Solutions to 2013 Gordon Prize examination problems

1. Prove that the first 2013 digits after the decimal point in the decimal expansion of the number $(6+\sqrt{37})^{2013}$ are zero.
$\underline{\text { Solution. Let } a=\sqrt{37}+6 \text { and } b=\sqrt{37}-6=a^{-1} \text {. Then for odd } n, M_{n}=a^{n}-b^{n} \text { is an integer, since }}$

$$
\begin{aligned}
& M_{n}=(\sqrt{37}+6)^{n}-(\sqrt{37}-6)^{n}=\sum_{k=0}^{n}\binom{n}{k}(\sqrt{37})^{k} 6^{n-k}-\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(\sqrt{37})^{k} 6^{n-k} \\
&=\sum_{\substack{0 \leq k \leq n \\
n-k \text { is odd }}} 2\binom{n}{k}(\sqrt{37})^{k} 6^{n-k}=2 \sum_{\substack{0 \leq k \leq n \\
k \text { is even }}}\binom{n}{k}(\sqrt{37})^{k} 6^{n-k}=2 \sum_{\substack{0 \leq k \leq n \\
k \text { is even }}}\binom{n}{k} 37^{k / 2} 6^{n-k}
\end{aligned}
$$

Now, $b<10^{-1}$ (since $a b=1$ and $a>12$). Hence, for any odd $n, a^{n}=M_{n}+b^{n}$, where M_{n} is integer and $b^{n}<10^{-n}$, so (the decimal expansion of) a^{n} has $\geq n$ zeros after the decimal point.
2. Prove that for any real square matrix A, $\operatorname{det}\left(I+A^{2}\right) \geq 0$.

Solution. We have $I+A^{2}=(I+i A)(I-i A)$, and, since A is real, $I-i A=\overline{I+i A}$, the complex conjugate of $I+i A$. So,

$$
\operatorname{det}\left(I+A^{2}\right)=\operatorname{det}(I+i A) \cdot \operatorname{det} \overline{(I+i A)}=\operatorname{det}(I+i A) \cdot \overline{\operatorname{det}(I+i A)}=|\operatorname{det}(I+i A)|^{2} \geq 0
$$

3. Suppose that real numbers a, b, c satisfy the equalities $\cos a+\cos b+\cos c=\sin a+\sin b+\sin c=0$. Prove that $\cos 2 a+\cos 2 b+\cos 2 c=\sin 2 a+\sin 2 b+\sin 2 c=0$.
$\underline{\text { Solution } . ~ P u t ~} x=\cos a+i \sin a, y=\cos b+i \sin b, z=\cos c+i \sin c$. Then $|x|=|y|=|z|=1$ and $x+y+z=0$. Notice that also $x^{-1}+y^{-1}+z^{-1}=\bar{x}+\bar{y}+\bar{z}=\overline{x+y+z}=0$, so, $x y+y z+z x=0$. Hence, $x^{2}+y^{2}+z^{2}=(x+y+z)^{2}-2(x y+y z+z x)=0$. Since $x^{2}=\cos 2 a+i \sin 2 a, y^{2}=\cos 2 b+i \sin 2 b$ and $z^{2}=\cos 2 c+i \sin 2 c$ we get the result.

Another solution. The equations $|x|=|y|=|z|=1$ and $x+y+z=0$ imply that x, y, and z are located at the vertices of an equilateral triangle inscribed in the unit circle.

(Indeed, let $y^{\prime}=y / x$ and $z^{\prime}=z / x$, then $\left|y^{\prime}\right|=\left|z^{\prime}\right|=1$ and $1+y^{\prime}+z^{\prime}=0$. Hence, $\operatorname{Im} y^{\prime}=-\operatorname{Im} z^{\prime}$, so $\operatorname{Re} y^{\prime}= \pm \operatorname{Re} z^{\prime}$, so $\operatorname{Re} y^{\prime}=\operatorname{Re} z^{\prime}=-1 / 2$, and so $y^{\prime}=e^{2 \pi i / 3}$ and $z^{\prime}=e^{4 \pi i / 3}$, or vice versa.) It follows that the points x^{2}, y^{2}, z^{2} are also located at the vertices of an equilateral triangle inscribed in the unit circle (now $y^{2} / x^{2}=e^{4 \pi i / 3}$ and $z^{2} / x^{2}=e^{2 \pi i / 3}$, or vice versa), and so, $x^{2}+y^{2}+z^{2}=0$.
4. Prove that any positive rational number can be obtained from the number 1 by applying the operations $x \mapsto x+1$ and $x \mapsto \frac{x}{x+1}$.
Solution. The operations $S(x)=x+1$ and $T(x)=\frac{x}{x+1}$ act on the set of positive rational numbers in the folowing way: $S\left(\frac{k}{l}\right)=\frac{k+l}{l}, T\left(\frac{k}{l}\right)=\frac{k}{k+l}$. Therefore, to prove that the quotient $\frac{n}{m}$, where $n, m \in \mathbb{N}$ are relatively prime, can be obtained from 1 we need to show that the pair $(1,1)$ can be transformed to the pair (n, m) using the operations $(k, l) \mapsto(k+l, l)$ and $(k, l) \mapsto(k, l+k)$. This is equivalent to showing that the pair (n, m) can be transformed, using a sequence of operations $(k, l) \mapsto(k-l, l)$ if $k>l$ and $(k, l) \mapsto(k, l-k)$ if $l>k$, to the pair $(1,1)$. But this sequence of operations is uniquely defined and, since n and m are relatively prime, always ends with $(1,1)$ (this is just the Euclidean algorithm). (This proves, by the way, that there is only one sequence of the operations T and S that produces the quotient $\frac{n}{m}$.)

