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General Information:
This is a midterm from a previous semester. This means:

• This midterm contains problems that are of similar, but not identical, difficulty to those
that will be asked on the actual midterm.

• The format of this exam will be similar, but not identical to this midterm.

• This midterm is of similar length to the actual exam.

• Note that there are concepts covered this semester that do NOT appear on this midterm.
This does not mean that these concepts will not appear on the actual exam! Remember,
this midterm is only a sample of what could be asked, not what will be asked!

How to take this exam:
You should treat this midterm should be as the actual exam. This means:

• “Practice like you play.” Schedule 55 uninterrupted minutes to take the sample exam
and write answers as you would on the real exam; include appropriate justification,
calculation, and notation!

• Do not refer to your books, notes, worksheets, or any other resources.

• You should not need (and thus, should not use) a calculator or other technology to help
answer any questions that follow.

However, in your future professions, you will need to use mathematics to solve many
different types of problems. As such, part of the goal of this course is:

– to develop your ability to understand the broader mathematical concepts (not to
encourage you just to memorize formulas and procedures!)

– to apply mathematical tools in unfamiliar situations (Indeed, tools are only useful
if you know when to use them!)

There have been questions in your online homework and projects with this intent, and
there will be a problem on your midterm that will require you to apply the material in
an unfamiliar setting.

How to use the solutions:

DO NOT JUST READ THE SOLUTIONS!!!

The least important aspect of the solutions is learning the steps necessary to solve a specific
problem. You should be looking for the concepts required to provide solutions. Content may
not be recycled, but concepts will be!

• Work each of the problems on this exam before you look at the solutions!

• After you have worked the exam, check your work against the solutions. If you are
miss a type of question on this midterm, practice other types of problems like it on the
worksheets!

• If there is a step in the solutions that you cannot understand, please talk to your TA or
lecturer!
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Instructions

• You have 55 minutes to complete this exam. It consists of 6 problems on 12 pages including
this cover sheet. Page 11 has some potentially useful formulas and both Pages 11 and 12
may be used extra workspace.

• If you wish to have any work on the extra workspace pages considered for credit, indicate in
the problem that there is additional work on the extra workspace pages and clearly label
to which problem the work belongs on the extra pages.

• The value for each question is both listed below and indicated in each problem.

• Please write clearly and make sure to justify your answers and show all work! Correct
answers with no supporting work may receive no credit.

• You may not use any books or notes during this exam

• Calculators are NOT permitted. In addition, neither PDAs, laptops, nor cell phones are
permitted.

• Make sure to read each question carefully.

• Please CIRCLE your final answers in each problem.

• A random sample of graded exams will be copied prior to being returned.

Problem Point Value Score

1 12
2 20
3 20
4 14
5 16
6 18

Total 100
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1. Multiple Choice [12 pts]

Circle the response that best answers each question. Each question is worth 4 points.
There is no penalty for guessing and no partial credit.

I. The density for a wire from x = 0 to x = 6 is given by:

ρ(x) =

{
4 , 0 ≤ x ≤ 2

6− x , 2 < x ≤ 6

What is the mass of the segment of the wire from x = 0 to x = 4?

A. 4 units B. 14 units C. 16 units D. None of the above

II. Find a function f(x) that satisfies

∫
f(x) dx = 2x cos(x2) + C.

A. f(x) = −2 sin (x2) B. f(x) = 2 cos(x2)− 4x2 sin(x2)

C. f(x) = x2 sin(x2) D. f(x) = sin(x2) + C

E. No such function exists F. None of the above

III. A spring obeys a modified Hooke’s Law, for which the force required to stretch the
spring x meters from equilibrium is given by:

F (x) = kx2.

Suppose 80 J of work is required to stretch a spring 2m from its equilibrium position
at x = 0. What is the value of the spring constant k (in N/m2)?

A. k = 20 B. k = 30 C. k = 40 D. k = 50 E. None of the above
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2. Short Answer [20 pts]

Answer the following questions and provide as much justification as is requested.

I. [6 pts] A student claims that:∫
tan2 x dx =

1

3
tan3 x+ C.

Determine if this student is correct or incorrect. If the student is incorrect, justify your
response by explaining why the proposed solution cannot be the correct antiderivative.

II. [6 pts] Suppose that the region R is bounded by y = 4− 2x, y = 0, and x = 0.
CIRCLE the correct response to each question. NO justification is necessary!

A. [3 pts] If you revolve R about the x−axis and integrate with respect to y, which
method should be used to find the volume of the solid?

