Rasor-Bareis Exam: solutions, February 21, 1998

1. Let the triangle have vertices $A B C$, where A is the vertex opposite to side a, and similarly for B, C. If $\angle C A B=90^{\circ}$, then the area of $\triangle A B C$ equals $b c / 2=1$, and since $b \geq c$, we have $b=\sqrt{b^{2}} \geq \sqrt{b c}=\sqrt{2}$. On the other hand, if $\angle C A B \neq 90^{\circ}$, let D be the point on the side $A B$ (or its continuation, as in the picture) such that $C D$ is perpendicular to $A B$. Then, if h is the length of $C D$, the area of $\triangle A B C$ equals $h c / 2=1$. Notice in the right triangle $C D A$, that $b>h$, so we have $b=\sqrt{b^{2}}>\sqrt{h b}=\sqrt{2}$.

2. Let $f(x)=|\sin x|$ and $g(x)=2 x /(1997 \pi)$. First note that $0 \leq f(x) \leq 1$ for all x, so the equation $f(x)=g(x)$ has no solutions outside the interval where $0 \leq g(x) \leq 1$, i.e., outside the interval $[0,1997 \pi / 2]$. We will show that the equation has exactly two solutions on each of the half-open intervals $[(n-1) \pi, n \pi)$ for $n=1,2,3, \ldots, 999$, so it has $2 \cdot 999=1998$ solutions in all.

On each open interval $((n-1) \pi, n \pi)$, we have $f^{\prime \prime}(x)=-f(x)<0$. Hence, f is strictly concave on each closed interval $[(n-1) \pi, n \pi]$, so its graph cannot meet any line in more than two points within such an interval. So $f(x)=g(x)$ has at most two solutions there.

For $1 \leq n \leq 998$, we have $f((n-1) \pi)=0 \leq g((n-1) \pi), f((n-0.5) \pi)=1>g((n-0.5) \pi)$, and $f(n \pi)=0<g(n \pi)$, so the Intermediate Value Theorem gives at least one solution to $f(x)=g(x)$ in each of the subintervals $[(n-1) \pi,(n-$ $0.5) \pi)$ and $((n-0.5) \pi, n \pi)$. For $n=999$, note that $f((n-1) \pi)=0 \leq g((n-1) \pi), f((n-0.5) \pi)=1=g((n-0.5) \pi)$, and $f(x)>g(x)$ for x less than but sufficiently close to $(n-0.5) \pi$, because $f^{\prime}((n-0.5) \pi)=0<g^{\prime}((n-0.5) \pi)$. Hence, there must be a solution to $f(x)=g(x)$ strictly between $(n-1) \pi$ and $(n-0.5) \pi$, giving two solutions between $(n-1) \pi$ and $n \pi$.
3. See Problem 2 of the Gordon contest.
4. See Problem 3 of the Gordon contest.
5. Solution \# 1. If 1998 is sum of n consequtive integers, i.e. $1998=m+(m+1)+\cdots+(m+n-1)$, where $n \geq 2$, then

$$
1998=\frac{(2 m+n-1) n}{2}
$$

Since $1998=2 \cdot 3^{3} \cdot 37$, we have $2^{2} \cdot 3^{3} \cdot 37=(2 m+n-1) n$. Keeping in mind that m and n must be positive integers, it is easy to see that only 7 cases are possible: $n=3,4,9,12,27,36$, and 37 .

