Math 1150	Name:	
Autumn 2012	OSU user name (name.nn):	
	Recitation Instructor:	
Midterm 2	Recitation Time:	
Form A		

The point value of each problem is indicated. To obtain full credit you must have the correct answers along with **the supporting work**. Answers without supporting work will receive no credit, except for multiple choice problems. **CIRCLE YOUR ANSWERS**.

- 1. (20 points) Multiple Choice: Circle your answer.
 - (a) Express the equation $3^x = 7$ in logarithmic form.

(i)
$$\log_3(x) = 7$$
 (ii) $\log_x(7) = 3$ (iii) $\log_3(7) = x$ (iv) Not listed

(b) The domain of the function defined by $f(x) = \log_5(x^2 - 3x)$ is:

(i)
$$(3, \infty)$$
 (ii) $(-\infty, 0) \cup (3, \infty)$ (iii) Not listed

(c) The statement $\log_3(a+b) = \log_3(a) + \log_3(b)$ for all a, b > 0 is:

- (d) Expand $\ln(7e^x)$.
 - (i) 7x (ii) 7 + x (iii) $\ln(7) + x$ (iv) Not listed
- (e) Use the Laws of Logarithms to combine the expression $\frac{3}{2}\log(x^2+5) \log(x+3)$.

(i)
$$\log\left(\frac{\frac{3}{2}(x^2+5)}{x+3}\right)$$
 (ii) $\log\left(\frac{(x^2+5)^{\frac{3}{2}}}{x+3}\right)$ (iii) Not listed

Page 2 $\,$

2. (20 points)

(b) Use the change of base formula to write $\log_5(x)$ in terms of $\ln(x)$.

(i)
$$\ln \frac{x}{5}$$
 (ii) $\frac{\ln x}{\ln 5}$ (iii) $\frac{\ln 5}{\ln x}$ (iv) Not listed

(c) The angles in standard position with measures $\frac{17\pi}{5}$ and $\frac{2\pi}{5}$ are coterminal.

(d) The reference angle for
$$\frac{31\pi}{4}$$
 is:
(i) $-\frac{\pi}{4}$ (ii) $\frac{\pi}{4}$ (iii) $\frac{7\pi}{4}$ (iv) Not listed

(e) Simplify $\sin^{-1}(\sin\frac{5\pi}{4})$. (i) $\frac{5\pi}{4}$ (ii) $\frac{\pi}{4}$ (iii) $-\frac{\pi}{4}$ (iv) Not listed Page 3

3. (20 points)

a) Fill in the blank.

$$\label{eq:alpha} \begin{split} \log_a(a) &= ____\\ \log_a(1) &= ____\\ 95^\circ &= ____ radians. \ \underline{\text{Give the exact value}}. \end{split}$$

b) Solve the logarithmic equation $\log_8(x) + \log_8(x+2) = 1$. <u>Circle your answer</u>.

c) How tall is a building if the angle of elevation from the ground is 16° at a distance of 200 ft from the base of the building? Round your answer to two decimal places.

Page 4

4. (20 points)

a) The doubling time of a population is 17 years.

- Write a model for the population n(t) in terms of the initial population n_0 .

- How long will it take for the population to reach 10,000, if the initial population is 6,000? Round your answer to two decimal places.

b) A triangle has angles $\angle A = 25^{\circ}$, $\angle B = 48^{\circ}$, and side b = 12. Find side a. Round your answer to two decimal places.

c) Given $f(x) = -3\sin(\frac{5}{2}x - 10\pi)$, fill in the blank.

Amplitude: _____

Period:

Phase shift: _____

An appropriate interval on which to graph one complete period: _____

Page 5

5. (20 points)

(a) Solve the inequality
$$\frac{3(x+1)}{x} \ge \frac{1}{x}$$
.
(i) $\left[-\frac{2}{3},\infty\right)$ (ii) $\left(-\infty,-\frac{2}{3}\right] \cup (0,\infty)$ (iii) Not listed

(b) Find the terminal point on the unit circle determined by $t = -\frac{5\pi}{3}$.

(i)
$$(\frac{1}{2}, \frac{\sqrt{3}}{2})$$
 (ii) $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ (iii) Not listed

(c) Find
$$\cos \theta$$
 if $\tan \theta = \frac{2}{x}$ and $\sin \theta > 0$.

(i)
$$\frac{x}{\sqrt{4+x^2}}$$
 (ii) $\frac{2}{\sqrt{4+x^2}}$ (iii) $\frac{\sqrt{4+x^2}}{x}$ (iv) Not listed

- (d) The area of a sector of a circle with a central angle of 30° is $36 m^2$. Find the radius of the circle.
 - (i) 5.86 (ii) 11.73 (iii) 1.55 (iv) Not listed