) formed by vector

subbundles P and P′ of T along with a pairing α : P′⊗T →M ×R,

valued in the product bundle M ×R, such that

(i) T, P and P′ are of fibre dimensions n, r and, respectively, n−r
for some n, r with 0 ≤ r ≤ n/2, while P ⊂ P′,

(ii) at every x ∈M the bilinear mapping α(x) : P′x× Tx → R has

the rank n− r, its restriction to P′x × P′x is symmetric, and its

restriction to P′x × Px equals 0.
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By a total-metric extension of (P,P′, α) we then mean any pseudo-

Riemannian fibre metric in T whose restriction to P′⊗ T is α.

Lemma 4.2. The total-metric extensions g of any partial fibre metric

(P,P′, α), with r, M as above, coincide with the sections of a specific

affine bundle of fibre dimension r(r+ 1)/2 over M . For every such g

the subbundle P is g-null and P′ is its g-orthogonal complement.

Proof. For any fixed point x ∈M, let us choose a basis e1, . . . , en of Tx
such that e1, . . . , er ∈ Px and e1, . . . , en−r ∈ P′x. The matrix of g(x),

for any total-metric extension g of our partial fibre metric, then is

the matrix appearing in Walker’s original theorem (see the Appendix),

with detA 6= 0, and with the two occurrences of I replaced by some

nonsingular r × r matrix C and its transpose C ′. The sub-matrices

A,H,C (and H ′, C ′) are prescribed, while the freedom in choosing

g(x) is represented by an arbitrary symmetric r × r matrix B. �

V. Walker’s theorem

Suppose that the following data are given.

(a) Integers n and r with 0 ≤ r ≤ n/2.

(b) An r-dimensional manifold Σ.

(c) A bundle over Σ with some total space M, whose every fibre

My, y ∈ Σ, is a T ∗yΣ-principal bundle over a (n − 2r)-dimen-

sional manifold Qy. (Cf. the last paragraph of Sec. III.)

(d) A pseudo-Riemannian metric hy on each Qy, y ∈ Σ.

We assume that all y-dependent objects in (c) – (d), including the

principal-bundle structure, vary C∞-differentiably with y ∈ Σ (in the

sense of Sec. II) and, in particular, the Qy are the fibres of a bundle

over Σ with a total space Q of dimension n− r. When r = n/2, each

hy is the “zero metric” on the discrete space Qy, cf. Sec. VIII.

Let F be the vector bundle over Q whose restriction to Qy, for

each y ∈ Σ, is the My-prolongation of the tangent bundle TQy (see

Sec. III) for the T ∗yΣ-principal bundle My over Qy. Relation (3) now

yields p∗(T ∗Σ) ⊂ F, where p : Q→ Σ denotes the bundle projection.

In other words, p∗(T ∗Σ) may be treated as a vector subbundle of F.

Furthermore, the quotient-bundle identification following formula (3)

yields F/p∗(T ∗Σ) = Ker dp (the vertical subbundle of TQ, for the

projection p : Q→ Σ).

We define a partial pairing γ of F and TQ valued in the product

bundle Q×R, as in Sec. IV, for our Q along with C = F, D = TQ,

E = Q ×R, C ′ = p∗(T ∗Σ) and D′ = Ker dp. Namely, given z ∈ Q,
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we set γ(ξ, ζ) = ξ(dpzζ) for ξ ∈ T ∗yΣ = [p∗(T ∗Σ)]z and ζ ∈ TzQ,

with y = p(z) ∈ Σ, as well as γ(u, ψ) = hy([u], ψ) for u ∈ Fz and

ψ ∈ Ker dpz, where u 7→ [u] denotes the surjective vector-bundle

morphism F → Ker dp with the kernel p∗(T ∗Σ).

Our construction has two steps involving arbitrary choices:

Step 1. We choose β : F ⊗ TQ → Q × R to be any total-pairing

extension of γ.

According to Lemma 4.1, such β is just an arbitrary section of an

affine bundle of fibre dimension (n− 2r)r over Q. For the meaning of

the above discussion in Walker’s original language, see the Appendix.

The remainder of our construction proceeds as follows. Using β, we

define a partial metric (P,P′, α) in the tangent bundle TM . Specifi-

cally, T,P,P′ and n, r with the properties listed in (i) – (ii) of Sec. IV

are chosen so that T = TM, while n, r are the integers in (a) above,

P is the subbundle of TM whose restriction to My ⊂ M, for each

y ∈ Σ, is the vertical distribution on the T ∗yΣ-principal bundle My

over Qy, and P′ = Ker dπ is the vertical distribution of the bundle

projection π : M → Σ. We also set α(u′, w) = β(u, ζ) for any x ∈M
and any vectors w ∈ TxM , u′ ∈ P′x = TxMy with y = π(x) ∈ Σ, where

u is the T ∗yΣ-invariant vector field tangent to My along the T ∗yΣ-orbit

of x and having the value u′ at x, while ζ is the image of w under

the differential at x of the bundle projection M → Q.

