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Let the triangle have vertices , where is the vertex opposite to

side , and similarly for , . If = 90 , then the area of

equals 2 = 1, and since , we have = = 2. On

the other hand, if = 90 , let be the point on the side (or

its continuation, as in the picture) such that is perpendicular to .

Then, if is the length of , the area of equals 2 = 1. Notice

in the right triangle , that , so we have = = 2.

Let ( ) = sin and ( ) = 2 (1997 ). First note that 0 ( ) 1 for all , so the equation ( ) = ( ) has

no solutions outside the interval where 0 ( ) 1, i.e., outside the interval [0 1997 2]. We will show that the

equation has exactly two solutions on each of the half-open intervals [( 1) ) for = 1 2 3 . . . 999, so it has

2 999 = 1998 solutions in all.

On each open interval (( 1) ), we have ( ) = ( ) 0. Hence, is strictly concave on each closed

interval [( 1) ], so its graph cannot meet any line in more than two points within such an interval. So

( ) = ( ) has at most two solutions there.

For 1 998, we have (( 1) ) = 0 (( 1) ), (( 0 5) ) = 1 (( 0 5) ), and ( ) = 0 ( ),

so the Intermediate Value Theorem gives at least one solution to ( ) = ( ) in each of the subintervals [( 1) (

0 5) ) and (( 0 5) ). For = 999, note that (( 1) ) = 0 (( 1) ), (( 0 5) ) = 1 = (( 0 5) ),

and ( ) ( ) for less than but su�ciently close to ( 0 5) , because (( 0 5) ) = 0 (( 0 5) ).

Hence, there must be a solution to ( ) = ( ) strictly between ( 1) and ( 0 5) , giving two solutions between

( 1) and .

See Problem 2 of the Gordon contest.

See Problem 3 of the Gordon contest.

. If 1998 is sum of consequtive integers, i.e. 1998 = + ( + 1) + + ( + 1), where 2,

then

1998 =
(2 + 1)

2

Since 1998 = 2 3 37, we have 2 3 37 = (2 + 1) . Keeping in mind that and must be positive integers,

it is easy to see that only 7 cases are possible: = 3, 4, 9, 12, 27, 36, and 37.

. If 1998 is a sum of consequtive positive integers, then either is odd, say, = 2 +1, in which case

1998 = ( + ) = for some positive integer , or is even, say, = 2 , in which case 1998 = ( + 1 2)

for some positive integer . The prime number decomposition of the number 1998 is 1998 = 2 3 37. If is

odd, then = 1998 must be an integer bigger than 2. Checking di�erent combinations of 3 and 37 we conclude

that only 4 cases are possible: = 3, 9, 27, and 37. If is even, then 1998 must be a half-integer bigger than 2,

therefore, is 4 times a number that divides 1998. It is easy to see that = 4, 12, or 36. Answer: 7.

All of the following steps are reversible (squaring is order-preserving on nonnegative numbers): 3 3 2 6+7 5

5 10 0 3 3+7 5 2 6+5 10 3 3+7 5 2 6+5 10 27+42 15+245 24+20 60+250

42 15 2+40 15 2 15 2 15 1. This is true, so the original inequality is true: the expression

is positive.
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. We will show by induction on 2 that the area of an -gon = inscribed in the circle

with center and radius achieves its maximum value ((1 2) sin(2 )) when the -gon is regular. To start

the induction, note that for = 2, when the -gon is just a line segment, the area is 0, so this formula is correct.

Let = , = 1 2 1 and = 2 ( + + + ). Then the area of is given by

( ) =
1

2
sin +

1

2
sin + +

1

2
sin +

1

2
sin 2 ( + + + )

Thus the problem is reduced to �nding the maximum value of the continuous function

( ) = sin + sin + + sin + sin 2 ( + + + )

in the region de�ned by the inequalities 0, = 1 2 1, and + + + 2 . Computing the

partial derivatives and equating them to 0 gives us the solution in the of , namely = = =

= 2 [and hence = 2 ]. It remains to show that the corresponding value ( ) = sin(2 )

is larger than the values of on the boundary of . This follows from the induction hypothesis, since on the

boundary of one or more of the are equal to 0, and the problem of maximization is the same problem, but

with fewer variables. But since sin(2 ) sin(2 ) for all , we are done.

