
Solutions to 2013 Rasor-Bareis Prize examination problems

1. Consider an infinite arithmetical progression of positive integers. Prove that there are infinitely many
terms in this progression the sum of whose decimal digits is the same.

Solution. Let a be the base and b be the step of an arithmetic progression S, so that S has the form
(a, a + b, a + 2b, . . .). Let the decimal expansion of a be ak . . . a2a1 and the decimal expansion of b be
bl . . . b2b1. Then the elements a+10kb, a+10k+1b, a+10k+2b, . . . of S have expansions bl . . . b2b1ak . . . a2a1,
bl . . . b2b10ak . . . a2a1, bl . . . b2b100ak . . . a2a1, . . ., whose sums of digits are all equal to

∑k
i=1 ai +

∑l
j=1 bj .

2. The integer points in the plane are colored with 2013 different colors. Prove that there is a rectangle
{(n1,m1), (n2,m1), (n1,m2), (n2,m2)} whose vertices have the same color.

Solution. Consider the columns C1 = {1}×{1, . . . , 2014}, C2 = {2}×{1, . . . , 2014}, C3 = {3}×{1, . . . , 2014},
. . . of height 2014.
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Since there are only finitely many different colorings of a set of 2014 points, among (infinitely many) columns
C1, C2, . . . there are two (in fact, infinitely many) having identical colorings; let these be the columns Cn1

and Cn2
. Among 2014 integer points of the column Cn1

there are two having the same color; let these be the
m1th and the m2th points. Then the points (n1,m1), (n2,m1), (n2,m2), (n1,m2) all have the same color.

3. Suppose that I1, . . . , In are subintervals of [0, 1] such that
∑n

i=1 |Ii| ≥ 2013 (where |I| denotes the length
of an interval I). Prove that there exists a point x ∈ [0, 1] that belongs to at least 2013 of the intervals Ii.

Solution. Let {a0, a1, . . . , ak}, with 0 ≤ a0 < a1 < . . . < ak ≤ 1, be the set of the endpoints of the intervals
I1, . . . , In, so that each interval Ii has the form [aj , al] for some j < l. Let J1 = [a0, a1], J2 = [a1, a2], . . .,

Jk = [ak−1, ak], then
∑k

j=1 |Jj | ≤ 1 and each of Ii is a union of some of the intervals Jj . (We assume w.l.o.g.
that the intervals Ii are closed.) For each j = 1, . . . , k let mj be the number of intervals Ii that contain the

subinterval Jj ; then
∑n

i=1 |Ii| =
∑n

i=1

∑

j:Jj⊆Ii
|Jj | =

∑k
j=1

∑

i:Ii⊇Jj
|Jj | =

∑k
j=1 mj |Jj |. If mj < 2013 for

all j, then
∑k

j=1 mj |Jj | < 2013
∑k

j=1 |Jj | ≤ 2013, which contradicts the assumption; thus mj ≥ 2013 for
some j. This means that every point of the interval Jj is contained in ≥ 2013 of the intervals Ii.

Another solution. For each i let χi be the indicator function of the interval Ii, χi(x) = 1 if x ∈ Ii and

χi(x) = 0 if x 6∈ Ii. Then, for every i,
∫ 1

0
χi(x) dx = |Ii|. Let f =

∑n
i=1 χi, then for every x ∈ [0, 1],

f(x) is the number of intervals Ii that contain x. If f(x) < 2013 for all x, then
∫ 1

0
f(x) dx < 2013; but

∫ 1

0
f(x) dx =

∑n
i=1

∫ 1

0
χi(x) dx =

∑n
i=1 |Ii| ≥ 2013, contradiction. Hence, there exists x ∈ [0, 1] such that

f(x) ≥ 2013.

