
Solutions: 2002 Rasor-Bareis Prize Examination

1. Recall that binomial coefficient
(k

r

)

may be written as k!/(r!(k − r)!). The prime factorization of 2002 is
2 · 7 · 11 · 13. In order for an integer to be divisible by 2002, is is necessary and sufficient that it be divisible
by all four of these prime factors. First consider the prime 13: if it divides k!/(r!(k − r)!), then k ≥ 13. So
the first row is at least row 13. Next consider the prime 7 in row 13. If 0 ≤ r ≤ 13, then either r ≥ 7 so that
7 divides r! or r ≤ 6 so that (13 − r) ≥ 7 and 7 divides (13 − r)!. So every entry in row 13 has a factor of
7 in the denominator r!(13 − r)!, so the quotient 13!/(r!(13 − r)!) is not divisible by 7. And therefore not
divisible by 2002. Next consider row 14. Now there are two factors of 7 in the numerator 14!. As long as r
is not 0, 7, 14 there is only one factor of 7 in the denominator r!(14− r)!. If 4 ≤ r ≤ 10, then the primes 11
and 13 have one factor in the numerator and none in the denominator. So we only need to make sure our
entry is even:

(14
5

)

has 11 twos in the numerator and 10 twos in the denominator. So 2002 divides
(14

5

)

, and
row 14 is the first row in which this happens. [Actually,

(14
5

)

= 2002.]

2. Assume that the (orthogonal) projection of a body B onto a plane P is a disk D of radius r. Then the
projection of B onto any straight line L in P coincides with the projection of D onto L, and so is an interval
of length 2r. (Indeed, we may assume that P is the xy-plane and L is the x-axis; then our statement is
evident.)

Now, assume that Q is another plane such that the projection of B onto Q is a disk of radius s. If P
and Q are parallel, the projections of B onto P and Q are congruent, so r = s. If P and Q are not parallel,
let L be their line of intersection P ∩ Q. Then the projection of B onto L is an interval of length 2r and
simultaneously an interval of length 2s. So, again, r = s.

3. Let A be the lower left corner, and place it at the origin in the Cartesian plane, with AB = M and
AD = N . Assume the billiard ball moves with speed v. So the projection of the ball on the x-axis moves
from A to B and back with constant speed v

√
3/2, and the projection of the ball on the y-axis moves from

A to D and back with constant speed v/2. Suppose that the ball returns to the point A at some time T , the
x-projection having passed from A to B and back m times, and the y-projection from A to D and back n
times. Then one has 2mM = Tv

√
3/2 and 2nN = Tv/2. Dividing the first equation by the second one we

get
√

3 = (mM)/(nN), which is impossible since
√

3 is an irrational number. So, in fact, the ball can never
return to A.

Problem 4: see the Gordon solutions.

5. Answer: No. Proof. For an infinite sector S and R > 0, let l(S, R) denote the arc length of the intersection
of S with the circle of radius R centered at the origin. Then limR→∞ l(S,R)/R = α, where α is the angle of
S (measured in radians). Let S1, . . . , S2002 be our given infinite sectors with respective angles α1, . . . , α2002.
Then

lim
R→∞

1
R

2002
∑

k=1

l(Sk, R) =
2002
∑

k=1

lim
R→∞

l(Sk, R)
R

=
2002
∑

k=1

αk < 2π.

Hence, there exists R > 0 such that
∑2002

k=1 l(Sk, R) < 2πR, and therefore the circle of radius R centered at
the origin is not contained in S1 ∪ . . . ∪ S2002.

6. SOLUTION I
The equilateral triangle with vertices 0, 2002, and 2002u contains all the points of L. Its center, c =
(2002/3) + (2002/3)u (the average of its three vertices), is not one of the points of L since the imaginary
part of c is not an integer multiple of the imaginary part of u. Associate with each point of L its images
under the rotations about c through 120 and 240 degrees. Both rotations map L one-to-one onto itself. Thus
each point of L is a vertex of an equilateral triangle with center c and all three vertices in L, and L is the
disjoint union of such three-element sets. Since L has more than 2/3 of its points colored, at least one of
these three-element sets has all of its vertices colored.
SOLUTION II
Let S be the set of all equilateral triangles with vertices x, x + a, x + au, where all three are in L and a > 0
is an integer. For each triangle from S write its 3 vertices as a column, and place these columns beside each
other to form a 3 ×m rectangular table T , where m is the number of elements of S. Note that each point
from L occurs in T exactly 2002 times, so more than 2/3 of the elements of the table T are colored blue.
If each column of T had a non-blue point, at least 1/3 of elements of T would be non-blue, which would
be impossible. Hence, there is a column in T whose entries are all blue. The corresponding triangle is an
equilateral triangle with blue vertices.


