1. The series

$$
1-\frac{1}{2}-\frac{1}{2}+\frac{1}{\sqrt[3]{2}}-\frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}}-\frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}-\frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}}-\frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}} \ldots
$$

converges to 0 , but the series

$$
\begin{gathered}
1^{3}-\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{\sqrt[3]{2}}\right)^{3}-\left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}}\right)^{3}-\left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}}\right)^{3}+\left(\frac{1}{\sqrt[3]{3}}\right)^{3}-\left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}}\right)^{3}-\left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}}\right)^{3} \ldots \\
=1-\frac{1}{8}-\frac{1}{8}+\frac{1}{2}-\frac{1}{8} \cdot \frac{1}{2}-\frac{1}{8} \cdot \frac{1}{2}+\frac{1}{3}-\frac{1}{8} \cdot \frac{1}{3}-\frac{1}{8} \cdot \frac{1}{3} \ldots
\end{gathered}
$$

diverges to $+\infty$.
2. Relatively prime integers have no prime factor in common, and any integer ≥ 2 has at least one prime factor. Therefore the fifteen integers in S have pairwise disjoint sets of prime factors. The fifteenth prime is 47 , so there is an element s of S whose smallest prime factor is ≥ 47. Since $47^{2}>2002$, it can have no other prime factors, and therefore s is prime.
3. We have $A=(1 / 2) a b \sin \gamma$, so $a b=2 A / \sin \gamma$, and so

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma=(a+b)^{2}-2 a b(1+\cos \gamma)=(a+b)^{2}-4 A(1+\cos \gamma) / \sin \gamma
$$

If a product $a b$ is fixed, then the sum $a+b$ is minimum when $a=b$. So c is minimum when $a=b=\sqrt{2 A / \sin \gamma}$.

4. SOLUTION I

Since there are finitely many points, there are finitely many pairs of points, so the line segments joining pairs of the points have only finitely many directions. Choose a direction not among these. Set up Cartesian coordinates so that the y-axis has this direction. That means that the x-coordinates of the points are all different. Number the points according to increasing x-coordinates: $A_{k}=\left(x_{k}, y_{k}\right)$ and $x_{1}<x_{2}<\cdots<x_{2 n}$. Let the first line segment join A_{1} to A_{2}, the second line segment join A_{3} to A_{4}, and so on. These line segments cannot cross each other, because points from different line segments have different x-coordinates. SOLUTION II
Induction on n. If $n=1$, just join the two points by a line segment. Assume the result for $n \geq 1$ and let $A_{1}, \cdots, A_{2(n+1)}$ be distinct points in the plane. The boundary of the convex hull of the points is a polygon. Let A_{j} be a vertex of that polygon and let A_{i} be one of the other points on the polygon nearest A_{j}. Join A_{i} and A_{j} by a line segment. By induction, the $2 n$ remaining A_{k} can be joined in disjoint pairs by line segments. Each of these line segments is disjoint from that joining A_{i} and A_{j}. Hence there are $n+1$ pairwise disjoint line segments joining pairs of points of $A_{1}, \cdots, A_{2(n+1)}$.

SOLUTION III

If $I_{1}, I_{2}, \cdots, I_{n}$ are any n segments connecting the points $A_{1}, \cdots, A_{2 n}$ in pairs, let $L\left(I_{1}, \cdots, I_{n}\right)$ be the sum of the lengths of I_{1}, \cdots, I_{n}. Let z be the minimum of all possible $L\left(I_{1}, \cdots, I_{n}\right)$ and let J_{1}, \cdots, J_{n} be a set of segments which correspond to this minimum (it does not have to be unique). We claim that for any $i \neq k$, segments J_{i} and J_{k} do not cross. Indeed, if they did cross, we could make $L\left(J_{1}, \cdots, J_{n}\right)$ even smaller by replacing J_{i} and J_{k} by two new segments as in the picture.

Problems 5, 6: see the Rasor-Bareis solutions.

