Gordon Prize Examination

February 22, 2003

Let Fi=1,F, =1, F, =F,_o+ F,,_1 for n =3,4,... be the Fibonacci sequence.
Show that 2003 divides F;, for some n.

Find the maximum of f(z) = (1 —z)(1 —y)(1 — z) over all nonnegative x, y, z with
224+ y2 4+ 22 =1

Prove that sin (n2) does not converge to 0 as n — oo. [The limit is taken over
positive integers n.]

Show that no angle of a triangle whose vertices are lattice points in the plane can
be equal to 15°. [A lattice point is a point (z,y) where z and y are integers.]

Some numbers can be expressed as an alternating sum of an increasing sequence of
distinct powers of 2. For example, 1 = —14+2;2= —-244;3=1—-2+44;4 = —4+38§;
5=1—-4+48; 6 =—2+8; etc. Is every positive integer expressible in this fashion?

Consider a 4 x 2003 chessboard. Is it possible for
a chess knight to follow a path that lands on each
of the squares exactly once and then returns to
the starting square? [A knight is a chess piece
that moves as shown: from the center square it
can move to any of the 8 shaded squares.]
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