DISK METHOD SHELL METHOD

B. [3 pts] The Washer Method can be used to write the resulting volume as an integral
with respect to x if you revolve R about the line:

x = 5 y = −2

III. [8 pts] Calculate the following antiderivatives. A perfect score is worth 8 points. You
will lose 2 points for each incorrect response, but you cannot score below a 0. Thus, the
possible scores for this problem are 0, 2, 4, 6, or 8 points.

A.

∫
1

ex
dx = C.

∫ (√
x+ 2

)2
dx =

B.

∫
sin(2x) dx = D.

∫
2x+ 1

2x
dx =
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3. [20 pts] The region R is bounded by the curves y = 2x+ 4, y = x2 − 4 and x = 2.

I. Set up, but do not evaluate, an integral or a sum of integrals that would give the area
of R if evaluated.

II. The base of a solid is the region R. Cross-sections through the solid perpendicular to the
y-axis are squares. Set up, but do not evaluate, an integral or sum of integrals that
would give the volume of this solid.



Math 1152 - Midterm 1 - Form A - Page 6

(Problem 3 continued)

III. A solid of revolution is formed by revolving the region R on the previous page about the
line x = 2. Set up, but do not evaluate, an integral or sum of integrals with respect to
x that would give the volume of this solid. You do not need to simplify your final answer.

IV. A solid of revolution is formed by revolving the region R on the previous page about the
line y = 8. Set up, but do not evaluate, an integral or sum of integrals that would give
the volume of this solid using the Washer Method.
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4. [14 pts] Find the length of the curve y =
2

3
(1 + x2)

3/2
+ 2 from x = 0 to x = 3.
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5. [16 pts] (Surface Area and Work)

A hollow tank is obtained by revolving the portion of the line y = 3x from x = 0 to x = 3
about the y-axis.

I. Set up, but do not evaluate, an integral that if evaluated would give the surface area of
the tank.

II. The tank is now filled to a height of 6 m with Liquid X, whose density is 900 kg/m3, as
shown below.

Set up, but do not evaluate, an integral or sum of integrals, that would give the work
required to pump the liquid to the top of the tank. Use g = 9.8m/s2.
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6. [18 pts] Read the following problem carefully!

The amount of work, W , required to move a particle of mass m a vertical distance d above
its starting height is given by the formula:

W = mgd.

A heavy rope is 15 m long and has a constant (linear) density of ρ = 2 kg/m. The rope
hangs over the edge of a 25 m building, as shown below:

The work required to pull the rope to the top of the building cannot be computed using
the above formula because the distance each part of the rope must be moved is different!

I. (The Approximate Work)

A. On the figure above, the rope has been divided into three segments of equal height,
∆y. Calculate ∆y.

∆y =

B. Find the mass, m2, of the middle segment of the rope.

m2 =

C. The y values of the bottom of each segment of rope are indicated above. Find the
values y0, y1, and y2 and label them on the figure (No justification is necessary).

By approximating that the middle segment is a particle located at y2:

D. Find the distance d2 the middle segment must be moved to reach the top of the
building.

d2 =

E. Find the approximate the work, W2 required to move the middle segment to the top
of the building by using the given formula. For computational convenience, take
g = 10m/s2.

W2 =
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II. (The Exact Work)

To compute the exact work required to pull the whole rope to the top of the building, slice
the rope into many segments of equal height, ∆y. One such segment, centered at a height
y, is shown on the figure below:

A. Find the mass, ∆m, of the indicated segment of the rope. Leave your answer in terms
of ∆y.

∆m =

By approximating that the segment is a particle located at height y:

B. Find the distance d = d(y)1 that the segment must be moved to reach the top of the
building in terms of y.

d(y) =

C. Find the approximate the work, ∆W required to move the segment to the top of the
building by using the formula given in the beginning of the problem. For
computational convenience, take g = 10m/s2 and leave your final answer in terms of
y and ∆y.

∆W =

D. Set up, but do not evaluate an integral that would give the work required to pull
the entire rope up to the top of the building.

1This is just notation that the distance will depend on the height y where the segment is found.
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A Few Trigonometric Identities

• sin2 θ =
1− cos(2θ)

2

• cos2 θ =
1 + cos(2θ)

2

• sin(2θ) = 2 sin θ cos θ

• cos(2θ) = cos2 θ − sin2 θ

• sin2 θ + cos2 θ = 1

• sec2 θ − tan2 θ = 1

• csc2 θ − cot2 θ = 1

A Few Miscellaneous Formulae

• Mass of a thin wire: m =

∫ b

a

ρ(u) du.

• Work done by a variable force: W =

∫ b

a

F (u) du.

• Work required to lift liquid from a tank: W =

∫ b

0

ρgA(y)(h− y) dy
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