Solutions to 2013 Gordon Prize examination problems

1. Prove that the first 2013 digits after the decimal point in the decimal exzpansion of the number (64+/37)2013
are zero.

Solution. Let a = /374 6 and b = /37 — 6 = a~!. Then for odd n, M,, = a™ — b" is an integer, since

n n

M, = (V3T +6)" — (V3T —6)" = 3 () (V316" = 37 (1) () (Va6
k=0 k=0
= > 2)WBnkert=2 > ()(VEDRer TR =2 > ()3T,
0<k<n 0<k<n 0<k<n
n—k is odd k is even k is even

Now, b < 107! (since ab = 1 and a > 12). Hence, for any odd n, a® = M,, + b", where M,, is integer and
b™ < 107", so (the decimal expansion of) a™ has > n zeros after the decimal point.

2. Prove that for any real square matriz A, det(I + A%) > 0.

Solution. We have I + A% = (I +iA)(I —iA), and, since A is real, I —iA = I + iA, the complex conjugate
of I +1iA. So,

det(I + A?) = det(I +4A) - det (I +iA) = det(I +iA) - det(I +iA) = |det(I +1iA4)|* > 0.

3. Suppose that real numbers a, b, ¢ satisfy the equalities cosa + cosb 4 cosc = sina + sinb + sinc = 0.
Prove that cos 2a + cos 2b + cos 2¢ = sin 2a + sin 2b 4 sin 2¢ = 0.

Solution. Put © = cosa + isina, y = cosb + isinb, z = cosc + isinc. Then |z| = |y| = |z| = 1 and
x+y+2=0. Notice that also 2~ ' +y '+ 2z ' =z2+y+z=2+y+2=0,s0, zy +yz + zx = 0. Hence,
2 +y?+22 = (x+y+2)? -2y +yz+zr) =0. Since 22 = cos2a + isin2a, y?> = cos2b + isin 2b and

22 = cos 2c + isin 2c we get the result.

Another solution. The equations |z| = |y| = |z| =1 Y 1
and x +y + z = 0 imply that x, y, and z are located
at the vertices of an equilateral triangle inscribed in

the unit circle. Z
(Indeed, let y' = y/x and 2’ = z/x, then |y/| = |2'| =1 and 1+ 3" + 2/ = 0. Hence, Imy’ = —Im 2/,
so Rey’ = £Re?/, so Rey’ = Rez’ = —1/2, and so y/ = €2™/3 and 2’ = ¢*™/3, or vice versa.) It follows

that the points z2, y2, 22 are also located at the vertices of an equilateral triangle inscribed in the unit circle
(now y?/2? = e1™/3 and 22 /2% = €?™/3  or vice versa), and so, 2% + 32 + 2% = 0.

4. Prove that any positive rational number can be obtained from the number 1 by applying the operations

z—x+1 and r— =2

41"
Solution. The operations S(z) = x 4+ 1 and T(x) = ;77 act on the set of positive rational numbers in the
folowing way: S(%) = #7 T(%) = kiﬂ Therefore, to prove that the quotient -, where n,m € N are

relatively prime, can be obtained from 1 we need to show that the pair (1,1) can be transformed to the
pair (n,m) using the operations (k,l) — (k +[,1) and (k,l) — (k,l + k). This is equivalent to showing
that the pair (n,m) can be transformed, using a sequence of operations (k,l) — (k —1,1) if & > [ and
(k,1) = (k,l — k) if [ > k, to the pair (1,1). But this sequence of operations is uniquely defined and, since
n and m are relatively prime, always ends with (1,1) (this is just the Euclidean algorithm). (This proves, by
the way, that there is only one sequence of the operations T' and S that produces the quotient I-.)

Another solution. More formally, for any positive rational number r = 1, written in the lowest terms (that
is, with n and m relatively prime), define C(r) = n + m, and prove the assertion using the induction on

1



C(r). The minimal value of C(r) is 2, which is only reached when 7 = 1. Let r = = € Q, where n # m and
n and m are relatively prime. If n > m, put s = 2=2; then r = s+ 1 and C(s) = n < C(r). If n < m, put

m

s = i then r = 35 and C(s) =m < C(r). In both cases, by induction on C(r), s can be obtained from

1 with the prescribed operations, and so can r.

5. Prove that any convex polygon of area S in the plane is contained in a rectangle of area 2S.

Solution. Let P be a convex polygon. Let A and B be the points
of P at the maximum distance from each other. Let [; and I be
the lines orthogonal to the line | = (AB) and passing through A
and B respectively. Let C' and D be the points of P, in the both
half-planes to which [ subdivides the plane, whose distance from [
is maximal, and let m1, ma be the lines parallel to (AB) passing
through the points C' and D respectively. Let R be the rectangle
bounded by the lines [y, I3, m1, mo.

We claim that P C R, that is, all points of P lie between [y
and [, and between m, and msy. Indeed, if there is a point X
of P not between [; and I, say, on the other side from [y, then
dist(X, B) > dist(A, B), which contradicts the choice of A, B.
And if there is a point Y of P not between m; and meo, say, on the
other side from my, then dist(Y,1) > dist(C, 1), which contradicts
the choice of C.

Next, we claim that area(R) < 2area(P). Indeed, since P is
convex, the triangles AABC and AABD are contained in P, so

area(P) > area(AABC) + area(AABD). On the other hand, Al
area(R) = |AB| - (dist(C,1) + dist(D,1)) = 2(area(AABC) +
area( AABD)).
R C
6. Let f:R — (0,00) be a continuous periodic function having period 1; prove that fol % > 1.
2013
. o . . 1 z)dx T
Solution. Let n be any positive integer; we will prove that fo ff((a:ll) > 1.A Define go(z) = f(J;(Jr),,%)’ and
n—1 n—1 f(z+£) _
let gi(z) = gl +k/n), k =1,...,n—1. Then [[,_; gr(z) = [1x-0 f(i+%z) = f{z(i)l) = 1, so, by the

generalized arithmetic-geometric mean inequality, %Zz;é gr(x) > 1/ HZ;S gr(x) = 1. Since, for any k,
1 1
Jo gx(x)dz = [ go(z) dx, we get

/Olgo(x)dac: %g/olgk(x)dxzAl(%ggk(x))de/olldx:1.

Another solution. We will now prove that fol ;((:fzrd:) > 1 for any a > 0 using Jensen’s inequality (which says
that for any integrable on [0, 1] function h and any convex function ¢, fol o(h(x))dx > <p(f01 h(z)dz); in

1
particular, fol e @) dy > efo h(w)dx)'

Take h(z) = log(f(z)/f(z 4+ a)) = log f(z) — log f(x + a); then e®) = f{z(j_)a), and fol h(z)dx =

fol log f(x) dx—fol log f(x+a)dz = 0, since log f(z) is periodic with period 1. Hence, by Jensen’s inequality,

1 f@)de < 0
fO f(z+a) ze =1




