Rasor-Bareis solutions

1. Solve: $\sin ^{2008} x+\cos ^{2008} x=1$.

We know $\sin ^{2} x+\cos ^{2} x=1$. But if $0<|u|<1$, then $u^{2008}<u^{2}$. So if either $\sin ^{2} x$ or $\cos ^{2} x$ is not equal to 0 or 1 , we get

$$
\sin ^{2008} x+\cos ^{2008} x<\sin ^{2} x+\cos ^{2008} x<\sin ^{2} x+\cos ^{2} x=1
$$

so $\sin ^{2008} x+\cos ^{2008} x<1$. Therefore: if $\sin ^{2008} x+\cos ^{2008} x=1$, then one of $|\sin x|$ or $|\cos x|$ is 1 , and so the other is 0 . These solutions are $x=n \pi / 2$ where n is an integer.
2. Let three adjacent squares be given, as in the diagram.

Show that $\angle A C B+\angle A E B+\angle A G B=90^{\circ}$.

Add another row of squares as shown. Then $\angle A E B=\angle E^{\prime} A F$ and $\angle A G B=$ $\angle G A H$. Since $A E^{\prime}$ and $G E^{\prime}$ have the same length and are orthogonal, it follows that $\triangle G A E^{\prime}$ is an isosceles right triangle, so $\angle G A E^{\prime}$ is 45 degrees.

Triangles $A C E$ and $G C A$ are similar because the side lengths of $A C E$ are $\sqrt{2}, 1$, and $\sqrt{5}$, while those of $G C A$ are $2, \sqrt{2}$, and $\sqrt{10}$. Hence $\angle A G B=\angle C A E$. Thus, $\angle A E B+\angle A G B=\angle E A F+\angle C A E=45^{\circ}$.
3. Note that 2 can be written as a sum of the reciprocals of four distinct positive integers:

$$
2=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{6} .
$$

Can 2 be written as a sum of the reciprocals of 2008 distinct positive integers:

$$
2=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\cdots+\frac{1}{n_{2008}} \quad ?
$$

I claim, in fact, 2 can be written as a sum of the reciprocals of k distinct positive integers for any $k \geq 4$. Indeed,

$$
2=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, \quad 2=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18},
$$

and the last term $1 /(2 N)$ can always be replaced by $1 /(3 N)+1 /(6 N)$.
4. Find all rational functions $f(x)$ such that $f\left(x^{2}-x\right)=f\left(x^{2}+x\right)$ for all real x.

The constant functions f are exactly the rational functions satisfying this condition. Clearly constant functions do satisfy $f\left(x^{2}-x\right)=f\left(x^{2}+x\right)$.

Conversely, assume f is a rational function that satisfies $f\left(x^{2}-x\right)=f\left(x^{2}+x\right)$. Note $x^{2}-x=(x-1) x$ and $x^{2}+x=x(x+1)$. So $f(0 \cdot 1)=f(1 \cdot 2)=f(2 \cdot 3)=\cdots$. The rational function f takes the value $f(0)$ infinitely many times, so f is constant.

RASOR-BAREIS SOLUTIONS

5. Let $x_{1}, x_{2}, \cdots, x_{n}$ be distinct integers >1. Prove:

$$
\left(1-\frac{1}{x_{1}^{2}}\right)\left(1-\frac{1}{x_{2}^{2}}\right) \cdots\left(1-\frac{1}{x_{n}^{2}}\right)>\frac{1}{2}
$$

$$
\begin{aligned}
(1- & \left.\frac{1}{x_{1}^{2}}\right)\left(1-\frac{1}{x_{1}^{2}}\right) \cdots\left(1-\frac{1}{x_{1}^{2}}\right) \geq\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{(n+1)^{2}}\right) \\
& =\left(\frac{2^{2}-1}{2^{2}}\right)\left(\frac{3^{2}-1}{3^{2}}\right) \cdots\left(\frac{(n+1)^{2}-1}{(n+1)^{2}}\right) \\
& =\frac{(2-1)(2+1)}{2^{2}} \frac{(3-1)(3+1)}{3^{2}} \frac{(4-1)(4+1)}{4^{2}} \cdots \frac{(n+1-1)(n+1+1)}{(n+1)^{2}} \\
& =\frac{1}{2} \cdot \frac{n+2}{n+1}>\frac{1}{2} .
\end{aligned}
$$

RASOR-BAREIS SOLUTIONS

6. Suppose $x_{1}>x_{2}>\ldots$ is a decreasing sequence of real numbers. Suppose

$$
x_{1}+\frac{x_{4}}{2}+\frac{x_{9}}{3}+\cdots+\frac{x_{n^{2}}}{n}<1
$$

for all n. Show that

$$
x_{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\cdots+\frac{x_{n}}{n}<3 .
$$

We will use these inequalities:

$$
\begin{aligned}
x_{1}, x_{2}, x_{3} & \leq x_{1} \\
x_{4}, \cdots, x_{8} & \leq x_{4} \\
x_{9}, \cdots, x_{15} & \leq x_{9} \\
x_{16}, \cdots, x_{24} & \leq x_{16}
\end{aligned}
$$

and so on. Also, we will use the inequality

$$
\begin{equation*}
\frac{1}{n^{2}}+\frac{1}{n^{2}+1}+\cdots+\frac{1}{(n+1)^{2}-1}<\frac{3}{n} \tag{*}
\end{equation*}
$$

This is true because there are $2 n+1$ terms, all $<1 / n^{2}$ (except one term equal to $1 / n^{2}$) and

$$
\frac{2 n+1}{n^{2}}=\frac{2}{n}+\frac{1}{n^{2}} \leq \frac{3}{n}
$$

Combining these inequalities, we get

$$
\begin{aligned}
x_{1}+\frac{x_{2}}{2} & +\cdots+\frac{x_{n}}{n} \\
< & \left(x_{1}+\frac{x_{1}}{2}+\frac{x_{1}}{3}\right)+\left(\frac{x_{4}}{4}+\frac{x_{4}}{5}+\cdots+\frac{x_{4}}{8}\right) \\
& +\cdots+x_{k^{2}}\left(\frac{1}{k^{2}}+\frac{1}{k^{2}+1}+\cdots+\frac{1}{(k+1)^{2}-1}\right)+\cdots \\
& <x_{1}(3)+x_{2}\left(\frac{3}{2}\right)+\cdots+x_{k}\left(\frac{3}{k}\right)+\cdots \leq 3 .
\end{aligned}
$$

