Rasor-Bareis solutions

1. Define $a_{0}=1$ and $a_{n+1}=a_{n} /\left(1+n a_{n}\right)$. Determine a_{2007}.

Solution I.

Define $b_{n}=\frac{1}{a_{n}}, n=0,1,2, \ldots$ Then the numbers b_{n} satisfy the recursive formula

$$
b_{n+1}=\frac{1}{a_{n+1}}=\frac{1+n a_{n}}{a_{n}}=\frac{1}{a_{n}}+n=b_{n}+n
$$

Hence, for any $n, b_{n}=1+0+1+2+\ldots+n-1=1+\frac{n(n-1)}{2}$, and $a_{n}=\frac{1}{1+n(n-1) / 2}$. In particular, $a_{2007}=\frac{1}{2013022}$.

Solution II.
We will prove by induction that $a_{n}=\frac{1}{1+n(n-1) / 2}$ for all n. This is so for $n=0$, and if this holds for some n then

$$
a_{n+1}=\frac{a_{n}}{1+n a_{n}}=\frac{\frac{1}{1+n(n-1) / 2}}{1+n \frac{1}{1+n(n-1) / 2}}=\frac{1}{1+\frac{n(n-1)}{2}+n}=\frac{1}{1+\frac{(n+1) n}{2}}
$$

thus it holds for $n+1$.
2. Show that for any integer $n \geq 6$, a square in the plane can be dissected into n squares.

Observe first that if a square S is dissected into n squares $S_{1}, S_{2}, \ldots, S_{n}$, then replacing S_{n} by four congruent squares $S_{n 1}, S_{n 2}, S_{n 3}, S_{n 4}$ creates a partition into $n+3$ squares. So it is enough to show that S can be dissected into 6,7 , and 8 squares. This can be done, for example, as follows:

Note that the picture on the $R B$ sheet gives another dissection into 8 squares.
3. Find

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2 n}\right)
$$

Solution I.
Represent

$$
\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}=\frac{1}{n}+\frac{1}{n}\left(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\ldots+\frac{1}{1+\frac{n}{n}}\right)
$$

Note that

$$
L_{n}=\frac{1}{n}\left(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\ldots+\frac{1}{1+\frac{n}{n}}\right)
$$

is (the lower) Riemann sum of the function $\frac{1}{1+x}$ on the interval $[0,1]$ corresponding to the partition $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$ of this interval. Hence, $\lim _{n \rightarrow \infty} L_{n}=\int_{0}^{1} \frac{d x}{1+x}=$ $\log 2$. Since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, we obtain $\lim _{n \rightarrow \infty} \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}=\log 2$.

Solution II.
Let $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}, n=1,2, \ldots$ It is well known(?) (and/or can be easily proved!) that the sequence $H_{n}-\log n$ has a finite limit γ. (γ is called Euler's constant, and is approximately equal 0.577 .) We therefore have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n} \\
& \quad=\lim _{n \rightarrow \infty}\left(H_{2 n}-H_{n-1}\right) \\
& \quad=\lim _{n \rightarrow \infty}\left(\left(H_{2 n}-\log 2 n\right)-\left(H_{n-1}-\log (n-1)\right)+(\log 2 n-\log (n-1))\right) \\
& \quad=\lim _{n \rightarrow \infty}\left(H_{2 n}-\log 2 n\right)-\lim _{n \rightarrow \infty}\left(H_{n-1}-\log (n-1)\right)+\lim _{n \rightarrow \infty}(\log 2 n-\log (n-1)) \\
& \quad=\gamma-\gamma+\lim _{n \rightarrow \infty} \log \frac{2 n}{n-1}=\log 2
\end{aligned}
$$

4. Show that given any 1004 elements from $\{2,3, \ldots, 2007\}$, some two are relatively prime.

There is an integer n such that both n and $n+1$ are chosen. (Indeed, if each chosen integer were followed by a non-chosen one, then the total number of elements in the set $\{2,3, \ldots, 2007\}$ would be $\geq 1004+1003>2006$.) This solves the problem since n and $n+1$ cannot have a common divisor different from ± 1.
5. Determine the largest constant $k>0$ such that for all complex numbers z_{1}, z_{2}, z_{3} with $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$, one has

$$
\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right| \geq k\left|z_{1}+z_{2}+z_{3}\right| .
$$

Observe that the condition $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ implies that $\left|z_{1} z_{2} z_{3}\right|=1$ and that $z_{i}^{-1}=\bar{z}_{i}, i=1,2,3$. We claim that $\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right|=\left|z_{1}+z_{2}+z_{3}\right|$. Indeed,

$$
\begin{aligned}
\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right| & =\left|\frac{z_{1} z_{2} z_{3}}{z_{3}}+\frac{z_{1} z_{2} z_{3}}{z_{2}}+\frac{z_{1} z_{2} z_{3}}{z_{1}}\right|=\left|z_{1} z_{2} z_{3}\right|\left|z_{3}^{-1}+z_{2}^{-1}+z_{1}^{-1}\right| \\
& =\left|\bar{z}_{3}+\bar{z}_{2}+\bar{z}_{1}\right|=\left|\overline{z_{3}+z_{2}+z_{1}}\right|=\left|z_{1}+z_{2}+z_{3}\right|
\end{aligned}
$$

It follows that the largest k satisfying the inequality $\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right| \geq k \mid z_{1}+$ $z_{2}+z_{3} \mid$ for all z_{1}, z_{2}, z_{3} of modulus 1 is $k=1$.

RASOR-BAREIS SOLUTIONS

6. Prove that if a parallelogram is inscribed into a circle (all four vertices on the circle), then it must be a rectangle.

Solution I

Call the parallelogram in question $A B C D$ and the circle K. By some combination of rotating, translating, reflecting, and scaling K, we may assume without loss of generality that K is centered at the origin and has radius one, and that side $A B$ is vertical with A lying above B. Denote by a the common x-coordinate of A and B. Then the length of $A B$ is $2 \sqrt{1-a^{2}}$. Since $A B C D$ is a parallelogram, $C D$ is parallel to $A B$. (and D lies above C) Denote by b the common x-coordinate of C and D. Then the length of $C D$ is $2 \sqrt{1-b^{2}}$. Since $A B C D$ is a parallelogram, the lengths of $A B$ and $C D$ must be equal, implying that $a^{2}=b^{2}$ or that $a= \pm b$. If $a=b$, then $A=D$ and $B=C$, a contradiction. Therefore, $b=-a$, the common y-coordinate of A and D is $\sqrt{1-a^{2}}$, and the common y-coordinate of B and C is $-\sqrt{1-a^{2}}$, implying that $A B C D$ is a rectangle.

Solution II

Since $A B$ and $C D$ are chords of K of equal length, the associated $\operatorname{arcs} \overparen{A B}$ and $\widehat{C D}$ have equal length as well. This implies that the arcs subtended by angles $\angle A B C$ and $\angle B C D$ have equal length, which implies that $\angle A B C \cong \angle B C D$. Since $\angle A B C$ and $\angle B C D$ are adjacent angles of a parallelogram, they sum to 180 deg , and so are both right angles. This implies that $A B C D$ is a rectangle.

Solution III
The angles $\angle A B C$ and $\angle A D C$, being on opposite sides of the chord $A C$, are supplementary. They are also equal, being opposite angles of a parallelogram. Therefore, both are right angles. Similarly, angles A and C are right angles.