Step 2. We select an arbitrary total-metric extension g of (P,P′, α)

restricted to U, where U is any fixed nonempty open subset of M .

The construction just described gives a null distribution P of dimension

r on the n-dimensional pseudo-Riemannian manifold (U, g). This is

clear from Lemma 4.2, which also implies that such metrics g are just

arbitrary sections of some affine bundle over M .

The reader is again referred to the Appendix for a description of

what the above steps correspond to in Walker’s formulation.

We can now state a coordinate-free version of Walker’s theorem:

Theorem 5.1. If g and P are obtained as above from any prescribed

data (a) – (d), then g is a pseudo-Riemannian metric on the n-di-

mensional manifold U, and P is a g-null, g-parallel distribution of

dimension r on U.

Conversely, up to an isometry, every null parallel distribution P on

a pseudo-Riemannian manifold (M, g) is, locally, the result of applying

the above construction to some data (a) – (d). The data themselves are

naturally associated with g and P.
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A proof of Theorem 5.1 is given in the next two sections.

VI. Proof of the first part of Theorem 5.1

By Lemma 4.2, P is g-null and P′ is its g-orthogonal complement.

That P is g-parallel will be clear if we establish the relation 〈∇wv, u〉 =

0, where ∇ is the Levi-Civita connection of g and 〈 , 〉 stands for

g( , ), while v, u, w are any vector fields tangent to M such that v is

a section of P and u is a section of P′. We may further require w to be

projectable under both bundle projections M → Q and π : M → Σ.

Finally, we may also assume that v restricted to each T ∗yΣ-principal

bundle space My is an infinitesimal generator of the action of T ∗yΣ,

while u restricted to each My is T ∗yΣ-invariant. (Locally, such w, v, u

span the vector bundles TM, P and P′.)

First, [w, v] is a section of P and [u,w] is a section of P′ (from

Remark 2.1 applied to both bundle projections), while [v, u] = 0 by

T ∗yΣ-invariance of u. The last three terms in (2) thus all equal zero.

Our claim will follow if we show that the first three terms in (2)

vanish as well. To this end, note that dw〈v, u〉 = 0 since 〈v, u〉 = 0.

Next, dv〈w, u〉 = 0. Namely, 〈w, u〉 = α(u,w) = β(u, ζ), for α, β, ζ

described in Sec. V, is constant in the direction of v (and, in fact,

constant along each leaf of P): at a point x ∈ My ⊂ M we obtain

ζ as the projection image of w(x), while u is T ∗yΣ-invariant, so that,

due to projectability of w, both u and ζ depend only on the image of

x under the bundle projection M → Q, rather than x itself. Finally,

du〈w, v〉 = 0 as 〈w, v〉 = ξ(w̃) is a function Σ → R, that is, a

function M → R constant along P⊥. Here ξ is the section of T ∗Σ

corresponding to v under the inclusion p∗(T ∗Σ) ⊂ F of Sec. V, while

w̃ is the vector field on Σ onto which w projects; therefore, 〈w, v〉 =

ξ(w̃), since in Sec. V we set γ(ξ, ζ) = ξ(dpzζ).

VII. Proof of the second part of Theorem 5.1

For any null parallel distribution P of dimension r on an n-dimen-

sional pseudo-Riemannian manifold (M, g), the g-orthogonal comple-

ment P⊥ is a parallel distribution of dimension n − r. If the sign

pattern of g has i− minuses and i+ pluses, it follows that

(4) a) r ≤ min(i−, i+), b) P ⊂ P⊥, c) r ≤ n/2.

In fact, P is null, which gives (4b) and r ≤ n− r, that is, (4c), while

(4a) follows since, in a pseudo-Euclidean space with the sign pattern as

above, i− (or, i+) is the maximum dimension of a subspace on which

the inner product is negative (or, positive) semidefinite.
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Every null parallel distribution P satisfies the curvature relations

(5) a) R(P,P⊥, -, -) = 0, b) R(P,P, -, -) = 0, c) R(P⊥,P⊥,P, -) = 0,

(5a) meaning that R(v, u, w, w ′) = 0 whenever v, u, w, w ′ are vector

fields, v is a section of P, and u is a section of P⊥. (Similarly for (5b)

and (5c).) In fact, for such v, u, w, w ′, (1) implies that R(w,w ′)v is a

section of P, and so it is orthogonal to u. This proves (5a); (5a) and

(4b) yield (5b), while (5a) and the first Bianchi identity give (5c).