4. A point inside a regular 6-gon is connected by straight line segments with the vertices, forming six
triangles, which are alternately colored black and white. Prove that the sum of the areas of the black triangles
is equal to the sum of the areas of the white triangles.
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Solution. Call the point inside the 6-gon O, and let a be the length
of the sides of the 6-gon. Let B be the sum of the areas of the black
triangles and W be the sum of the areas of the white triangles. Extend
the bases of the black triangles to get an equilateral triangle △ABC
with sides of length 3a. Draw the perpendicular segments from O to the
sides of △ABC; let the lengths of these segments be l1, l2, and l3. Then
B = 1

2a(l1 + l2 + l3). a

a ab
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On the other hand, 1
23a(l1 + l2 + l3) is the sum of the areas of the

triangles △AOB, △BOC, and △COA, that is, the area of the triangle
△ABC. Hence, B = 1

3A, where A is the area of an equilateral triangle
with sides of length 3a. In the same way, W = 1

3A, so B = W .
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5. If x + x−1 is an integer, prove that x2013 + x−2013 is also an integer.

Solution. Put y = x + x−1. For every integer n ≥ 0, define Pn = xn + x−n. Then for any n, yPn =
xn+1 + x−n+1 + xn−1 + x−n−1 = Pn−1 + Pn+1. Therefore, the sequence (Pn) satisfies the recurrent equation
Pn+1 = yPn − Pn−1 with the initial conditions P0 = 2 and P1 = y. Hence, if y is an integer, Pn are integer
for all n by induction on n.
Remark. It also follows that for all n, Pn is a polynomial function of y with integer coefficients. The polynomial

Tn(y) = Pn(2y)/2 is called the n-th Chebychev polynomial of the first kind.

Another solution. In the notation above, for any n ∈ N, using the binomial formula and collecting the
symmetric terms we get

yn = (x + x−1)n = xn +
(

n
1

)

xn−1x−1 +
(

n
2

)

xn−2x−2 + . . . +
(

n
n−2

)

x2x2−n +
(

n
n−1

)

x1x1−n + x−n

= (xn + x−n) +
(

n
1

)

(xn−2 + x2−n) +
(

n
2

)

(xn−4 + x4−n) + . . . +

{
(

n
k

)

if n = 2k
(

n
k

)

(x + x−1) if n = 2k + 1

= Pn +
(

n
1

)

Pn−2 +
(

n
2

)

Pn−4 + . . . +

{
(

n
k

)

if n = 2k
(

n
k

)

P1 if n = 2k + 1.

Thus, Pn is a linear combination of yn, 1, P1, . . . , Pn−1 with integer coefficients, and if y is an integer, then
Pn is integer by induction on n.

6. Let f : R −→ (0,∞) be a continuous periodic function having period 1; prove that
∫ 1

0
f(x)dx

f(x+1/2) ≥ 1.

Solution. Let g(x) = f(x)
f(x+1/2) . For any x ∈ R and y = x + 1/2 we have g(y) = f(y)

f(y+1/2) = f(x+1/2)
f(x+1) =

f(x+1/2)
f(x) = 1

g(x) . So,

∫ 1

0

g(x) dx =
1

2

(

∫ 1

0

g(x) dx +

∫ 1

0

g(y) dy
)

=
1

2

(

∫ 1

0

g(x) dx +

∫ 1

0

dx

g(x)

)

=
1

2

∫ 1

0

(

g(x) +
1

g(x)

)

dx

≥
1

2

∫ 1

0

2 dx = 1,

since for any c > 0 one has c + 1
c ≥ 2.

Another solution. We will prove that
∫ 1

0
f(x)dx
f(x+a) ≥ 1 for any a > 0 using the so-called Jensen’s inequal-

ity, which says that for any integrable on [0, 1] function h and any convex function ϕ,
∫ 1

0
ϕ(h(x)) dx ≥

ϕ
(∫ 1

0
h(x) dx

)

; in particular,
∫ 1

0
eh(x)dx ≥ e

∫

1

0

h(x)dx
.
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Take h(x) = log(f(x)/f(x + a)) = log f(x) − log f(x + a); then eh(x) = f(x)
f(x+a) , and

∫ 1

0
h(x) dx =

∫ 1

0
log f(x) dx−

∫ 1

0
log f(x+a) dx = 0, since log f(x) is periodic with period 1. Hence, by Jensen’s inequality,

∫ 1

0
f(x)dx
f(x+a) ≥ e0 = 1.
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