
Rasor-Bareis solutions

1. Solve: sin2008 x + cos2008 x = 1.

We know sin2 x + cos2 x = 1. But if 0 < |u| < 1, then u2008 < u2. So if either
sin2 x or cos2 x is not equal to 0 or 1, we get

sin2008 x + cos2008 x < sin2 x + cos2008 x < sin2 x + cos2 x = 1,

so sin2008 x + cos2008 x < 1. Therefore: if sin2008 x + cos2008 x = 1, then one of
| sinx| or | cosx| is 1, and so the other is 0. These solutions are x = nπ/2 where n
is an integer.
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2. Let three adjacent squares be given, as in the diagram.
Show that ∠ACB + ∠AEB + ∠AGB = 90◦.

Add another row of squares as shown. Then ∠AEB = ∠E′AF and ∠AGB =
∠GAH. Since AE′ and GE′ have the same length and are orthogonal, it follows
that △GAE′ is an isosceles right triangle, so ∠GAE′ is 45 degrees.

Triangles ACE and GCA are similar because the side lengths of ACE are
√

2, 1,
and

√
5, while those of GCA are 2,

√
2, and

√
10. Hence ∠AGB = ∠CAE. Thus,

∠AEB + ∠AGB = ∠EAF + ∠CAE = 45◦.
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3. Note that 2 can be written as a sum of the reciprocals of four distinct positive
integers:

2 =
1

1
+

1

2
+

1

3
+

1

6
.

Can 2 be written as a sum of the reciprocals of 2008 distinct positive integers:

2 =
1

n1

+
1

n2

+ · · ·+ 1

n2008

?

I claim, in fact, 2 can be written as a sum of the reciprocals of k distinct positive
integers for any k ≥ 4. Indeed,

2 =
1

1
+

1

2
+

1

3
+

1

6
, 2 =

1

1
+

1

2
+

1

3
+

1

9
+

1

18
,

and the last term 1/(2N) can always be replaced by 1/(3N) + 1/(6N).
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4. Find all rational functions f(x) such that f(x2 − x) = f(x2 + x) for all real x.

The constant functions f are exactly the rational functions satisfying this con-
dition. Clearly constant functions do satisfy f(x2 − x) = f(x2 + x).

Conversely, assume f is a rational function that satisfies f(x2 − x) = f(x2 + x).
Note x2 −x = (x−1)x and x2 +x = x(x+1). So f(0 ·1) = f(1 ·2) = f(2 ·3) = · · · .
The rational function f takes the value f(0) infinitely many times, so f is constant.
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5. Let x1, x2, · · · , xn be distinct integers > 1. Prove:

(

1 − 1

x2

1

) (

1 − 1

x2

2

)

· · ·
(

1 − 1

x2
n

)

>
1

2
.

(

1 − 1

x2

1

) (

1 − 1

x2

1

)

· · ·
(

1 − 1

x2

1

)

≥
(

1 − 1

22
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1 − 1

32

)

· · ·
(

1 − 1

(n + 1)2

)

=

(

22 − 1

22

) (
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· · ·
(
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(n + 1)2

)

=
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22
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32
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42
· · · (n + 1 − 1)(n + 1 + 1)
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=
1

2
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>

1

2
.
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6. Suppose x1 > x2 > . . . is a decreasing sequence of real numbers. Suppose

x1 +
x4

2
+

x9

3
+ · · ·+ xn2

n
< 1

for all n. Show that
x1 +

x2

2
+

x3

3
+ · · ·+ xn

n
< 3.

We will use these inequalities:

x1, x2, x3 ≤ x1,

x4, · · · , x8 ≤ x4,

x9, · · · , x15 ≤ x9,

x16, · · · , x24 ≤ x16,

and so on. Also, we will use the inequality

(∗) 1

n2
+

1

n2 + 1
+ · · ·+ 1

(n + 1)2 − 1
<

3

n
.

This is true because there are 2n + 1 terms, all < 1/n2 (except one term equal to
1/n2) and

2n + 1

n2
=

2

n
+

1

n2
≤ 3

n
.

Combining these inequalities, we get

x1 +
x2

2
+ · · ·+ xn

n

<
(

x1 +
x1

2
+

x1

3

)

+
(x4

4
+

x4

5
+ · · ·+ x4

8

)

+ · · ·+ xk2

(

1

k2
+

1

k2 + 1
+ · · · + 1

(k + 1)2 − 1

)

+ · · ·

< x1(3) + x2

(

3

2

)

+ · · ·+ xk

(

3

k

)

+ · · · ≤ 3.


