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Solutions: 2003 Gordon Prize Examination
[See the Rasor-Bareis solutions.]

[The interesting thing about this problem is that + = y = 2 = 1/4/3 is not the
maximum; instead the maximum occurs on the boundary of the surface.]

Let g(z,y) = f(z,y,v/1—2>—y?). Then we are to maximize g(z,y) in the
quarter-circle ) defined by z% + y?> < 1,z > 0,y > 0. First consider the inte-
rior of (). Then
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Both derivatives are zero (and the point is in the interior of Q) when (z,y) =
(1/3,2/3),(1/v/3,1/4/3),(2/3,1/3), or (2/3,2/3). The values of g at these points
are 2/27,2 — 10\/3/ 9,2/27,2/27, respectively. Next consider the boundary segment
y =0,0 <z <1 Now if h(z) = f(2,0,vV1—2%) = (1 — z)(1 — V1 —22), then
h'(z) = O only at z = 0 and = = 1/+/2. The value of h at these points is 0,3/2—1/2,
respectively. The other curves are y = 0 and z = 0 and provide solutions symmetric
with these. Comparing all these values, we see the maximum is 3/2—+/2 and occurs

at (z,y,2) = (1/v2,1/v2,0), (1/v2,0,1/v2), (0,1/v2,1/V2).

Claim: sin(n?) does not approach 0 as n — oo. Assume for a contradiction that it
does. Then also sin ((n + 1)?) = 0. Now

sin(2n + 1) = sin ((n + 1)® —n?) = sin ((n + 1)?) cos(n®) — cos ((n + 1)?) sin(n?),

and therefore sin(2n + 1) — 0 since cosine is bounded. As before: sin(2n — 1) — 0
and then

sin(2) = sin ((2n+1) — (2n — 1)) = sin(2n + 1) cos(2n — 1) — cos(2n + 1) sin(2n — 1),
so sin(2) — 0. But 2 is not an integer multiple of 7, so sin(2) # 0, and therefore

certainly does not converge to 0 as n — co. This contradiction completes the proof
that sin(n?) does not approach 0.



4.

[Solution I by Ben Przybyla]
A line-segment where both endpoints are lattice points has rational slope (except
for a vertical segment). Suppose A, B, C are lattice points and ZABC = 15°. If
either AB or BC is vertical, reflect the whole picture about the line = y to obtain
another lattice-triangle where neither AB nor BC is vertical. The slopes of both
AB and BC are rational, say u and v. Then uv # —1 (since that would mean the
lines are perpendicular), so from the formula

t tan(v) = arctan ( ———
arctan(u) — arctan(v) = arctan (1 n m))
we conclude that tan(15°) would be rational. But tan(15°) = tan(60° — 45°) =
2 — /3 is, in fact, irrational. So there is no such lattice triangle.
[Solution IT]
Suppose that A, B, C are lattice points and ZBAC = 15°. By the Law of Cosines,

s 15° _ [ABP+1ACP — |BCP?
- 2|AB[[AC]

Since A, B, C are lattice points, |AB|?, |BC|? and |AC|? are integers, and hence

(|ABJ? + |AC|? — |BCJ?)
4|ABP|ACP?

cos?15° =

is a rational number. It follows that cos30° = 2cos? 15° — 1 is rational, which is
wrong.

[Note: Rotation does not preserve lattice points, so one cannot begin by rotating
the triangle to make one side horizontal.]

[Solution I by Charles Estill]
We claim that any positive integer n can be written in the form specified. Write
n in base 2, then write 2n in base 2 by appending a 0 on the right. Now subtract
2n — n using these binary representations: When there is a 1 in the same place in
both representations, they cancel, and what remains is exactly an alternating sum
of powers of 2.

[Solution IT]
Proof by induction: Assume that for some n € N all positive integers that are less
than 2" are representable in the form 2™t — 272 4 ...+ 2% with n > ny > ny >
o> >0,k > 2. Now let 27 < m < 27l If m = 27, then m = 27! — 2n;
and if m > 27, then 2"*! — m < 27, so by the induction hypothesis 2"+ —m =
2m —2m2 4 ... 42" and thus m = 271 — 2™ 4 272 ... 3 2™k,

Suppose there is such a closed knight path landing on all the squares. Let’s say the
board consists of 4 “columns” and 2003 “rows”. In each row there are two “outer”
squares on the ends and two “inner” squares between. Note that a knight can move
from an outer square only to an inner square. Since there are an equal number
of outer and inner squares, a closed path that covers them all exactly once must
therefore alternate between inner and outer squares. On the other hand, we may
imagine the standard coloring of the board by alternating black and white squares.
A knight can move from a black square only to a white square (and from a white
square only to a black square). So, in our closed path, all the outer squares of the
path must be the same color (and all the inner squares of the path the opposite
color). But half of the outer squares are of each color, so we obtain a contradiction.



