Gordon Solutions

1. Given any selection of 1004 distinct integers from the set $\{1,2, \ldots, 2004\}$, show that some three of the selected integers have the property that one is the sum of the other two.

Solution I. Let m be the largest of the selected integers. This leaves 1003 selected integers in $\{1, \ldots, m-1\}$. Consider the pairs of distinct integers in $\{1, \ldots, m-1\}$ that add to m : these pairs are $(1, m-1),(2, m-2),(3, m-3)$, etc. If m is even, then there are $(m-2) / 2$ pairs, and one number $m / 2$ left over. If m is odd, there are $(m-1) / 2$ pairs with nothing left over. There are 1003 selected integers in $\{1, \ldots, m-1\}$, and $1003=(2006-2) / 2+1>(m-2) / 2+1$ if m is even and $1003=(2007-1) / 2>(m-1) / 2$ if m is odd, so at least one of the pairs has both components selected. This pair, together with m, gives us a selected triple such that one of the integers is the sum of the other two.

Solution II. Let A be the set of selected integers and let m be the largest element in A. Let $B=\{m-a \mid a \in A, a \neq m\}$. Then $|A|=1004$ and $|B|=1003$. Hence $A \cap B$ contains at least 3 elements, say a, b, and c. So, for some x, y, and $z \in A$, we have

$$
\begin{equation*}
a=m-x, b=m-y, \quad \text { and } c=m-z . \tag{*}
\end{equation*}
$$

None of a, b, or c can equal m. Also, since the a, b, and c are distinct, only one of them can equal $m / 2$. Hence at least two(!) of the equations in $(*)$ involve three distinct elements of A (these two equations can be the same equation written in different order).
2. What is the greatest integer less than or equal to $\frac{1}{e^{\frac{1}{2004}}-1}$?

We estimate $e^{\frac{1}{2004}}$ using the Taylor series for e^{x}. Write $x=\frac{1}{2004}$, then $x>0$ so

$$
e^{x}-1=x+\sum_{k=2}^{\infty} \frac{x^{k}}{k!}>x, \quad \text { so } \quad \frac{1}{e^{\frac{1}{2004}}-1}<\frac{1}{\frac{1}{2004}}=2004
$$

On the other hand,

$$
\begin{aligned}
& e^{x}-1=x+\sum_{k=2}^{\infty} \frac{x^{k}}{k!}<x+\sum_{k=2}^{\infty} x^{k}=x+\frac{x^{2}}{1-x}=\frac{x}{1-x} \\
& \frac{1}{e^{\frac{1}{2004}}-1}>\frac{1-\frac{1}{2004}}{\frac{1}{2004}}=2003
\end{aligned}
$$

Therefore, the greatest integer less than or equal to $\frac{1}{e^{\frac{1}{204}}-1}$ is 2003 .
3. Let A, B be $n \times n$ matrices with real coefficients such that A is invertible. Is it possible that $A B-B A=A$?

Solution I. It is not possible. Assume $A B-B A=A$. Now B has an eigenvalue λ, possibly complex, so there is a nonzero complex vector u with $B u=\lambda u$. Then $B A u=(A B-A) u=A(\lambda u)-A u=(\lambda-1) A u$. Now A is invertible, so $A u$ is not zero. Therefore $\lambda-1$ is also an eigenvalue of B. Repeating the argument shows $\lambda-2, \lambda-3$, etc. are all eigenvalues of B. But this is impossible, since an $n \times n$ complex matrix has at most n eigenvalues.

Solution II. It is not possible. Assume $A B-B A=A$. Multiply both sides on the right by A^{-1} to get: $A B A^{-1}-B=I$. Matrices $A B A^{-1}$ and B are similar, and therefore have the same trace. The trace of $A B A^{-1}-B$ is 0 , but the trace of I is n. This contradiction shows the assumption $A B-B A=A$ was wrong.
4. Show that, for $a>0, \int_{\frac{1}{2004}}^{2004} \frac{x-1}{1+a x+a x^{2}+x^{3}} d x=0$.

Solution I. If $f(x)=(x-1) /\left(1+a x+a x^{2}+x^{3}\right)$, note that $f(1 / x)=-x^{2} f(x)$. Now for $u>0$ write $\phi(u)=\int_{1 / u}^{u} f(x) d x$. Then we may compute the derivative (using the Fundamental Theorem of Calculus and the Chain Rule):

$$
\phi^{\prime}(u)=f(u)-f\left(\frac{1}{u}\right) \cdot\left(\frac{-1}{u^{2}}\right)=f(u)-f(u)=0 .
$$

Therefore ϕ is constant. But $\phi(1)=\int_{1}^{1} f(x) d x=0$, so we have $\phi(u)=0$ for all $u>0$, and in particular $\phi(2004)=0$.