Another solution. More formally, for any positive rational number $r=\frac{n}{m}$, written in the lowest terms (that is, with n and m relatively prime), define $C(r)=n+m$, and prove the assertion using the induction on
$C(r)$. The minimal value of $C(r)$ is 2 , which is only reached when $r=1$. Let $r=\frac{n}{m} \in \mathbb{Q}$, where $n \neq m$ and n and m are relatively prime. If $n>m$, put $s=\frac{n-m}{m}$; then $r=s+1$ and $C(s)=n<C(r)$. If $n<m$, put $s=\frac{n}{m-n}$; then $r=\frac{s}{s+1}$ and $C(s)=m<C(r)$. In both cases, by induction on $C(r), s$ can be obtained from 1 with the prescribed operations, and so can r.
5. Prove that any convex polygon of area S in the plane is contained in a rectangle of area $2 S$.

Solution. Let P be a convex polygon. Let A and B be the points of P at the maximum distance from each other. Let l_{1} and l_{2} be the lines orthogonal to the line $l=(A B)$ and passing through A and B respectively. Let C and D be the points of P, in the both half-planes to which l subdivides the plane, whose distance from l is maximal, and let m_{1}, m_{2} be the lines parallel to $(A B)$ passing through the points C and D respectively. Let R be the rectangle bounded by the lines $l_{1}, l_{2}, m_{1}, m_{2}$.

We claim that $P \subseteq R$, that is, all points of P lie between l_{1} and l_{2}, and between m_{1} and m_{2}. Indeed, if there is a point X of P not between l_{1} and l_{2}, say, on the other side from l_{1}, then $\operatorname{dist}(X, B)>\operatorname{dist}(A, B)$, which contradicts the choice of A, B. And if there is a point Y of P not between m_{1} and m_{2}, say, on the other side from m_{1}, then $\operatorname{dist}(Y, l)>\operatorname{dist}(C, l)$, which contradicts the choice of C.

Next, we claim that $\operatorname{area}(R) \leq 2 \operatorname{area}(P)$. Indeed, since P is convex, the triangles $\triangle A B C$ and $\triangle A B D$ are contained in P, so $\operatorname{area}(P) \geq \operatorname{area}(\triangle A B C)+\operatorname{area}(\triangle A B D)$. On the other hand, $\operatorname{area}(R)=|A B| \cdot(\operatorname{dist}(C, l)+\operatorname{dist}(D, l))=2(\operatorname{area}(\triangle A B C)+$ $\operatorname{area}(\triangle A B D))$.

6. Let $f: \mathbb{R} \longrightarrow(0, \infty)$ be a continuous periodic function having period 1 ; prove that $\int_{0}^{1} \frac{f(x) d x}{f\left(x+\frac{1}{2013}\right)} \geq 1$.

Solution. Let n be any positive integer; we will prove that $\int_{0}^{1} \frac{f(x) d x}{f\left(x+\frac{1}{n}\right)} \geq 1$. Define $g_{0}(x)=\frac{f(x)}{f\left(x+\frac{1}{n}\right)}$, and let $g_{k}(x)=g(x+k / n), k=1, \ldots, n-1$. Then $\prod_{k=0}^{n-1} g_{k}(x)=\prod_{k=0}^{n-1} \frac{f\left(x+\frac{k}{n}\right)}{f\left(x+\frac{k+1}{n}\right)}=\frac{f(x)}{f(x+1)}=1$, so, by the generalized arithmetic-geometric mean inequality, $\frac{1}{n} \sum_{k=0}^{n-1} g_{k}(x) \geq \sqrt[n]{\prod_{k=0}^{n-1} g_{k}(x)}=1$. Since, for any k, $\int_{0}^{1} g_{k}(x) d x=\int_{0}^{1} g_{0}(x) d x$, we get

$$
\int_{0}^{1} g_{0}(x) d x=\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1} g_{k}(x) d x=\int_{0}^{1}\left(\frac{1}{n} \sum_{k=0}^{n-1} g_{k}(x)\right) d x \geq \int_{0}^{1} 1 d x=1
$$

$\underline{\text { Another solution. We will now prove that } \int_{0}^{1} \frac{f(x) d x}{f(x+a)} \geq 1 \text { for any } a>0 \text { using Jensen's inequality (which says }}$ that for any integrable on $[0,1]$ function h and any convex function $\varphi, \int_{0}^{1} \varphi(h(x)) d x \geq \varphi\left(\int_{0}^{1} h(x) d x\right)$; in particular, $\left.\int_{0}^{1} e^{h(x)} d x \geq e^{\int_{0}^{1} h(x) d x}\right)$.

Take $h(x)=\log (f(x) / f(x+a))=\log f(x)-\log f(x+a)$; then $e^{h(x)}=\frac{f(x)}{f(x+a)}$, and $\int_{0}^{1} h(x) d x=$ $\int_{0}^{1} \log f(x) d x-\int_{0}^{1} \log f(x+a) d x=0$, since $\log f(x)$ is periodic with period 1 . Hence, by Jensen's inequality, $\int_{0}^{1} \frac{f(x) d x}{f(x+a)} \geq e^{0}=1$.