We now show how a null parallel distribution P on a pseudo-Riem-

annian manifold (M, g) gives rise to objects (a) – (d) in Sec. V.

First, n and r are the dimensions of M and P. By (4c), r ≤ n/2.

Being parallel, the distribution P⊥ is integrable. Since our discussion

is local, we will assume, from now on, that M is the total space of a

bundle over some r-dimensional base manifold Σ, whose fibres My,

y ∈ Σ, are all contractible and coincide with the leaves of P⊥. As P

is parallel, the Levi-Civita connection ∇ induces a connection in the

vector bundle obtained by restricting P to any given submanifold N

of M. In the case where N = My is a leaf of P⊥, we have, for each

y ∈ Σ, the following conclusion.

(6)
T ∗yΣ is naturally isomorphic to the space Vy of those sections
of the restriction of P to My which are parallel (along My).

Instead of establishing (6) directly, we will show that sections of T ∗Σ

can be naturally identified with sections of P parallel along P⊥, using

an identification which is clearly valuewise, i.e., consists of operators

Vy → T ∗yΣ, y ∈ Σ. To this end, we denote by π be the bundle

projection M → Σ. Every vector field on Σ is the π-image (dπ)w

of some π-projectable vector field w on M . Let v now be a section

of the vector bundle P over M , parallel in the direction of P⊥. Our

identification associates with v the cotangent vector field ξ on Σ

that sends each vector field (dπ)w to g(v, w) treated as a function

Σ → R. Note that ξ is well defined: two π-projectable vector fields

w on M with the same π-image (dπ)w differ by a section of P⊥ =

Ker dπ, necessarily orthogonal to v, so that g(v, w) is the same for

both choices of w. Also, g(v, w) : M → R actually descends to a

function Σ → R, i.e., is constant along the fibres My (leaves of P⊥).

In fact, du[g(v, w)] = 0 for any section u of P⊥, as ∇uv = 0 in view

of the assumption about v, and ∇uw = [u,w] +∇wu, while [u,w] (or

∇wu) is a section of P⊥ by Remark 2.1 (or, since P⊥ is parallel).

Injectivity of the above assignment v 7→ ξ is obvious, since π-pro-

jectable vector fields w span TM . Surjectivity of the resulting oper-

ators Vy → T ∗yΣ now follows: both spaces have the same dimension,
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as the connections induced by ∇ in the restrictions of P to the leaves

My are flat in view of (5c) (cf. (1)). This proves (6).

Flatness of the induced connections also implies that the leaves of P

contained in any given leaf My of P⊥ are the fibres of a Vy-principal

bundle with the total space My over some base manifold Qy. (Here

M should be replaced with an open subset, if necessary.) Since each

T ∗yΣ is identified with Vy by (6), we thus obtain the data (c) of Sec. V.

Next, we define the metric hy on each Qy, required by (d) in Sec. V,

so that it assigns the function g(u, u′) to two vector fields on Qy which

are images, under the T ∗yΣ-principal bundle projection My → Qy, of

T ∗yΣ-invariant vector fields u, u′ on My. Constancy of g(u, u′) along

the T ∗yΣ-orbits, meaning that dv[g(u, u′)] = 0 for any section v of P

defined on My and parallel along P⊥, now follows: as v is P⊥-parallel

and u is T ∗yΣ-invariant, we have ∇uv = [v, u] = 0, cf. (6), so that

∇vu = 0. For the same reason, ∇vu′ = 0.

Finally, a suitable version of the construction in Sec. V, applied to

the data (a) – (d) defined above, leads to the original g and P, which is

a consequence of how the identification (6) and the definition of hy use

g. The choices of the total-pairing and total-metric extensions, required

in Sec. V, are provided by g as well. For instance, β in Step 1 is given

by β(u, ζ) = g(u,w), where u is a section of P⊥ commuting with every

section v of P that is parallel along P⊥, and ζ is a vector field on Q

(the union of all Qy), while w is any vector field on M projectable

onto ζ under the bundle projection M → Q. That g(u,w) depends

just on u and ζ (but not on w) is clear: two choices of w differ by a

section of P. Also, g(u,w) is constant in the direction of P (and so

it may be treated as a function Q→M). Namely, dv[g(u,w)] = 0 for

any section v of P parallel along P⊥, which follows as ∇vu = ∇uv = 0

(note that [u, v] = 0), while ∇vw = [v, w] +∇wv, and [v, w] (or ∇wv)

is a section of P by Remark 2.1 (or, respectively, since P is parallel).

