Gordon Prize Exam

February 24, 2007

- 1. A positive integer is called a *palindrome* if its base-10 expansion is unchanged when it is reversed. For example, 121 and 7447 are palindromes. Show that if we denote by p_n the *n*th smallest palindrome, then $\sum_{n=1}^{\infty} \frac{1}{p_n}$ converges.
- **2.** Let $z_1, ..., z_{2007}$ be equally spaced points on the unit circle. Prove that

$$||z_1 - z_2|| ||z_1 - z_3|| \cdots ||z_1 - z_{2007}||,$$

the product of the lengths of the chords from z_1 to all of the other z_k , is equal to 2007.

- **3.** Show that integers a, b, c do not exist such that a+b+c = -45 and ab+bc+ca = 9.
- 4. Let W be a polynomial with real coefficients. Assume that $W(x) \ge 0$ for all real x. Prove that W may be written as a sum of squares of polynomials.
- 5. Let S be 6 distinct points in the plane. Let M be the maximum distance between two points of S and let m be the minimum distance between two points of S. Show that $M/m \ge \sqrt{3}$.
- 6. Let f_1, f_2, f_3 be linearly independent real-valued functions defined on \mathbb{R} . Prove that there exist $a_1, a_2, a_3 \in \mathbb{R}$ such that the matrix

$\int f_1(a_1)$	$f_1(a_2)$	$f_1(a_3)$
$f_2(a_1)$	$f_2(a_2)$	$f_2(a_3)$
$f_3(a_1)$	$f_3(a_2)$	$f_3(a_3)$

is nonsingular. [Recall that functions f_1, f_2, f_3 are said to be *linearly independent* iff the only constants c_1, c_2, c_3 such that $c_1f_1(x) + c_2f_2(x) + c_3f_3(x) = 0$ for all x are $c_1 = c_2 = c_3 = 0$.]

Answer each problem on the separate sheet containing the statement of the problem, or on an additional sheet. "Answers" without appropriate reasoning are insufficient. **Put your secret code name at the top of each answer sheet.**

You may take this sheet with you when you leave. Be sure to hand in separately the cover sheet (with your name, rank, student number, and secret code name).