Solutions: 2005 Gordon Prize Examination

1. We may assume that $b_{1}, \ldots, b_{n} \neq 0$. For all $x \neq 0$, we have

$$
\left|a_{1} b_{1} \frac{\sin \left(b_{1} x\right)}{b_{1} x}+a_{2} b_{2} \frac{\sin \left(b_{2} x\right)}{b_{2} x}+\ldots+a_{n} b_{n} \frac{\sin \left(b_{n} x\right)}{b_{n} x}\right| \leq\left|\frac{\sin x}{x}\right|
$$

Observe that $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$. Taking the limit as $x \rightarrow 0$ of both sides, we get $\mid a_{1} b_{1}+a_{2} b_{2}+$ $\ldots+a_{n} b_{n} \mid \leq 1$.
2. The solution set is $\{0,1\}$.

Proof. Let $x \in \mathbb{R}$ satisfy $2003^{x}-2002^{x}=2005^{x}-2004^{x}$. By the Mean Value Theorem, applied to the function $f(t)=t^{x}$, there exists $a \in[2002,2003]$ such that $2003^{x}-2002^{x}=$ $x a^{x-1}$. Similarly, there exists $b \in[2004,2005]$ such that $2005^{x}-2004^{x}=x b^{x-1}$. Then $x a^{x-1}=x b^{x-1}$ and $a<b$, so either $x=0$ or $x=1$.
3. Perform the following row operations on A : subtract or add the first row of A from/to each other row in order to "kill" all elements of the first column, except for the first one, $A=\left(\begin{array}{cccc} \pm 1 \pm 1 & \ldots & \pm 1 \\ \pm 1 \pm 1 & \ldots & \pm 1 \\ \vdots & \vdots & \vdots \\ \pm 1 & \pm 1 & \ldots & \pm 1\end{array}\right) \mapsto A^{\prime}=\left(\begin{array}{c} \pm 1 \pm 1 \ldots \pm 1 \\ 0 \\ \vdots \\ 0\end{array}\right)$. Then $\operatorname{det} A^{\prime}=\operatorname{det} A$, and each entry of the matrix B is equal to either 0 , or 2 , or -2 . Expanding by minors along the first column yields $\operatorname{det} A^{\prime}= \pm \operatorname{det} B$. Since the entries of the $(n-1) \times(n-1)$-matrix B are all even, $\operatorname{det} B$ is divisible by 2^{n-1}.
4. Put $z=e^{-i \pi / 3}$. Then $C=A+z(B-A)$ and $Z=X+z(Y-X)$, so

$$
\begin{aligned}
C+Z=A+z(B-A)+X+z(Y-X) & =(A+X)+z(B-A+Y-X) \\
& =(A+X)+z[(B+Y)-(A+X)]
\end{aligned}
$$

Note that $C+Z=A+X$ if and only $B+Y=A+X$.
5. Solution 1. Observe that

$$
\begin{aligned}
& (\sqrt{65}+8)^{2005}=\sum_{n=0}^{2005}\binom{2005}{n} \sqrt{65}^{n} 8^{2005-n} \\
& =\sum_{k=0}^{1002}\binom{2005}{2 k} \sqrt{65}^{2 k} 8^{2005-2 k}+\sum_{k=0}^{1002}\binom{2005}{2 k+1} \sqrt{65}^{2 k+1} 8^{2005-(2 k+1)}
\end{aligned}
$$

and

$$
\begin{aligned}
(\sqrt{65}-8)^{2005} & =\sum_{n=0}^{2005}\binom{2005}{n} \sqrt{65}^{n}(-8)^{2005-n} \\
& =-\sum_{k=0}^{1002}\binom{2005}{2 k} \sqrt{65}^{2 k} 8^{2005-2 k}+\sum_{k=0}^{1002}\binom{2005}{2 k+1} \sqrt{65}^{2 k+1} 8^{2005-(2 k+1)} .
\end{aligned}
$$

The first term in the right hand side of both equalities is an integer and the last terms coincide, thus the fractional part of $(8+\sqrt{65})^{2005}$ equals the fractional part of $(\sqrt{65}-8)^{2005}$. Now, since

$$
8.1^{2}=(8+0.1)^{2}=64+1.6+0.01>65
$$

we have $8<\sqrt{65}<8.1$, and so $0<\sqrt{65}-8<0.1$. It follows that $0<(\sqrt{65}-8)^{2005}<$ 10^{-2005}, which means that the first 2005 digits of the decimal expansion of $(\sqrt{65}-8)^{2005}$ are zero.

Solution 2. Let $s=8+\sqrt{65}$ and $r=8-\sqrt{65}$. Then $-0.1<r<0<s$. Also, r and s are the roots of the polynomial $x^{2}-16 x-1$. Hence r^{n} and s^{n} both satisfy the recurrence $f(n+2)=16 f(n+1)+f(n)$. Hence $r^{n}+s^{n}$ also satisfies this recurrence, with $f(0)=2$ and $f(1)=16$, so $r^{n}+s^{n}$ is an integer for all $n \geq 0$. Thus $r^{2005}+s^{2005}=k$, for some positive integer k. Therefore,

$$
s^{2005}=k-r^{2005}=k+(-r)^{2005}
$$

Since $0<-r<0.1$, it follows that s^{2005} has at least 2005 zeros after the decimal point.
6. (Same as RB6.) For each $n \geq 1$, there are at most $n^{1 / 2}$ squares and at most $n^{1 / 3}$ cubes contained in $\{1, \ldots, n\}$, so there are at most $n^{1 / 2} \cdot n^{1 / 3}=n^{5 / 6}$ numbers of the form $x^{2}+y^{3}$ contained in $\{1, \ldots, n\}$, where x and y are nonnegative integers. Since $n-n^{5 / 6} \longrightarrow \infty$ as $n \longrightarrow \infty$, the result follows.