This completes the proof of Theorem 5.1.

VIII. The mid-dimensional case

For an r-dimensional null parallel distribution P on a pseudo-Riem-

annian manifold (M, g) of dimension n = 2r, the discussion in Sec. V

amounts to nothing new: implicitly at least, it is already present in

Sec. 6 of Walker’s original paper.1 See also Sec. 9 in Ref. 3. (A related

global result is Theorem 5 in Ref. 5.) In this section we point out how

the construction may be simplified when n = 2r.

Let P and (M, g) be as above, with n = 2r ≥ 2. The relations

i− + i+ = n and (4a) imply that g has the neutral sign pattern:
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i− = i+ = r = n/2. In (c) – (d) of Sec. V, each Qy is a 0-dimension-

al (discrete) manifold, and hy is the “zero metric” on Qy. Also, the

choice of a total-pairing extension β in Step 1 of Sec. V is now unique:

the affine bundle having β as a section is of fibre dimension 0. The

construction in Sec. V can therefore be rephrased as follows. Given

(a) an even integer n ≥ 2,

(b) a manifold Σ of dimension r = n/2,

(c) an affine bundle over Σ with some total space M, for which

T ∗Σ is the associated vector bundle (Sec. III),

we define a partial metric (P,P′, α) in the tangent bundle TM by

choosing P = P′ to be the vertical distribution Ker dπ for the bundle

projection π : M → Σ, and setting α(ξ, w) = ξ(dπxw) for any x ∈M ,

ξ ∈ Px = T ∗yΣ, where y = π(x), and w ∈ TxM . Selecting any total-

metric extension g of (P,P′, α) on a fixed nonempty open set U ⊂M ,

we now obtain an n-dimensional pseudo-Riemannian manifold (U, g)

on which P is a g-null, g-parallel distribution of dimension r = n/2.

Conversely, up to an isometry, every null parallel distribution P

of dimension r ≥ 1 on a pseudo-Riemannian manifold (M, g) with

dimM = 2r arises, locally, from the above construction applied to

some data (a) – (c), themselves naturally determined by g and P.
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Appendix: Walker’s original statement

Walker stated his classification result as follows.1

THEOREM 1. A canonical form for the general Vn of class C∞

(or Cω) admitting a parallel null r-plane is given by the fundamen-

tal tensor

(gij) =

O O I
O A H
I H ′ B


where I is the unit r×r matrix and A, B, H, H ′ are matrix functions

of the coordinates, of the same class as Vn, satisfying the following

conditions but otherwise arbitrary :

(i) A and B are symmetric, A is of order (n−2r)×(n−2r) and

nonsingular, B is of order r × r, H is of order (n− 2r)× r,
and H ′ is the transpose of H.
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(ii) A and H (and therefore H ′) are independent of the coordinates

x1, . . . , xr.

A basis for the parallel null r-plane is the set of vectors δi1, δ
i
2, . . . , δ

i
r.

Here is how the coordinates and matrix functions appearing above cor-

respond to the objects used for the construction in Sec. V. Walker’s

coordinates xi, i = 1, . . . , n, serve as a coordinate system for the mani-

fold M of Sec. V. Coordinates for other manifolds appearing in Sec. V

are obtained from xi by restricting the range of the index i, to i > n−r
(for Σ), i > r (for Q), i ≤ n−r (for each My) and r < i ≤ n−r (for

each Qy). The center submatrix A in Walker’s matrix corresponds to

the family hy, y ∈ Σ, of pseudo-Riemannian metrics ((d) in Sec. V)

and, consequently, also to the formula for γ(u, ψ), while the last two

matrices O I in the first row represent the definition of γ(ξ, ζ). The

Walker-matrix counterpart of the extension β chosen in Step 1 is the

(n − r) × (n − r) submatrix with the rows O I and A H, so that

the freedom in choosing β amounts to arbitrariness in the selection of

H (and H is independent of the coordinates xi, i = 1, . . . , r, which

translates into the fact that β is a morphism of vector bundles over the

manifold Q with the coordinates xi, i > r). Once chosen, β is used

in Sec. V to define P,P′ and α. In terms of Walker’s coordinates and

matrix functions, P (or, P′) is spanned by the xi coordinate directions

with i ≤ r (or, respectively, i ≤ n − r), while the analog of α is the

(n− r)× n submatrix with the rows O O I and O A H. Finally, the

extension in Step 2 is nothing else than augmenting this last submatrix

by a third row, I H ′B, in which B is completely arbitrary.
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