
Rasor-Bareis solutions

1. Define a0 = 1 and an+1 = an/(1 + nan). Determine a2007.

Solution I.
Define bn = 1

an
, n = 0, 1, 2, . . . Then the numbers bn satisfy the recursive formula

bn+1 =
1

an+1
=

1 + nan

an
=

1
an

+ n = bn + n.

Hence, for any n, bn = 1+0+1+2+ . . .+n−1 = 1+ n(n−1)
2 , and an = 1

1+n(n−1)/2 .
In particular, a2007 = 1

2013022 .

Solution II.
We will prove by induction that an = 1

1+n(n−1)/2 for all n. This is so for n = 0,
and if this holds for some n then

an+1 =
an

1 + nan
=

1
1+n(n−1)/2

1 + n 1
1+n(n−1)/2

=
1

1 + n(n−1)
2 + n

=
1

1 + (n+1)n
2

,

thus it holds for n + 1.



RASOR–BAREIS SOLUTIONS

2. Show that for any integer n ≥ 6, a square in the plane can be dissected into n
squares.

Observe first that if a square S is dissected into n squares S1, S2, . . . , Sn, then
replacing Sn by four congruent squares Sn1, Sn2, Sn3, Sn4 creates a partition into
n + 3 squares. So it is enough to show that S can be dissected into 6, 7, and 8
squares. This can be done, for example, as follows:

Note that the picture on the RB sheet gives another dissection into 8 squares.
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3. Find

lim
n→∞

(
1
n

+
1

n + 1
+ · · ·+ 1

2n

)
.

Solution I.
Represent

1
n

+
1

n + 1
+

1
n + 2

+ . . . +
1
2n

=
1
n

+
1
n

(
1

1 + 1
n

+
1

1 + 2
n

+ . . . +
1

1 + n
n

)
.

Note that

Ln =
1
n

(
1

1 + 1
n

+
1

1 + 2
n

+ . . . +
1

1 + n
n

)
is (the lower) Riemann sum of the function 1

1+x on the interval [0, 1] corresponding

to the partition
{
0, 1

n , 2
n , . . . , 1

}
of this interval. Hence, limn→∞ Ln =

∫ 1

0
dx

1+x =
log 2. Since limn→∞

1
n = 0, we obtain limn→∞

1
n + 1

n+1 + 1
n+2 + . . . + 1

2n = log 2.

Solution II.
Let Hn = 1 + 1

2 + . . . + 1
n , n = 1, 2, . . . It is well known(?) (and/or can be easily

proved!) that the sequence Hn − log n has a finite limit γ. (γ is called Euler’s
constant , and is approximately equal 0.577.) We therefore have

lim
n→∞

1
n

+
1

n + 1
+

1
n + 2

+ . . . +
1
2n

= lim
n→∞

(H2n −Hn−1)

= lim
n→∞

(
(H2n − log 2n)− (Hn−1 − log(n− 1)) + (log 2n− log(n− 1))

)
= lim

n→∞
(H2n − log 2n)− lim

n→∞
(Hn−1 − log(n− 1)) + lim

n→∞

(
log 2n− log(n− 1)

)
= γ − γ + lim

n→∞
log 2n

n−1 = log 2.
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4. Show that given any 1004 elements from {2, 3, . . . , 2007}, some two are relatively
prime.

There is an integer n such that both n and n + 1 are chosen. (Indeed, if each
chosen integer were followed by a non-chosen one, then the total number of elements
in the set {2, 3, . . . , 2007} would be ≥ 1004+1003 > 2006.) This solves the problem
since n and n + 1 cannot have a common divisor different from ±1.
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5. Determine the largest constant k > 0 such that for all complex numbers z1, z2, z3

with |z1| = |z2| = |z3| = 1, one has

|z1z2 + z2z3 + z3z1| ≥ k |z1 + z2 + z3|.

Observe that the condition |z1| = |z2| = |z3| = 1 implies that |z1z2z3| = 1 and
that z−1

i = z̄i, i = 1, 2, 3. We claim that
∣∣z1z2 + z2z3 + z3z1

∣∣ = |z1 + z2 + z3|.
Indeed,∣∣z1z2 + z2z3 + z3z1

∣∣ =
∣∣∣z1z2z3

z3
+

z1z2z3

z2
+

z1z2z3

z1

∣∣∣ = |z1z2z3|
∣∣z−1

3 + z−1
2 + z−1

1

∣∣
=

∣∣z̄3 + z̄2 + z̄1

∣∣ =
∣∣ z3 + z2 + z1

∣∣ = |z1 + z2 + z3|.

It follows that the largest k satisfying the inequality
∣∣z1z2 + z2z3 + z3z1

∣∣ ≥ k|z1 +
z2 + z3| for all z1, z2, z3 of modulus 1 is k = 1.
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6. Prove that if a parallelogram is inscribed into a circle (all four vertices on the circle),
then it must be a rectangle.

Solution I
Call the parallelogram in question ABCD and the circle K. By some combina-

tion of rotating, translating, reflecting, and scaling K, we may assume without loss
of generality that K is centered at the origin and has radius one, and that side AB
is vertical with A lying above B. Denote by a the common x-coordinate of A and
B. Then the length of AB is 2

√
1− a2. Since ABCD is a parallelogram, CD is

parallel to AB. (and D lies above C) Denote by b the common x-coordinate of C

and D. Then the length of CD is 2
√

1− b2. Since ABCD is a parallelogram, the
lengths of AB and CD must be equal, implying that a2 = b2 or that a = ±b. If
a = b, then A = D and B = C, a contradiction. Therefore, b = −a, the common
y-coordinate of A and D is

√
1− a2, and the common y-coordinate of B and C is

−
√

1− a2, implying that ABCD is a rectangle.

Solution II
Since AB and CD are chords of K of equal length, the associated arcs

_

AB and
_

CD have equal length as well. This implies that the arcs subtended by angles
∠ABC and ∠BCD have equal length, which implies that ∠ABC ∼= ∠BCD. Since
∠ABC and ∠BCD are adjacent angles of a parallelogram, they sum to 180 deg,
and so are both right angles. This implies that ABCD is a rectangle.

Solution III
The angles ∠ABC and ∠ADC, being on opposite sides of the chord AC, are

supplementary. They are also equal, being opposite angles of a parallelogram.
Therefore, both are right angles. Similarly, angles A and C are right angles.


