2013 Gordon Prize examination problems

1. Prove that the first 2013 digits after the decimal point in the decimal expansion of the number $(6+\sqrt{37})^{2013}$ are zero.
2. Prove that for any real square matrix A, $\operatorname{det}\left(I+A^{2}\right) \geq 0$.
3. Suppose that real numbers a, b, c satisfy the equalities $\cos a+\cos b+\cos c=\sin a+$ $\sin b+\sin c=0$. Prove that $\cos 2 a+\cos 2 b+\cos 2 c=\sin 2 a+\sin 2 b+\sin 2 c=0$.
4. Prove that any positive rational number can be obtained from the number 1 by applying the operations $x \mapsto x+1$ and $x \mapsto \frac{x}{x+1}$.
5. Prove that any convex polygon of area S in the plane is contained in a rectangle of area $2 S$.
6. Let $f: \mathbb{R} \longrightarrow(0, \infty)$ be a continuous periodic function having period 1 ; prove that $\int_{0}^{1} \frac{f(x) d x}{f\left(x+\frac{1}{2013}\right)} \geq 1$.