Solution \# 2. If 1998 is a sum of n consequtive positive integers, then either n is odd, say, $n=2 l+1$, in which case $1998=\sum_{i=-l}^{l}(a+i)=n a$ for some positive integer $a>l$, or n is even, say, $n=2 l$, in which case $1998=n(a+1 / 2)$ for some positive integer $a>l$. The prime number decomposition of the number 1998 is $1998=2 \cdot 3^{3} \cdot 37$. If n is odd, then $a=1998 / n$ must be an integer bigger than $n / 2$. Checking different combinations of 3 and 37 we conclude that only 4 cases are possible: $n=3,9,27$, and 37 . If n is even, then $1998 / n$ must be a half-integer bigger than $n / 2$, therefore, n is 4 times a number that divides 1998. It is easy to see that $n=4,12$, or 36 . Answer: 7 .
6. All of the following steps are reversible (squaring is order-preserving on nonnegative numbers): $3 \sqrt{3}-2 \sqrt{6}+7 \sqrt{5}-$ $5 \sqrt{10}>0 \Longleftrightarrow 3 \sqrt{3}+7 \sqrt{5}>2 \sqrt{6}+5 \sqrt{10} \Longleftrightarrow(3 \sqrt{3}+7 \sqrt{5})^{2}>(2 \sqrt{6}+5 \sqrt{10})^{2} \Longleftrightarrow 27+42 \sqrt{15}+245>24+20 \sqrt{60}+250$ $\Longleftrightarrow 42 \sqrt{15}>2+40 \sqrt{15} \Longleftrightarrow 2 \sqrt{15}>2 \Longleftrightarrow \sqrt{15}>1$. This is true, so the original inequality is true: the expression is positive.

Gordon Exam: solutions, page 1, February 21, 1998

1. Solution \# 1. We will show by induction on $n \geq 2$ that the area of an n-gon $P_{n}=A_{1} A_{2} \cdots A_{n}$ inscribed in the circle with center O and radius R achieves its maximum value $\left((1 / 2) R^{2} n \sin (2 \pi / n)\right)$ when the n-gon is regular. To start the induction, note that for $n=2$, when the n-gon is just a line segment, the area is 0 , so this formula is correct.

Let $\theta_{i}=\angle A_{i} O A_{i+1}, i=1,2, \cdots, n-1$ and $\theta_{n}=2 \pi-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n-1}\right)$. Then the area of P_{n} is given by

$$
S\left(P_{n}\right)=\frac{1}{2} R^{2} \sin \theta_{1}+\frac{1}{2} R^{2} \sin \theta_{2}+\cdots+\frac{1}{2} R^{2} \sin \theta_{n-1}+\frac{1}{2} R^{2} \sin \left(2 \pi-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n-1}\right)\right)
$$

Thus the problem is reduced to finding the maximum value of the continuous function

$$
f\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n-1}\right)=\sin \theta_{1}+\sin \theta_{2}+\cdots+\sin \theta_{n-1}+\sin \left(2 \pi-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n-1}\right)\right)
$$

in the region D_{n} defined by the inequalities $\theta_{i} \geq 0, i=1,2, \cdots, n-1$, and $\theta_{1}+\theta_{2}+\cdots+\theta_{n-1} \leq 2 \pi$. Computing the partial derivatives and equating them to 0 gives us the unique solution in the interior of D_{n}, namely $\theta_{1}=\theta_{2}=\cdots=$ $\theta_{n-1}=2 \pi / n$ [and hence $\theta_{n}=2 \pi / n$]. It remains to show that the corresponding value $f\left(\theta_{1}, \cdots, \theta_{n-1}\right)=n \sin (2 \pi / n)$ is larger than the values of f on the boundary of D_{n}. This follows from the induction hypothesis, since on the boundary of D_{n} one or more of the θ_{i} are equal to 0 , and the problem of maximization is the same problem, but with fewer variables. But since $k \sin (2 \pi / k)<n \sin (2 \pi / n)$ for all $k<n$, we are done.

