
Solutions to 2013 Gordon Prize examination problems

1. Prove that the first 2013 digits after the decimal point in the decimal expansion of the number (6+
√

37)2013

are zero.

Solution. Let a =
√

37 + 6 and b =
√

37 − 6 = a−1. Then for odd n, Mn = an − bn is an integer, since

Mn = (
√

37 + 6)n − (
√

37 − 6)n =
n

∑

k=0

(

n
k

)

(
√

37)k6n−k −
n

∑

k=0

(−1)n−k
(

n
k

)

(
√

37)k6n−k

=
∑

0≤k≤n
n−k is odd

2
(

n
k

)

(
√

37)k6n−k = 2
∑

0≤k≤n
k is even

(

n
k

)

(
√

37)k6n−k = 2
∑

0≤k≤n
k is even

(

n
k

)

37k/26n−k.

Now, b < 10−1 (since ab = 1 and a > 12). Hence, for any odd n, an = Mn + bn, where Mn is integer and
bn < 10−n, so (the decimal expansion of) an has ≥ n zeros after the decimal point.

2. Prove that for any real square matrix A, det(I + A2) ≥ 0.

Solution. We have I + A2 = (I + iA)(I − iA), and, since A is real, I − iA = I + iA, the complex conjugate
of I + iA. So,

det(I + A2) = det(I + iA) · det (I + iA) = det(I + iA) · det(I + iA) = |det(I + iA)|2 ≥ 0.

3. Suppose that real numbers a, b, c satisfy the equalities cos a + cos b + cos c = sin a + sin b + sin c = 0.
Prove that cos 2a + cos 2b + cos 2c = sin 2a + sin 2b + sin 2c = 0.

Solution. Put x = cos a + i sin a, y = cos b + i sin b, z = cos c + i sin c. Then |x| = |y| = |z| = 1 and
x + y + z = 0. Notice that also x−1 + y−1 + z−1 = x̄ + ȳ + z̄ = x + y + z = 0, so, xy + yz + zx = 0. Hence,
x2 + y2 + z2 = (x + y + z)2 − 2(xy + yz + zx) = 0. Since x2 = cos 2a + i sin 2a, y2 = cos 2b + i sin 2b and
z2 = cos 2c + i sin 2c we get the result.

Another solution. The equations |x| = |y| = |z| = 1
and x + y + z = 0 imply that x, y, and z are located
at the vertices of an equilateral triangle inscribed in
the unit circle.
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(Indeed, let y′ = y/x and z′ = z/x, then |y′| = |z′| = 1 and 1 + y′ + z′ = 0. Hence, Im y′ = − Im z′,

so Re y′ = ±Re z′, so Re y′ = Re z′ = −1/2, and so y′ = e2πi/3 and z′ = e4πi/3, or vice versa.) It follows
that the points x2, y2, z2 are also located at the vertices of an equilateral triangle inscribed in the unit circle
(now y2/x2 = e4πi/3 and z2/x2 = e2πi/3, or vice versa), and so, x2 + y2 + z2 = 0.

4. Prove that any positive rational number can be obtained from the number 1 by applying the operations

x 7→ x + 1 and x 7→ x
x+1 .

Solution. The operations S(x) = x + 1 and T (x) = x
x+1 act on the set of positive rational numbers in the

folowing way: S
(

k
l

)

= k+l
l , T

(

k
l

)

= k
k+l . Therefore, to prove that the quotient n

m , where n,m ∈ N are
relatively prime, can be obtained from 1 we need to show that the pair (1, 1) can be transformed to the
pair (n,m) using the operations (k, l) 7→ (k + l, l) and (k, l) 7→ (k, l + k). This is equivalent to showing
that the pair (n,m) can be transformed, using a sequence of operations (k, l) 7→ (k − l, l) if k > l and
(k, l) 7→ (k, l − k) if l > k, to the pair (1, 1). But this sequence of operations is uniquely defined and, since
n and m are relatively prime, always ends with (1, 1) (this is just the Euclidean algorithm). (This proves, by

the way, that there is only one sequence of the operations T and S that produces the quotient n
m .)