. The following is an solution, not invoking calculus.

If = is an inscribed -gon, write ( ) for the number of triangles such that

= 2 . [Write = for convenience.] We will show that if ( ) , then we can �nd an

inscribed -gon with larger area such that ( ) + 1. Indeed, notice that if ( ) , then ( ) is at

most 2, and among the triangles there are at least two, call them and , such that has central

angle 2 and has central angle 2 . Cut-

ting and pasting, if needed, we may assume without

loss of generality that and are adjacent, say =

and = . Moving the vertex

to a new position such that = 2 (and

keeping all the other vertices �xed) increases the area of

the -gon and increases the value of the parameter ( ).

The area increases, since the sum of the areas of the two

triangles , is the sum of Area( ) and

Area( ). The �rst area remains unchanged

when vertex is moved, but Area( )

Area( ) since the triangles both have the

same base , but the second one has greater

height perpendicular to . (The reader should

observe that a simple modi�cation of this argument will

work in the case when + is greater

than or equal to .)

After �nitely many steps, always increasing the area,

we arrive at the situation where ( ) = .

Consider the function ( ) = sin + cos . It is periodic with period 2 , so its minimum

value on the whole real line is the same as its minimum value on the interval [0 2 ]. The function is continuous, so it

attains a minimum value on [0 2 ]. The function is di�erentiable, so that minimum value occurs at a critical point

or an endpoint. So let us �nd the critical points. The derivative is ( ) = 1998 sin cos 1998 cos sin =

1998(sin )(cos )(sin cos ). Now this derivative is zero only when one of the factors is zero; that is:

(a) when 1998 = 0 [never], or (b) when sin = 0 [so = 0 2 ], or (c) when cos = 0 [so = 2 3 2],

or (d) when sin = cos , so sin = cos [so = 4 3 4 5 4 7 4]. Plugging in these values,

we get ( ) = 1 when is any of the values 0 2 3 2 2 and ( ) = 1 2 when is any of the values

4 3 4 5 4 7 4. So the minimum value is 1 2 , as claimed.

. A more elementary proof may be done using the inequality + ( + ) 2 for any positive

numbers . (This may be proved by induction.) Applying the inequality with = sin , = cos , and = 999,

we get: sin + cos (sin + cos ) 2 = 1 2 .
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First of all we will �gure out, for a given value , how many integers there are with = . Note that =

if (1 2) + (1 2); that is, if + (1 4) + + (1 4). Since and are integers, this is

equivalent to + , so there are exactly 2 such . It follows that for every ,

1
=

2
= 2

The last such that all with = are inside the interval 1 2 1998 is 44 [since 44 + 44 = 1980 and

45 + 45 1998]. Thus we have 44 \full groups," and a part of the 45th:

1
=

1
+

1
= 44 2 +

18

45
= 88 4

If = 0, then = = gives = = 0, so = = . So we may assume = 0. Let = and = ;

then we have = = 1 and 1 + + = ( + + ) = 0.

Let = + with and real; then = ( 1 ) . Now = = 1 gives + = 1 and

(1 + ) + = 1; subtracting these two equations yields 1 + 2 = 0, so = 1 2. Now we can solve + = 1

for to get = 3 2, so = 1 2 ( 3 2) and = 1 2 ( 3 2) = . A direct computation now gives

= , so = = = = 1 and = = 1. Therefore, = ( ) = and = ( ) = .

The limit is 0. It is enough to show that converges to 0, where = sin sin 2 sin . Since the sequence

is nonincreasing and bounded below, it converges; call the limit . Let us show that the assumption = 0 leads

to a contradition. Indeed, note that if = 0, then

sin = = 1

But since sin +cos = 1, it follows that cos 0. But then from the addition formula for the sine, we have

1 = lim sin = lim sin( 1) cos + sin cos( 1) = 1 cos + sin 0 = cos

But since sin + cos = 1, this implies that sin = 0, and that means that = 0 for all . This obviously

contradicts lim = = 0 and we are done.

The limit is 1 2. If we re-write the sum properly:

( + )
=

1

1 +

1

then we may recognize it as a Riemann sum for the integral (1 ) . The integrand 1 is continuous on the

interval [1 2], and the norm 1 of our partitions goes to 0 as , so these Riemann sums converge to the value

of this integral, 1 2.