Solution \# 2. The following is an elementary solution, not invoking calculus.
If $P=A_{1} A_{2} \cdots A_{n}$ is an inscribed n-gon, write $m(P)$ for the number of triangles $\triangle A_{i} O A_{i+1}$ such that $\angle A_{i} O A_{i+1}=2 \pi / n$. [Write $A_{n+1}=A_{1}$ for convenience.] We will show that if $m(P)<n$, then we can find an inscribed n-gon \widetilde{P} with larger area such that $m(\widetilde{P}) \geq m(P)+1$. Indeed, notice that if $m(P)<n$, then $m(P)$ is at most $n-2$, and among the triangles $\triangle A_{i} O A_{i+1}$ there are at least two, call them T_{1} and T_{2}, such that T_{1} has central angle $<2 \pi / n$ and T_{2} has central angle $>2 \pi / n$. Cutting and pasting, if needed, we may assume without loss of generality that T_{1} and T_{2} are adjacent, say $T_{1}=$ $\triangle A_{i-1} O A_{i}$ and $T_{2}=\triangle A_{i} O A_{i+1}$. Moving the vertex A_{i} to a new position A_{i}^{\prime} such that $\angle A_{i-1} O A_{i}^{\prime}=2 \pi / n$ (and keeping all the other vertices fixed) increases the area of the n-gon and increases the value of the parameter $m(P)$. The area increases, since the sum of the areas of the two triangles T_{1}, T_{2} is the sum of $\operatorname{Area}\left(\triangle A_{i-1} O A_{i+1}\right)$ and Area $\left(\triangle A_{i-1} A_{i} A_{i+1}\right)$. The first area remains unchanged when vertex A_{i} is moved, but $\operatorname{Area}\left(\triangle A_{i-1} A_{i} A_{i+1}\right)<$ Area $\left(\triangle A_{i-1} A_{i}^{\prime} A_{i+1}\right)$ since the triangles both have the same base $A_{i-1} A_{i+1}$, but the second one has greater height perpendicular to $A_{i-1} A_{i+1}$. (The reader should observe that a simple modification of this argument will work in the case when $\angle A_{i-1} O A_{i}+\angle A_{i} O A_{i+1}$ is greater than or equal to π.)

After finitely many steps, always increasing the area, we arrive at the situation where $m(P)=n$.
2. Solution \# 1. Consider the function $f(x)=\sin ^{1998} x+\cos ^{1998} x$. It is periodic with period 2π, so its minimum value on the whole real line is the same as its minimum value on the interval $[0,2 \pi]$. The function is continuous, so it attains a minimum value on $[0,2 \pi]$. The function is differentiable, so that minimum value occurs at a critical point or an endpoint. So let us find the critical points. The derivative is $f^{\prime}(x)=1998 \sin ^{1997} x \cos x-1998 \cos ^{1997} x \sin x=$ $1998(\sin x)(\cos x)\left(\sin ^{1996} x-\cos ^{1996} x\right)$. Now this derivative is zero only when one of the factors is zero; that is: (a) when $1998=0$ [never], or (b) when $\sin x=0$ [so $x=0, \pi, 2 \pi]$, or (c) when $\cos x=0$ [so $x=\pi / 2,3 \pi / 2]$, or (d) when $\sin ^{1996} x=\cos ^{1996} x$, so $\sin x= \pm \cos x$ [so $\left.x=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4\right]$. Plugging in these values, we get $f(x)=1$ when x is any of the values $0, \pi / 2, \pi, 3 \pi / 2,2 \pi$ and $f(x)=1 / 2^{998}$ when x is any of the values $\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$. So the minimum value is $1 / 2^{998}$, as claimed.

Solution \# 2. A more elementary proof may be done using the inequality $a^{n}+b^{n} \geq(a+b)^{n} / 2^{n-1}$ for any positive numbers a, b. (This may be proved by induction.) Applying the inequality with $a=\sin ^{2} x, b=\cos ^{2} x$, and $n=999$, we get: $\sin ^{1998} x+\cos ^{1998} x \geq\left(\sin ^{2} x+\cos ^{2} x\right)^{999} / 2^{998}=1 / 2^{998}$.

