Interval Notation Supplement

Inequality	Interval Natation	Set-Builder Notation	Number Line Graph
a < x < b	(a,b)	$\{x \mid a < x < b\}$	$-\infty \xleftarrow{a b} \infty$
$a \le x \le b$	[a,b]	$\left\{ x a \le x \le b \right\}$	$-\infty \xleftarrow[a]{b} \infty$
$a \le x < b$	[a,b)	$\left\{ x \mid a \le x < b \right\}$	$-\infty \xleftarrow[a]{a} \infty$
$a < x \le b$	(a,b]	$\left\{ x a < x \le b \right\}$	$-\infty b \infty$
<i>a</i> < <i>x</i>	(a,∞)	$\{x \mid a < x\}$	$-\infty \xleftarrow{a} \infty$
$a \leq x$	$[a,\infty)$	$\{x \mid a \le x\}$	$\boxed{-\infty} \xleftarrow{a} \infty $
b > x	$(-\infty,b)$	$\left\{ x \mid b > x \right\}$	$-\infty \longleftrightarrow \infty$
$b \ge x$	$(-\infty,b]$	$\left\{ x \mid b \ge x \right\}$	$-\infty \leftarrow \bullet \rightarrow \infty$
x < a or x > b	$(-\infty,a)\cup(b,\infty)$	$\{x \mid x < a \text{ or } x > b\}$	$-\infty \longleftrightarrow \infty$ a b
$x \le a \text{ or } x \ge b$	$(-\infty,a]\cup[b,\infty)$	$\{x \mid x \le a \text{ or } x \ge b\}$	$\begin{bmatrix} -\infty & \longleftarrow & a & b \\ a & b & b \end{bmatrix}$
$x \le a \text{ or } x > b$	$(-\infty,a]\cup(b,\infty)$	$\{x \mid x \le a \text{ or } x > b\}$	$-\infty \longrightarrow \infty$ a b
$x < a \text{ or } x \ge b$	$(-\infty,a)\cup [b,\infty)$	$\left\{ x \mid x < a \text{ or } x \ge b \right\}$	$-\infty \longleftrightarrow a \qquad b \qquad \infty$
All Real Numbers	$\left(-\infty,\infty ight)$		$-\infty \longleftrightarrow \infty$

Note that on the graph [and] are the same as \bullet , and (and) are the same as \circ . The parentheses and brackets are used on the number line (in part) to make the transition to interval notation easier.

The symbol \cup represents the union of two (or more) sets. It is used to combine two (or more) intervals together to make a single set. For example: $(-9, -3)\cup[2, 5)$ means that you have the interval (-9, -3) and the interval [2, 5).