Math 1150	Name:	
Autumn 2012		
	OSU user name (name.nn):	
Midterm 1		
Form A	Signature:	

The point value of each problem is indicated. To obtain full credit you must have the correct answers along with **the supporting work**. Answers without supporting work will receive no credit, except for multiple choice problems. **CIRCLE YOUR ANSWERS**.

- 1. (20 points) Multiple Choice: Circle your answer.
 - (a) Evaluate g(x) at x = 6.

$$g(x) = \begin{cases} \sqrt{x^2 - 4} & \text{if } x \ge 3\\ 2x & \text{if } x < 3 \end{cases}$$
(i) 12 (ii) 4 (iii) $\sqrt{32}$ (iv) not listed

(b) The domain of the function defined by
$$f(x) = \frac{\sqrt{x+5}}{x-7}$$
 is:
(i) $(-\infty,7) \cup (7,\infty)$ (ii) $[-5,\infty)$ (iii) $[-5,7) \cup (7,\infty)$ (iv) not listed

(c) The range of the function defined by $g(x) = 2x^3 + 1; -2 \le x \le 3$ is: (i) [1] (12, 15, 55] (iii) [$2x^3 + 1; -2 \le x \le 3$ is:

(i) $[1, \infty]$ (ii) [-15, 55] (iii) [-2, 3] (iv) not listed

(d) For all functions f and g, the compositions $g \circ f$ and $f \circ g$ are always equal.

(e) The function f defined by $f(x) = (x-3)^2$; x > 3 is one to one.

Page 2

- 2. (20 points) Circle your answer or fill in the blank.
 - (a) Compute $f \circ g(x)$ for $f(x) = \sqrt{x^2 1}$ and g(x) = 3|x|.
 - i) 3x 1 ii) $\sqrt{9x^2 1}$ iii) $\sqrt{3x^2 1}$ iv) not listed
 - (b) What is the domain of $\frac{f}{g}$, if f(x) = 2x + 1 and $g(x) = \frac{1}{3x}$?

i)
$$(-\infty, \infty)$$
 ii) all real numbers except 0

(c) Express the function $F(x) = \sqrt{2x-1}$ in the form $f \circ g$.

$$f(x) = ___$$
 $g(x) = ___$

(d) A function f is given, and the indicated transformations are applied to its graph in **the given order**. Circle the equation for the final transformed graph.

 $f(x) = x^7$; shift 2 units to the left and reflect in the x-axis:

i) $-(x+2)^7$ ii) $-x^7+2$ iii) $-(x-2)^7$ iv) not listed

 $f(x) = \sqrt[7]{x}$; stretch vertically by a factor of 3 and shift down 5 units:

i) $3(\sqrt[7]{x} - 5)$ ii) $3\sqrt[7]{x} - 5$ iii) not listed

Page 3

3. (10 points) Let $P(x) = x^3 - 5.6x^2 + 6.79x$.

a) What is the end behaviour of P? Fill in the blank.

 $y \longrightarrow ___$ as $x \longrightarrow \infty$ and $y \longrightarrow ___$ as $x \longrightarrow -\infty$

b) Use your graphing calculator to find the local maximum and minimum values of P correct to two decimal places. Use the viewing rectangle [-10, 10] by [-10, 10].

local maximum value(s) _____

local minimum value(s) _____

c) Find the interval(s) on which the function is increasing.

Interval(s) of increase: _____

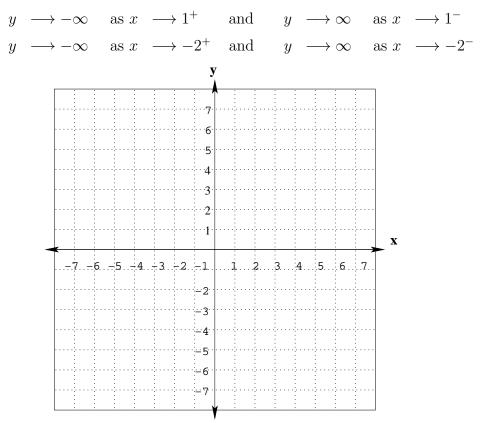
4. (10 points) Find the inverse function f^{-1} of $f(x) = \frac{1}{2 + \sqrt{3 + x}}$. Show your work.

Page 4

- 5. (20 points) Multiple choice. Circle your answers or fill in the blank.
 - (a) The vertex of the parabola given by the equation $y = 3x^2 12x + 9$ is:

(i)
$$(-2, 45)$$
 (ii) $(4, 9)$ (iii) $(2, -3)$ (iv) Not listed

- (b) The graph of the inverse fuction f^{-1} is obtained from the graph of f by symmetry about:
 - (i) the x-axis (ii) the y-axis (iii) the line y = x


- (c) The rational function $y = \frac{-6x^2 + 7}{(3x+1)(x-2)}$ has the following asymptotes. Cicle all that apply and fill in the blank.
 - (i) One vertical asymptotex =_____(ii) Two vertical asymptotesx =_____(iii) One horizontal asymptotey =_____(iv) One slant asymptotey =_____

- (d) The average of the function $f(x) = x^3 + 5x$ between x = 2 and x = 4 is:
 - (i) 33 (ii) 51 (iii) 66 (iv) not listed

Page 5 $\,$

- 6. (12 points) Let $Q(x) = x^5 x^3 12x$.
 - a) Factor Q completely into linear factors with complex coefficients.

- b) Find all the zeros of Q, real and complex .
- 7. (8 points) Sketch a possible graph of a rational function with the properties:
 - (a) Domain $\{x \mid x \neq -2, x \neq 1\};$
 - (b) three x-intercepts (-3, 0); (0, 0); (2, 0), and one y- intercept (0, 0);
 - (c) a slant asymptote y = x;
 - (d) two vertical asymptotes x = -2 and x = 1 such that:

