Gordon Solutions

1. Given any selection of 1004 distinct integers from the set $\{1, 2, \ldots, 2004\}$, show that some three of the selected integers have the property that one is the sum of the other two.

Solution I. Let m be the largest of the selected integers. This leaves 1003 selected integers in $\{1, \ldots, m-1\}$. Consider the pairs of distinct integers in $\{1, \ldots, m-1\}$ that add to m: these pairs are (1, m-1), (2, m-2), (3, m-3), etc. If m is even, then there are (m-2)/2 pairs, and one number m/2 left over. If m is odd, there are (m-1)/2 pairs with nothing left over. There are 1003 selected integers in $\{1, \ldots, m-1\}$, and 1003 = (2006 - 2)/2 + 1 > (m-2)/2 + 1 if m is even and 1003 = (2007 - 1)/2 > (m-1)/2 if m is odd, so at least one of the pairs has both components selected. This pair, together with m, gives us a selected triple such that one of the integers is the sum of the other two.

Solution II. Let A be the set of selected integers and let m be the largest element in A. Let $B = \{m - a \mid a \in A, a \neq m\}$. Then |A| = 1004 and |B| = 1003. Hence $A \cap B$ contains at least 3 elements, say a, b, and c. So, for some x, y, and $z \in A$, we have

(*)
$$a = m - x, b = m - y, \text{ and } c = m - z.$$

None of a, b, or c can equal m. Also, since the a, b, and c are distinct, only one of them can equal m/2. Hence at least two(!) of the equations in (*) involve three distinct elements of A (these two equations can be the same equation written in different order).

2. What is the greatest integer less than or equal to $\frac{1}{e^{\frac{1}{2004}}-1}$?

We estimate $e^{\frac{1}{2004}}$ using the Taylor series for e^x . Write $x = \frac{1}{2004}$, then x > 0 so

$$e^x - 1 = x + \sum_{k=2}^{\infty} \frac{x^k}{k!} > x,$$
 so $\frac{1}{e^{\frac{1}{2004}} - 1} < \frac{1}{\frac{1}{2004}} = 2004.$

On the other hand,

$$e^{x} - 1 = x + \sum_{k=2}^{\infty} \frac{x^{k}}{k!} < x + \sum_{k=2}^{\infty} x^{k} = x + \frac{x^{2}}{1 - x} = \frac{x}{1 - x}, \quad \text{so}$$
$$\frac{1}{e^{\frac{1}{2004}} - 1} > \frac{1 - \frac{1}{2004}}{\frac{1}{2004}} = 2003.$$

Therefore, the greatest integer less than or equal to $\frac{1}{e^{\frac{1}{2004}} - 1}$ is 2003.

3. Let A, B be $n \times n$ matrices with real coefficients such that A is invertible. Is it possible that AB - BA = A?

Solution I. It is not possible. Assume AB - BA = A. Now *B* has an eigenvalue λ , possibly complex, so there is a nonzero complex vector *u* with $Bu = \lambda u$. Then $BAu = (AB - A)u = A(\lambda u) - Au = (\lambda - 1)Au$. Now *A* is invertible, so *Au* is not zero. Therefore $\lambda - 1$ is also an eigenvalue of *B*. Repeating the argument shows $\lambda - 2$, $\lambda - 3$, etc. are all eigenvalues of *B*. But this is impossible, since an $n \times n$ complex matrix has at most *n* eigenvalues.

Solution II. It is not possible. Assume AB - BA = A. Multiply both sides on the right by A^{-1} to get: $ABA^{-1} - B = I$. Matrices ABA^{-1} and B are similar, and therefore have the same trace. The trace of $ABA^{-1} - B$ is 0, but the trace of I is n. This contradiction shows the assumption AB - BA = A was wrong.

4. Show that, for
$$a > 0$$
, $\int_{\frac{1}{2004}}^{2004} \frac{x-1}{1+ax+ax^2+x^3} dx = 0.$

Solution I. If $f(x) = (x-1)/(1+ax+ax^2+x^3)$, note that $f(1/x) = -x^2 f(x)$. Now for u > 0 write $\phi(u) = \int_{1/u}^{u} f(x) dx$. Then we may compute the derivative (using the Fundamental Theorem of Calculus and the Chain Rule):

$$\phi'(u) = f(u) - f\left(\frac{1}{u}\right) \cdot \left(\frac{-1}{u^2}\right) = f(u) - f(u) = 0.$$

Therefore ϕ is constant. But $\phi(1) = \int_1^1 f(x) dx = 0$, so we have $\phi(u) = 0$ for all u > 0, and in particular $\phi(2004) = 0$.

Solution II. Using the substitution y = 1/x we see that

$$\int_{1/2004}^{1} f(x)dx = -\int_{1}^{2004} f(y)dy \quad \text{and so}$$
$$\int_{1/2004}^{2004} f(x)dx = -\int_{1}^{2004} f(y)dy + \int_{1}^{2004} f(x)dx = 0.$$

Solution III. The partial fraction expansion is

$$\frac{x-1}{(x+1)(x^2+(a-1)x+1)} = \frac{\frac{2}{a-3}}{x+1} + \frac{\left(\frac{-2}{a-3}\right)x + \left(\frac{1-a}{a-3}\right)}{x^2+(a-1)x+1}$$

and the numerator of the second one is a constant times the derivative of the denominator, so

$$\int \frac{x-1}{x^3 + ax^2 + ax + 1} \, dx = \frac{2}{a-3} \ln(x+1) + \frac{-1}{a-3} \ln\left(x^2 + (1-a)x + 1\right).$$

Substitute x = 2004 and x = 1/2004 for the integral:

$$\begin{aligned} \int_{1/2004}^{2004} \frac{x-1}{x^3 + ax^2 + ax + 1} \, dx \\ &= \frac{1}{a-3} \left(2\ln(2005) - 2\ln\left(\frac{2005}{2004}\right) - \ln\left(2004^2 + (a-1)2004 + 1\right) \right. \\ &\quad + \ln\left(\frac{1 + (a-1)2004 + 2004^2}{2004^2}\right) \right) = 0. \end{aligned}$$

Let a, b and c be complex numbers forming a triangle in the complex plane. Show 5. that there is a complex number p such that all of the following numbers are real:

z is the angle

are multiplied plex numbers tract; if a con

it is real.

$$\frac{(a-b)(a-c)}{(a-p)^2}, \qquad \frac{(b-a)(b-c)}{(b-p)^2}, \qquad \frac{(c-a)(c-b)}{(c-p)^2}.$$
The **argument** of a nonzero complex number
z is the angle $\arg(z)$ that the vector from 0 to z
makes with the real axis. When complex numbers
are multiplied, their arguments add; when com-
plex numbers are divided, their arguments sub-
tract; if a complex number has argument 0, then
 b

а

Now imagine an angle b, a, c in the complex plane. If segment a, p bisects the angle, then $\arg((a-b)(a-c)/(a-p)^2) = \arg(b-a) + \arg(c-a) - 2\arg(p-a) = 0$ mod 2π so $(a-b)(a-c)/(a-p)^2$ is real. As is well-known, the three angle-bisectors of a triangle intersect in a point, so that point is our solution.

If the points a, b, c are collinear, they form a *degenerate* triangle, but then any point p in the line they span (other than a, b, c) will solve the problem.

6. Let α, β, γ be the angles of a triangle. Show that $\cos \alpha \cdot \cos \beta \cdot \cos \gamma \le \frac{1}{8}$.

Solution I. (Submitted by Donald Seelig) First, if the triangle is obtuse then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma < 0$ and if the triangle is right, then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma = 0$. So assume the triangle is acute.

The altitude from the vertex with angle α divides the opposite side a into two parts a_1, a_2 . The altitude from the vertex with angle β divides the opposite side binto two parts b_1, b_2 . The altitude from the vertex with angle γ divides the opposite side c into two parts c_1, c_2 . From right triangle trigonometry, we get

Then
$$a_1b_1c_1 = abc\cos\alpha\cos\beta\cos\gamma = a_2b_2c_2$$
, and algebraic manipulation gives us:

$$\frac{1}{\cos\alpha\cos\beta\cos\gamma} = 2 + \frac{a_2}{a_1} + \frac{a_1}{a_2} + \frac{b_2}{b_1} + \frac{b_1}{b_2} + \frac{c_2}{c_1} + \frac{c_1}{c_2}.$$

Now note that for x > 0 we have $x + 1/x \ge 2$ (this follows from $(x - 1)^2 \ge 0$), so

$$\frac{1}{\cos\alpha\cos\beta\cos\gamma} \ge 2 + 2 + 2 + 2 = 8.$$

Solution II. Note that

$$\cos \gamma = \cos(\pi - (\alpha + \beta)) = -\cos(\alpha + \beta),$$

$$2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta).$$

Hence:

 $8\cos\alpha\cos\beta\cos\gamma - 1$

$$= -4\cos(\alpha + \beta)\left[\cos(\alpha + \beta) + \cos(\alpha - \beta)\right] - \left[\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta)\right]$$
$$= -\left[2\cos(\alpha + \beta) + \cos(\alpha - \beta)\right]^2 - \sin^2(\alpha - \beta) \le 0.$$

Solution III. For any real θ , the maximum of the function

$$f(x) = \cos(x)\cos(\theta - x) = \frac{1}{2}\left[\cos(\theta) + \cos(2x - \theta)\right]$$

is reached when $2x - \theta = 0$, i.e. when $x = \theta - x$. Thus, when α , β , γ are angles of a triangle, for any fixed γ the maximum of $\cos(\alpha)\cos(\beta)\cos(\gamma) = \cos(\alpha)\cos(\pi - \gamma - \alpha)\cos(\gamma)$ is reached when $\alpha = \pi - \gamma - \alpha = \beta$. Hence, the maximum of $F(\alpha, \beta, \gamma) = \cos(\alpha)\cos(\beta)\cos(\gamma)$ is reached when $\alpha = \beta = \gamma = \pi/3$. (If, say, $\beta \neq \gamma$, then $F(\alpha, (\beta + \gamma)/2, (\beta + \gamma)/2) > F(\alpha, \beta, \gamma)$.)