Gordon Exam: solutions, page 2, February 21, 1998
3. First of all we will figure out, for a given value k, how many integers n there are with $a_{n}=k$. Note that $a_{n}=k$ if $k-(1 / 2) \leq \sqrt{n}<k+(1 / 2)$; that is, if $k^{2}-k+(1 / 4) \leq n<k^{2}+k+(1 / 4)$. Since n and k are integers, this is equivalent to $k^{2}-k<n \leq k^{2}+k$, so there are exactly $2 k$ such n. It follows that for every $k \in \mathbb{N}$,

$$
\sum_{n: a_{n}=k} \frac{1}{a_{n}}=\frac{2 k}{k}=2
$$

The last k such that all n with $a_{n}=k$ are inside the interval $\{1,2, \cdots, 1998\}$ is 44 [since $44^{2}+44=1980$ and $\left.45^{2}+45>1998\right]$. Thus we have 44 "full groups," and a part of the 45 th:

$$
\sum_{n=1}^{1998} \frac{1}{a_{n}}=\sum_{k=1}^{44} \sum_{n: a_{n}=k} \frac{1}{a_{n}}+\sum_{n=1981}^{1998} \frac{1}{a_{n}}=44 \cdot 2+\frac{18}{45}=88.4
$$

4. If $a=0$, then $|a|=|b|=|c|$ gives $b=c=0$, so $a^{3}=b^{3}=c^{3}$. So we may assume $a \neq 0$. Let $B=b / a$ and $C=c / a$; then we have $|B|=|C|=1$ and $1+B+C=(a+b+c) / a=0$.

Let $B=x+y i$ with x and y real; then $C=(-1-x)-y i$. Now $|B|=|C|=1$ gives $x^{2}+y^{2}=1$ and $(1+x)^{2}+y^{2}=1$; subtracting these two equations yields $1+2 x=0$, so $x=-1 / 2$. Now we can solve $x^{2}+y^{2}=1$ for y to get $y= \pm \sqrt{3} / 2$, so $B=-1 / 2 \pm(\sqrt{3} / 2) i$ and $C=-1 / 2 \mp(\sqrt{3} / 2) i=\bar{B}$. A direct computation now gives $B^{2}=C$, so $B^{3}=B C=B \bar{B}=|B|^{2}=1$ and $C^{3}=\overline{B^{3}}=1$. Therefore, $b^{3}=(B a)^{3}=a^{3}$ and $c^{3}=(C a)^{3}=a^{3}$.
5. The limit is 0 . It is enough to show that a_{n} converges to 0 , where $a_{n}=|\sin \alpha \sin 2 \alpha \cdots \sin n \alpha|$. Since the sequence a_{n} is nonincreasing and bounded below, it converges; call the limit a. Let us show that the assumption $a \neq 0$ leads to a contradition. Indeed, note that if $a \neq 0$, then

$$
|\sin n \alpha|=\frac{a_{n}}{a_{n-1}} \rightarrow \frac{a}{a}=1
$$

But since $\sin ^{2} n \alpha+\cos ^{2} n \alpha=1$, it follows that $\cos n \alpha \rightarrow 0$. But then from the addition formula for the sine, we have

$$
1=\lim _{n \rightarrow \infty}|\sin n \alpha|=\lim _{n \rightarrow \infty}|\sin (n-1) \alpha \cos \alpha+\sin \alpha \cos (n-1) \alpha|=|1 \cdot \cos \alpha+\sin \alpha \cdot 0|=|\cos \alpha|
$$

But since $\sin ^{2} \alpha+\cos ^{2} \alpha=1$, this implies that $\sin \alpha=0$, and that means that $a_{n}=0$ for all n. This obviously contradicts $\lim a_{n}=a \neq 0$ and we are done.
6. The limit is $1 / 2$. If we re-write the sum properly:

$$
\sum_{k=1}^{n} \frac{n}{(k+n)^{2}}=\sum_{k=1}^{n} \frac{1}{\left(1+\frac{k}{n}\right)^{2}} \cdot \frac{1}{n}
$$

then we may recognize it as a Riemann sum for the integral $\int_{1}^{2}\left(1 / x^{2}\right) d x$. The integrand $1 / x^{2}$ is continuous on the interval [1, 2], and the norm $1 / n$ of our partitions goes to 0 as $n \rightarrow \infty$, so these Riemann sums converge to the value of this integral, $1 / 2$.

