Math 1150	Name:	
Autumn 2012	OSU user name (name.nn):	
	Recitation Instructor:	
Midterm 3	Recitation Time:	
Form A		

The point value of each problem is indicated. To obtain full credit you must have the correct answers along with **the supporting work**. Answers without supporting work will receive no credit, except for multiple choice problems. **CIRCLE YOUR ANSWERS**.

- 1. (16 points) Multiple Choice: Circle your answer.
 - (a) The expression $\cos(x)\cos(60) + \sin(x)\sin(60)$ equals:
 - (i) $\cos(x+60)$ (ii) $\cos(x-60)$ (iii) $\sin(x+60)$ (iv) Not listed
 - (b) The vectors $\mathbf{u} = \langle 8, 6 \rangle$ and $\mathbf{v} = \langle -15, 20 \rangle$ are perpendicular.

(c) Simplify
$$\tan(x + \frac{5\pi}{4})$$
:
(i) $-\tan(x)$ (ii) $\frac{1 + \tan(x)}{1 - \tan(x)}$ (iii) $\frac{1 - \tan(x)}{1 + \tan(x)}$ (iv) Not listed

- (d) For any two vectors \mathbf{u} and \mathbf{v} , the component of \mathbf{u} along \mathbf{v} is equal to the component of \mathbf{v} along \mathbf{u} .
 - (i) True (ii) False

- 2. (20 points)
 - (a) The solutions of the trigonometric equation $\tan(3\theta) + 1 = 0$ are:

(i)
$$\frac{3\pi}{4} + k\pi$$
 (ii) $\frac{\pi}{4} + k\pi$ (iii) $\frac{\pi}{4} + \frac{k\pi}{3}$ (iv) Not listed

where k is an integer.

- (b) Write $\sin(2\sin^{-1}(3x))$ in terms of x only.
 - (i) $6x\sqrt{1-9x^2}$ (ii) 6x (iii) $\sqrt{1-9x^2}$ (iv) Not listed

- (c) The angle between the vectors $\mathbf{u} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{v} = -3\mathbf{i} 4\mathbf{j}$ is approximately:
 - (i) 95° (ii) 27° (iii) 153° (iv) Not listed

- (d) Two forces $F_1 = \langle -3, 1 \rangle$ and $F_2 = \langle 2, 5 \rangle$ act on an object. The magnitude of the resultant force is:
 - (i) $\sqrt{37}$ (ii) $\sqrt{35}$ (iii) 37 (iv) Not listed

3. (24 points)

a) (8 points) Find all solutions of the trigonometric equation $\tan(2\theta)\sin(\theta) + \sin(\theta) = 0$.

b) (8 points) An ellipse has an equation $3x^2 + 5y^2 = 15$.

i) Find its vertices.

vertices: (____,___)
(____,___)

ii) Find its foci.

foci: (_____)

(_____)

c) (8 points) Simplify the trigonometric expression $\left(1 - \frac{1}{\csc(x)}\right)^2 + \cos^2(x)$, and express your answer in terms of $\sin(x)$.

4. (20 points)

a) (10 points) Find the complete solution of the linear system by first eliminating the variables x and y from the last equation. Show your work.

$$x - y + 3z = 4$$
$$y - z = -2$$
$$-x + y + z = 0$$

b) (10 points) Evaluate $\sin(\theta - \phi)$ if $\cos \theta = \frac{1}{3}$, θ is in quadrant IV, $\sin \phi = \frac{2}{3}$, and $\cos \phi = \frac{\sqrt{5}}{3}$.

- 5. (20 points)
 - (a) A force **F** has magnitude $|\mathbf{F}| = 50$ and direction $\theta = 120^{\circ}$. Find its horizontal and vertical components.
 - (i) $\mathbf{F} = \langle -25, 25\sqrt{3} \rangle$ (ii) $\mathbf{F} = \langle 25, 25\sqrt{3} \rangle$

(iii)
$$\mathbf{F} = \langle -25\sqrt{3}, 25 \rangle$$
 (iv) Not listed

- (b) Write the complex number z = -3 + 5i in polar form with angle θ between 0 and 360° .
 - (i) $\sqrt{34}(\cos(121^\circ) + i\sin(121^\circ))$ (ii) $34(\cos(121^\circ) + i\sin(121^\circ))$
 - (iii) $\sqrt{34}(\cos(59^\circ) + i\sin(59^\circ))$ (vi) Not listed
- (c) Compute z^{-20} where z is the complex number $6(\cos 70^\circ + i \sin 70^\circ)$.
 - (i) $6^{20}(\cos 40^\circ + i \sin 40^\circ)$ (ii) $\frac{1}{6^{20}}(\cos 320^\circ + i \sin 320^\circ)$ (iv) Not listed
- (d) Find $\cos(\frac{x}{2})$ if $\sec(x) = \frac{5}{2}$; $270^{\circ} < x < 360^{\circ}$. (i) $\frac{-\sqrt{7}}{2}$ (ii) $-\sqrt{\frac{7}{10}}$ (iii) $\sqrt{\frac{7}{10}}$ (iv) Not listed

Formulas

- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$ • $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ • $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$ • $\sin(2x) = 2\sin(x)\cos(x)$ • $\cos(2x) = \cos^2(x) - \sin^2(x)$ • $\sin(\frac{x}{2}) = \pm \sqrt{\frac{1 - \cos(x)}{2}}$ • $\cos(\frac{x}{2}) = \pm \sqrt{\frac{1 + \cos(x)}{2}}$
- $a + bi = r(\cos(\theta) + i\sin(\theta))$ where $r = \sqrt{a^2 + b^2}$ and $tan(\theta) = \frac{b}{a}$
- Parabola with focus (0, p) and vertex (0, 0):

 $x^2 = 4py$

• Ellipse with foci $(\pm c, 0)$ and vertices $(\pm a, 0)$:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad (a > b > 0)$$
$$c^2 = a^2 - b^2;$$
Eccentricity: $e = \frac{c}{a}$

• Hyperbola with foci $(\pm c, 0)$ and vertices $(\pm a, 0)$:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \qquad (a > 0, b > 0)$$
$$c^2 = a^2 + b^2;$$
Asymptotes: $y = \pm \frac{b}{a}x$