Another solution. More formally, for any positive rational number r = n
m , written in the lowest terms (that

is, with n and m relatively prime), define C(r) = n + m, and prove the assertion using the induction on

1



C(r). The minimal value of C(r) is 2, which is only reached when r = 1. Let r = n
m ∈ Q, where n 6= m and

n and m are relatively prime. If n > m, put s = n−m
m ; then r = s + 1 and C(s) = n < C(r). If n < m, put

s = n
m−n ; then r = s

s+1 and C(s) = m < C(r). In both cases, by induction on C(r), s can be obtained from
1 with the prescribed operations, and so can r.

5. Prove that any convex polygon of area S in the plane is contained in a rectangle of area 2S.

Solution. Let P be a convex polygon. Let A and B be the points
of P at the maximum distance from each other. Let l1 and l2 be
the lines orthogonal to the line l = (AB) and passing through A
and B respectively. Let C and D be the points of P , in the both
half-planes to which l subdivides the plane, whose distance from l
is maximal, and let m1, m2 be the lines parallel to (AB) passing
through the points C and D respectively. Let R be the rectangle
bounded by the lines l1, l2,m1,m2.
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We claim that P ⊆ R, that is, all points of P lie between l1
and l2, and between m1 and m2. Indeed, if there is a point X
of P not between l1 and l2, say, on the other side from l1, then
dist(X,B) > dist(A,B), which contradicts the choice of A, B.
And if there is a point Y of P not between m1 and m2, say, on the
other side from m1, then dist(Y, l) > dist(C, l), which contradicts
the choice of C.
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Next, we claim that area(R) ≤ 2 area(P ). Indeed, since P is
convex, the triangles △ABC and △ABD are contained in P , so
area(P ) ≥ area(△ABC) + area(△ABD). On the other hand,
area(R) = |AB| ·

(

dist(C, l) + dist(D, l)
)

= 2
(

area(△ABC) +

area(△ABD)
)

.
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6. Let f : R −→ (0,∞) be a continuous periodic function having period 1; prove that
∫ 1

0
f(x)dx

f(x+ 1
2013

)
≥ 1.

Solution. Let n be any positive integer; we will prove that
∫ 1

0
f(x)dx

f(x+ 1
n

)
≥ 1. Define g0(x) = f(x)

f(x+ 1
n

)
, and

let gk(x) = g(x + k/n), k = 1, . . . , n − 1. Then
∏n−1

k=0 gk(x) =
∏n−1

k=0
f(x+ k

n
)

f(x+ k+1

n
)

= f(x)
f(x+1) = 1, so, by the

generalized arithmetic-geometric mean inequality, 1
n

∑n−1
k=0 gk(x) ≥ n

√

∏n−1
k=0 gk(x) = 1. Since, for any k,

∫ 1

0
gk(x) dx =

∫ 1

0
g0(x) dx, we get

∫ 1

0

g0(x)dx =
1

n

n−1
∑

k=0

∫ 1

0

gk(x) dx =

∫ 1

0

( 1

n

n−1
∑

k=0

gk(x)
)

dx ≥
∫ 1

0

1 dx = 1.

Another solution. We will now prove that
∫ 1

0
f(x)dx
f(x+a) ≥ 1 for any a > 0 using Jensen’s inequality (which says

that for any integrable on [0, 1] function h and any convex function ϕ,
∫ 1

0
ϕ(h(x)) dx ≥ ϕ

(∫ 1

0
h(x) dx

)

; in

particular,
∫ 1

0
eh(x)dx ≥ e

∫

1

0
h(x)dx

).

Take h(x) = log(f(x)/f(x + a)) = log f(x) − log f(x + a); then eh(x) = f(x)
f(x+a) , and

∫ 1

0
h(x) dx =

∫ 1

0
log f(x) dx−

∫ 1

0
log f(x+a) dx = 0, since log f(x) is periodic with period 1. Hence, by Jensen’s inequality,

∫ 1

0
f(x)dx
f(x+a) ≥ e0 = 1.
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