Solution II. Using the substitution $y=1 / x$ we see that

$$
\begin{aligned}
& \int_{1 / 2004}^{1} f(x) d x=-\int_{1}^{2004} f(y) d y \quad \text { and so } \\
& \int_{1 / 2004}^{2004} f(x) d x=-\int_{1}^{2004} f(y) d y+\int_{1}^{2004} f(x) d x=0
\end{aligned}
$$

Solution III. The partial fraction expansion is

$$
\frac{x-1}{(x+1)\left(x^{2}+(a-1) x+1\right)}=\frac{\frac{2}{a-3}}{x+1}+\frac{\left(\frac{-2}{a-3}\right) x+\left(\frac{1-a}{a-3}\right)}{x^{2}+(a-1) x+1}
$$

and the numerator of the second one is a constant times the derivative of the denominator, so

$$
\int \frac{x-1}{x^{3}+a x^{2}+a x+1} d x=\frac{2}{a-3} \ln (x+1)+\frac{-1}{a-3} \ln \left(x^{2}+(1-a) x+1\right) .
$$

Substitute $x=2004$ and $x=1 / 2004$ for the integral:

$$
\begin{aligned}
& \int_{1 / 2004}^{2004} \frac{x-1}{x^{3}+a x^{2}+a x+1} d x \\
& =\frac{1}{a-3}\left(2 \ln (2005)-2 \ln \left(\frac{2005}{2004}\right)-\ln \left(2004^{2}+(a-1) 2004+1\right)\right. \\
& \left.\quad+\ln \left(\frac{1+(a-1) 2004+2004^{2}}{2004^{2}}\right)\right)=0 .
\end{aligned}
$$

5. Let a, b and c be complex numbers forming a triangle in the complex plane. Show that there is a complex number p such that all of the following numbers are real:

$$
\frac{(a-b)(a-c)}{(a-p)^{2}}, \quad \frac{(b-a)(b-c)}{(b-p)^{2}}, \quad \frac{(c-a)(c-b)}{(c-p)^{2}} .
$$

The argument of a nonzero complex number z is the angle $\arg (z)$ that the vector from 0 to z makes with the real axis. When complex numbers are multiplied, their arguments add; when complex numbers are divided, their arguments subtract; if a complex number has argument 0 , then it is real.

Now imagine an angle b, a, c in the complex plane. If segment a, p bisects the angle, then $\arg \left((a-b)(a-c) /(a-p)^{2}\right)=\arg (b-a)+\arg (c-a)-2 \arg (p-a)=0$ $\bmod 2 \pi$ so $(a-b)(a-c) /(a-p)^{2}$ is real. As is well-known, the three angle-bisectors of a triangle intersect in a point, so that point is our solution.

If the points a, b, c are collinear, they form a degenerate triangle, but then any point p in the line they span (other than a, b, c) will solve the problem.
6. Let α, β, γ be the angles of a triangle. Show that $\cos \alpha \cdot \cos \beta \cdot \cos \gamma \leq \frac{1}{8}$.

Solution I. (Submitted by Donald Seelig) First, if the triangle is obtuse then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma<0$ and if the triangle is right, then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma=0$. So assume the triangle is acute.

The altitude from the vertex with angle α divides the opposite side a into two parts a_{1}, a_{2}. The altitude from the vertex with angle β divides the opposite side b into two parts b_{1}, b_{2}. The altitude from the vertex with angle γ divides the opposite side c into two parts c_{1}, c_{2}. From right triangle trigonometry, we get

$$
\cos \alpha=\frac{b_{1}}{c}=\frac{c_{2}}{b}, \quad \cos \beta=\frac{a_{2}}{c}=\frac{c_{1}}{a}, \quad \cos \gamma=\frac{b_{2}}{a}=\frac{a_{1}}{b} .
$$

Then $a_{1} b_{1} c_{1}=a b c \cos \alpha \cos \beta \cos \gamma=a_{2} b_{2} c_{2}$, and algebraic manipulation gives us:

$$
\frac{1}{\cos \alpha \cos \beta \cos \gamma}=2+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}+\frac{b_{2}}{b_{1}}+\frac{b_{1}}{b_{2}}+\frac{c_{2}}{c_{1}}+\frac{c_{1}}{c_{2}} .
$$

Now note that for $x>0$ we have $x+1 / x \geq 2$ (this follows from $(x-1)^{2} \geq 0$), so

$$
\frac{1}{\cos \alpha \cos \beta \cos \gamma} \geq 2+2+2+2=8
$$

Solution II. Note that

$$
\begin{aligned}
\cos \gamma & =\cos (\pi-(\alpha+\beta))=-\cos (\alpha+\beta) \\
2 \cos \alpha \cos \beta & =\cos (\alpha-\beta)+\cos (\alpha+\beta)
\end{aligned}
$$

Hence:
$8 \cos \alpha \cos \beta \cos \gamma-1$

$$
\begin{aligned}
& =-4 \cos (\alpha+\beta)[\cos (\alpha+\beta)+\cos (\alpha-\beta)]-\left[\cos ^{2}(\alpha-\beta)+\sin ^{2}(\alpha-\beta)\right] \\
& =-[2 \cos (\alpha+\beta)+\cos (\alpha-\beta)]^{2}-\sin ^{2}(\alpha-\beta) \leq 0
\end{aligned}
$$

Solution III. For any real θ, the maximum of the function

$$
f(x)=\cos (x) \cos (\theta-x)=\frac{1}{2}[\cos (\theta)+\cos (2 x-\theta)]
$$

is reached when $2 x-\theta=0$, i.e. when $x=\theta-x$. Thus, when α, β, γ are angles of a triangle, for any fixed γ the maximum of $\cos (\alpha) \cos (\beta) \cos (\gamma)=\cos (\alpha) \cos (\pi-$ $\gamma-\alpha) \cos (\gamma)$ is reached when $\alpha=\pi-\gamma-\alpha=\beta$. Hence, the maximum of $F(\alpha, \beta, \gamma)=\cos (\alpha) \cos (\beta) \cos (\gamma)$ is reached when $\alpha=\beta=\gamma=\pi / 3$. (If, say, $\beta \neq \gamma$, then $F(\alpha,(\beta+\gamma) / 2,(\beta+\gamma) / 2)>F(\alpha, \beta, \gamma)$.)

