1. The series

$$-\frac{1}{2} - \frac{1}{2} + \frac{1}{\sqrt[3]{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}} - \frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}} - \frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}} \dots$$

converges to 0, but the series

1

$$1^{3} - \left(\frac{1}{2}\right)^{3} - \left(\frac{1}{2}\right)^{3} + \left(\frac{1}{\sqrt[3]{2}}\right)^{3} - \left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}}\right)^{3} - \left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{2}}\right)^{3} + \left(\frac{1}{\sqrt[3]{3}}\right)^{3} - \left(\frac{1}{2} \cdot \frac{1}{\sqrt[3]{3}}\right)^{3} - \left(\frac{1}{2} \cdot \frac{$$

diverges to $+\infty$.

- 2. Relatively prime integers have no prime factor in common, and any integer ≥ 2 has at least one prime factor. Therefore the fifteen integers in S have pairwise disjoint sets of prime factors. The fifteenth prime is 47, so there is an element s of S whose smallest prime factor is ≥ 47 . Since $47^2 > 2002$, it can have no other prime factors, and therefore s is prime.
- **3.** We have $A = (1/2)ab\sin\gamma$, so $ab = 2A/\sin\gamma$, and so

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma = (a+b)^{2} - 2ab(1+\cos\gamma) = (a+b)^{2} - 4A(1+\cos\gamma)/\sin\gamma.$$

If a product ab is fixed, then the sum a+b is minimum when a=b. So c is minimum when $a=b=\sqrt{2A/\sin\gamma}$.

4. SOLUTION I

Since there are finitely many points, there are finitely many pairs of points, so the line segments joining pairs of the points have only finitely many directions. Choose a direction not among these. Set up Cartesian coordinates so that the y-axis has this direction. That means that the x-coordinates of the points are all different. Number the points according to increasing x-coordinates: $A_k = (x_k, y_k)$ and $x_1 < x_2 < \cdots < x_{2n}$. Let the first line segment join A_1 to A_2 , the second line segment join A_3 to A_4 , and so on. These line segments cannot cross each other, because points from different line segments have different x-coordinates. SOLUTION II

Induction on n. If n = 1, just join the two points by a line segment. Assume the result for $n \ge 1$ and let $A_1, \dots, A_{2(n+1)}$ be distinct points in the plane. The boundary of the convex hull of the points is a polygon. Let A_j be a vertex of that polygon and let A_i be one of the other points on the polygon nearest A_j . Join A_i and A_j by a line segment. By induction, the 2n remaining A_k can be joined in disjoint pairs by line segments. Each of these line segments is disjoint from that joining A_i and A_j . Hence there are n+1 pairwise disjoint line segments joining pairs of points of $A_1, \dots, A_{2(n+1)}$. SOLUTION III

If I_1, I_2, \dots, I_n are any *n* segments connecting the points A_1, \dots, A_{2n} in pairs, let $L(I_1, \dots, I_n)$ be the sum of the lengths of I_1, \dots, I_n . Let *z* be the minimum of all possible $L(I_1, \dots, I_n)$ and let J_1, \dots, J_n be a set of segments which correspond to this minimum (it does not have to be unique). We claim that for any $i \neq k$, segments J_i and J_k do not cross. Indeed, if they *did* cross, we could make $L(J_1, \dots, J_n)$ even smaller by replacing J_i and J_k by two new segments as in the picture.

Problems 5, 6: see the Rasor-Bareis solutions.