Rasor-Bareis Solutions

1. Find the value of $\lim _{n \rightarrow+\infty} \frac{1+2^{2}+\cdots+n^{n}}{n^{n}}$ if it exists. If it does not exist, say why.

The limit is 1. First,

$$
\frac{1+2^{2}+\cdots+n^{n}}{n^{n}}>\frac{n^{n}}{n^{n}}=1
$$

On the other hand,

$$
\frac{1+2^{2}+\cdots+n^{n}}{n^{n}} \leq(n-2) \frac{n^{n-2}}{n^{n}}+\frac{n^{n-1}}{n^{n}}+\frac{n^{n}}{n^{n}}=\frac{n-2}{n^{2}}+\frac{1}{n}+1
$$

and this converges to 1 . So our sequence is "squeezed" between two sequences with limit 1 , so it has limit 1 .

NOTE: Many contestants tried to do this limit of a sum as a sum of limits. It is not enough to show all terms k^{k} / n^{n} but the last go to 0 , because the number of terms goes to ∞.
2. Let Q be a convex quadrilateral in the plane. Show that a line can be constructed, using straight-edge and compass only, that divides Q into two regions of equal area.

Label the vertices A, B, C, D in order. Draw the diagonal line $A C$. Since Q is convex, vertices B and D are on opposite sides of line $A C$.

Draw the line through B parallel to $A C$ and draw the line extending $D C$. Let E be the point where these two lines intersect. These lines do intersect as they are not parallel, since $D C$ and $A C$ are not parallel.

Note that triangles $A B C$ and $A E C$ have the same area, since they have the same base $A C$ and congruent altitudes from that base.

Construct the midpoint F of segment $D E$. Then triangles $A F D$ and $A F E$ have the same area, since they have congruent bases $D F$ and $F E$ and the same altitude.

Now there are two cases, depending on whether F lies between D and C or F lies between C and E. If F lies between D and C (or even if F coincides with C), then the line $A F$ is the required line. Triangle $A F D$ has the same area as triangle $A F E$, which has area equal to the sum of the areas $A F C$ and $A C E$, which in turn is equal to the sum of the areas of $A F C$ and $A B C$, or the area of quadrilateral $A B C F$.

The other case, when F lies between C and E, means that triangle $A C D$ is less than half of the total area of $A B C D$. In this case, repeat the construction starting with the line through D parallel to $A C$, then proceed as before with B and D interchanged.

3. Let f be a real-valued function such that $f(2003)=2 \pi$ and $|f(x)-f(y)|^{2} \leq|x-y|^{3}$ for all real numbers x and y. Compute $f(2004)$.

From the given inequality, we get

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq|x-y|^{1 / 2}, \quad x \neq y
$$

So if we fix x and let $y \rightarrow x$, we conclude that the derivative $f^{\prime}(x)$ exists and is equal to 0 . Since the derivative is zero everywhere, the function is constant. So $f(2004)=f(2003)=2 \pi$.
4. Let $P(x)$ be a nonconstant polynomial with integer coefficients. Is it possible that $P(n)$ is a prime number for all integers n ?

Solution I. No, it is not possible. Assume P is a polynomial with integer coefficients such that $P(x)$ is prime for all integers x. The "constant term" of $P(x)$ is $P(0)$, so it is prime, call it p. If $x=k p$ is an integer multiple of p, then all the terms in $P(k p)$ except the constant term are divisible by p, so $P(k p)$ is divisible by p, and therefore (since it is supposed to be prime) equal to p. So, since $P(x)$ has the same value p for infinitely many x, we know that P is constant. [If you interpret the problem to allow $-p$ also to be called "prime", then note that all values $P(k p)$ are divisible by p and prime, so all those values are either p or $-p$, so at least one of these values is achieved infinitely many times, and again we conclude that P must be constant.]

Solution II. Let a natural number n_{0} be such that for any $m>n_{0}$ one has: $P(m+1)>P(m)$. (This is possible since our polynomial is non-constant and takes positive values, so it is increasing from some point on). Take any $m>n_{0}$ and let p be a prime such that $P(m)=p$. We can see that $P(m+p)$ is divisible by p by expanding the powers of $m+p$. This, together with the fact that $P(m+p)>P(m)=p$, shows that $P(m+p)$ is not a prime number. Contradiction.
5. Given any selection of 1004 distinct integers from the set $\{1,2, \ldots, 2004\}$, show that some three of the selected integers have the property that one is the sum of the other two.

