
Rasor-Bareis Solutions
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and this converges to 1. So our sequence is “squeezed” between two sequences with
limit 1, so it has limit 1.

NOTE: Many contestants tried to do this limit of a sum as a sum of limits. It
is not enough to show all terms kk/nn but the last go to 0, because the number of
terms goes to ∞.



2. Let Q be a convex quadrilateral in the plane. Show
that a line can be constructed, using straight-edge
and compass only, that divides Q into two regions
of equal area.

Label the vertices A,B,C, D in order. Draw
the diagonal line AC. Since Q is convex, vertices
B and D are on opposite sides of line AC.

Draw the line through B parallel to AC and
draw the line extending DC. Let E be the point
where these two lines intersect. These lines do
intersect as they are not parallel, since DC and
AC are not parallel.

Note that triangles ABC and AEC have the
same area, since they have the same base AC and
congruent altitudes from that base.

Construct the midpoint F of segment DE. Then
triangles AFD and AFE have the same area, since
they have congruent bases DF and FE and the
same altitude.

Now there are two cases, depending on whether
F lies between D and C or F lies between C and
E. If F lies between D and C (or even if F co-
incides with C), then the line AF is the required
line. Triangle AFD has the same area as triangle
AFE, which has area equal to the sum of the ar-
eas AFC and ACE, which in turn is equal to the
sum of the areas of AFC and ABC, or the area
of quadrilateral ABCF .

The other case, when F lies between C and E,
means that triangle ACD is less than half of the
total area of ABCD. In this case, repeat the con-
struction starting with the line through D parallel
to AC, then proceed as before with B and D in-
terchanged.



3. Let f be a real-valued function such that f(2003) = 2π and |f(x)−f(y)|2 ≤ |x−y|3
for all real numbers x and y. Compute f(2004).

From the given inequality, we get∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣ ≤ |x− y|1/2, x 6= y.

So if we fix x and let y → x, we conclude that the derivative f ′(x) exists and is
equal to 0. Since the derivative is zero everywhere, the function is constant. So
f(2004) = f(2003) = 2π.



4. Let P (x) be a nonconstant polynomial with integer coefficients. Is it possible that
P (n) is a prime number for all integers n?

Solution I. No, it is not possible. Assume P is a polynomial with integer
coefficients such that P (x) is prime for all integers x. The “constant term” of P (x)
is P (0), so it is prime, call it p. If x = kp is an integer multiple of p, then all the
terms in P (kp) except the constant term are divisible by p, so P (kp) is divisible by
p, and therefore (since it is supposed to be prime) equal to p. So, since P (x) has the
same value p for infinitely many x, we know that P is constant. [If you interpret
the problem to allow −p also to be called “prime”, then note that all values P (kp)
are divisible by p and prime, so all those values are either p or −p, so at least one of
these values is achieved infinitely many times, and again we conclude that P must
be constant.]

Solution II. Let a natural number n0 be such that for any m > n0 one has:
P (m+1) > P (m). (This is possible since our polynomial is non-constant and takes
positive values, so it is increasing from some point on). Take any m > n0 and let p be
a prime such that P (m) = p. We can see that P (m+p) is divisible by p by expanding
the powers of m+p. This, together with the fact that P (m+p) > P (m) = p, shows
that P (m + p) is not a prime number. Contradiction.



5. Given any selection of 1004 distinct integers from the set {1, 2, . . . , 2004}, show
that some three of the selected integers have the property that one is the sum of
the other two.

Solution I. Let m be the largest of the selected integers. This leaves 1003
selected integers in {1, . . . ,m − 1}. Consider the pairs of distinct integers in
{1, . . . ,m− 1} that add to m: these pairs are (1,m− 1), (2,m− 2), (3,m− 3), etc.
If m is even, then there are (m − 2)/2 pairs, and one number m/2 left over. If m
is odd, there are (m − 1)/2 pairs with nothing left over. There are 1003 selected
integers in {1, . . . ,m−1}, and 1003 = (2006−2)/2+1 > (m−2)/2+1 if m is even
and 1003 = (2007 − 1)/2 > (m − 1)/2 if m is odd, so at least one of the pairs has
both components selected. This pair, together with m, gives us a selected triple
such that one of the integers is the sum of the other two.

Solution II. Let A be the set of selected integers and let m be the largest
element in A. Let B = {m− a | a ∈ A, a 6= m}. Then |A| = 1004 and |B| = 1003.
Hence A ∩ B contains at least 3 elements, say a, b, and c. So, for some x, y, and
z ∈ A, we have

(∗) a = m− x, b = m− y, and c = m− z.

None of a, b, or c can equal m. Also, since the a, b, and c are distinct, only one
of them can equal m/2. Hence at least two(!) of the equations in (∗) involve three
distinct elements of A (these two equations can be the same equation written in
different order).



6. Let α, β, γ be the angles of a triangle. Show that cos α · cos β · cos γ ≤ 1
8
.

Solution I. (Submitted by Donald Seelig) First, if the triangle is obtuse then
cos α · cos β · cos γ < 0 and if the triangle is right, then cos α · cos β · cos γ = 0. So
assume the triangle is acute.

The altitude from the vertex with angle α divides the opposite side a into two
parts a1, a2. The altitude from the vertex with angle β divides the opposite side b
into two parts b1, b2. The altitude from the vertex with angle γ divides the opposite
side c into two parts c1, c2. From right triangle trigonometry, we get
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Then a1b1c1 = abc cos α cos β cos γ = a2b2c2, and algebraic manipulation gives us:
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Now note that for x > 0 we have x + 1/x ≥ 2 (this follows from (x− 1)2 ≥ 0), so
1

cos α cos β cos γ
≥ 2 + 2 + 2 + 2 = 8.

Solution II. Note that
cos γ = cos(π − (α + β)) = − cos(α + β),

2 cos α cos β = cos(α− β) + cos(α + β).
Hence:
8 cos α cos β cos γ − 1

= −4 cos(α + β)
[
cos(α + β) + cos(α− β)

]
−

[
cos2(α− β) + sin2(α− β)

]
= −

[
2 cos(α + β) + cos(α− β)

]2 − sin2(α− β) ≤ 0.

Solution III. For any real θ, the maximum of the function

f(x) = cos(x) cos(θ − x) =
1
2
[
cos(θ) + cos(2x− θ)

]
is reached when 2x − θ = 0, i.e. when x = θ − x. Thus, when α, β, γ are angles
of a triangle, for any fixed γ the maximum of cos(α) cos(β) cos(γ) = cos(α) cos(π−
γ − α) cos(γ) is reached when α = π − γ − α = β. Hence, the maximum of
F (α, β, γ) = cos(α) cos(β) cos(γ) is reached when α = β = γ = π/3. (If, say, β 6= γ,
then F (α, (β + γ)/2, (β + γ)/2) > F (α, β, γ).)


