Gordon Prize Examination

February 23, 2002

1. If the series $\sum_{n=0}^{\infty} a_{n}$ converges, must $\sum_{n=0}^{\infty} a_{n}^{3}$ also converge?
2. Let S be a set of fifteen integers contained in the interval [2,2002] so that every two of them are relatively prime. (Two positive integers are said to be relatively prime if they have no common divisor greater than 1.) Show that S contains a prime number.
3. Let T be a triangle with sides a, b, c and angle γ opposite side c. The area A and the angle γ are known. Prove that there exist a and b for which c is minimal, and find them.
4. Let n be a positive integer and $A_{1}, \ldots, A_{2 n}$ be distinct points in the plane. Show that there are at least n line segments, none of which crosses another, connecting pairs of points from $A_{1}, \ldots, A_{2 n}$.
5. Can the plane be completely covered by 2002 infinite sectors such that sum of their angles is less than 360° ? (An infinite sector of angle α is the unbounded region between two rays making angle α, as shown.)
6. Suppose $0,1, u$ form an equilateral triangle in the complex plane. The set of all complex numbers $m+n u$, with m and n integers, forms an equilateral triangle grid. Consider the subset L of all complex numbers $m+n u$ where m, n are nonnegative integers such that $m+n \leq 2002$. Suppose that more than two-thirds of the points in L are colored blue. Show there are at least three blue points in L that are the vertices of an equilateral triangle.