Solution I. Let m be the largest of the selected integers. This leaves 1003 selected integers in $\{1, \ldots, m-1\}$. Consider the pairs of distinct integers in $\{1, \ldots, m-1\}$ that add to m : these pairs are $(1, m-1),(2, m-2),(3, m-3)$, etc. If m is even, then there are $(m-2) / 2$ pairs, and one number $m / 2$ left over. If m is odd, there are $(m-1) / 2$ pairs with nothing left over. There are 1003 selected integers in $\{1, \ldots, m-1\}$, and $1003=(2006-2) / 2+1>(m-2) / 2+1$ if m is even and $1003=(2007-1) / 2>(m-1) / 2$ if m is odd, so at least one of the pairs has both components selected. This pair, together with m, gives us a selected triple such that one of the integers is the sum of the other two.

Solution II. Let A be the set of selected integers and let m be the largest element in A. Let $B=\{m-a \mid a \in A, a \neq m\}$. Then $|A|=1004$ and $|B|=1003$. Hence $A \cap B$ contains at least 3 elements, say a, b, and c. So, for some x, y, and $z \in A$, we have

$$
\begin{equation*}
a=m-x, b=m-y, \quad \text { and } \quad c=m-z . \tag{*}
\end{equation*}
$$

None of a, b, or c can equal m. Also, since the a, b, and c are distinct, only one of them can equal $m / 2$. Hence at least two(!) of the equations in $(*)$ involve three distinct elements of A (these two equations can be the same equation written in different order).
6. Let α, β, γ be the angles of a triangle. Show that $\cos \alpha \cdot \cos \beta \cdot \cos \gamma \leq \frac{1}{8}$.

Solution I. (Submitted by Donald Seelig) First, if the triangle is obtuse then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma<0$ and if the triangle is right, then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma=0$. So assume the triangle is acute.

The altitude from the vertex with angle α divides the opposite side a into two parts a_{1}, a_{2}. The altitude from the vertex with angle β divides the opposite side b into two parts b_{1}, b_{2}. The altitude from the vertex with angle γ divides the opposite side c into two parts c_{1}, c_{2}. From right triangle trigonometry, we get

$$
\cos \alpha=\frac{b_{1}}{c}=\frac{c_{2}}{b}, \quad \cos \beta=\frac{a_{2}}{c}=\frac{c_{1}}{a}, \quad \cos \gamma=\frac{b_{2}}{a}=\frac{a_{1}}{b} .
$$

Then $a_{1} b_{1} c_{1}=a b c \cos \alpha \cos \beta \cos \gamma=a_{2} b_{2} c_{2}$, and algebraic manipulation gives us:

$$
\frac{1}{\cos \alpha \cos \beta \cos \gamma}=2+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}+\frac{b_{2}}{b_{1}}+\frac{b_{1}}{b_{2}}+\frac{c_{2}}{c_{1}}+\frac{c_{1}}{c_{2}} .
$$

Now note that for $x>0$ we have $x+1 / x \geq 2$ (this follows from $(x-1)^{2} \geq 0$), so

$$
\frac{1}{\cos \alpha \cos \beta \cos \gamma} \geq 2+2+2+2=8
$$

Solution II. Note that

$$
\begin{aligned}
\cos \gamma & =\cos (\pi-(\alpha+\beta))=-\cos (\alpha+\beta) \\
2 \cos \alpha \cos \beta & =\cos (\alpha-\beta)+\cos (\alpha+\beta)
\end{aligned}
$$

Hence:
$8 \cos \alpha \cos \beta \cos \gamma-1$

$$
\begin{aligned}
& =-4 \cos (\alpha+\beta)[\cos (\alpha+\beta)+\cos (\alpha-\beta)]-\left[\cos ^{2}(\alpha-\beta)+\sin ^{2}(\alpha-\beta)\right] \\
& =-[2 \cos (\alpha+\beta)+\cos (\alpha-\beta)]^{2}-\sin ^{2}(\alpha-\beta) \leq 0
\end{aligned}
$$

Solution III. For any real θ, the maximum of the function

$$
f(x)=\cos (x) \cos (\theta-x)=\frac{1}{2}[\cos (\theta)+\cos (2 x-\theta)]
$$

is reached when $2 x-\theta=0$, i.e. when $x=\theta-x$. Thus, when α, β, γ are angles of a triangle, for any fixed γ the maximum of $\cos (\alpha) \cos (\beta) \cos (\gamma)=\cos (\alpha) \cos (\pi-$ $\gamma-\alpha) \cos (\gamma)$ is reached when $\alpha=\pi-\gamma-\alpha=\beta$. Hence, the maximum of $F(\alpha, \beta, \gamma)=\cos (\alpha) \cos (\beta) \cos (\gamma)$ is reached when $\alpha=\beta=\gamma=\pi / 3$. (If, say, $\beta \neq \gamma$, then $F(\alpha,(\beta+\gamma) / 2,(\beta+\gamma) / 2)>F(\alpha, \beta, \gamma)$.)

