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Rasor-Bareis Exam: solutions, February 21, 1998

Let the triangle have vertices ABC, where A is the vertex opposite to
side a, and similarly for B, C. If ZCAB = 90°, then the area of AABC
equals be/2 = 1, and since b > ¢, we have b = Vb2 > Ve = V2. On
the other hand, if ZCAB # 90°, let D be the point on the side AB (or
its continuation, as in the picture) such that C'D is perpendicular to AB.
Then, if & is the length of C'D, the area of AABC equals he/2 = 1. Notice
in the right triangle C'DA, that b > h, so we have b = Vb2 > Vhb = /2.

Let f(z) = |sinz| and g(#) = 22/(19977). First note that 0 < f(x) < 1 for all 2, so the equation f(z) = g(x) has
no solutions outside the interval where 0 < g(x) < 1, i.e., outside the interval [0,19977/2]. We will show that the

equation has exactly two solutions on each of the half-open intervals [(n — 1)m, n7) for n = 1,2,3,...,999, so it has
2-999 = 1998 solutions in all.
On each open interval ((n — 1)m, nw), we have f”(x) = —f(x) < 0. Hence, f is strictly concave on each closed

interval [(n — 1)m, n7], so its graph cannot meet any line in more than two points within such an interval. So
f(z) = g(x) has at most two solutions there.

For 1 < n <998, we have f((n—1)7) =0 < g((n—1)7), f((n—0.5)7) =1 > g((n—0.5)7), and f(n7) =0 < g(nnw),
so the Intermediate Value Theorem gives at least one solution to f(#) = g(#) in each of the subintervals [(n—1)7, (n—
0.5)7) and ((n—0.5)m, nw). For n = 999, note that f((n— D7) =0< g((n—1)7), f((n—0.5)7) =1 = g((n—0.5)7),
and f(x) > g(x) for x less than but sufficiently close to (n — 0.5)x, because f'((n — 0.5)7) = 0 < ¢'((n — 0.5)7).
Hence, there must be a solution to f(x) = g(«) strictly between (n —1)x and (n—0.5), giving two solutions between
(n— 1w and nw.

See Problem 2 of the Gordon contest.
See Problem 3 of the Gordon contest.

Solution # 1. Tf 1998 is sum of n consequtive integers, i.e. 1998 = m+ (m—+ 1)+ ---+ (m+n — 1), where n > 2,
then

2m+4+n—1)n

e

Since 1998 = 2-33 .37, we have 22 -3%.37 = (2m+n — 1)n. Keeping in mind that m and n must be positive integers,
it 1s easy to see that only 7 cases are possible: n = 3,4, 9, 12, 27, 36, and 37.

1998 =

Solution # 2. If 1998 is a sum of n consequtive positive integers, then either n is odd, say, n = 2]+ 1, in which case
1998 = Zi»:_l(a + @) = na for some positive integer a > [, or n is even, say, n = 2/, in which case 1998 = n(a 4 1/2)
for some positive integer a > {. The prime number decomposition of the number 1998 is 1998 = 2 - 33 . 37. If n is
odd, then a = 1998/n must be an integer bigger than n/2. Checking different combinations of 3 and 37 we conclude
that only 4 cases are possible: n = 3,9, 27, and 37. If n is even, then 1998/n must be a half-integer bigger than n/2,

therefore, n is 4 times a number that divides 1998. It is easy to see that n =4, 12, or 36. Answer: 7.
All of the following steps are reversible (squaring is order-preserving on nonnegative numbers): 3v/3 — 2v/6 4 7/5 —
5V10 > 0 <= 3v/3+7v5 > 264510 <= (3v3+7v5)° > (2V/6+5/10)° = 27+42\/15+245 > 24+20/60+250

<= 42v/15 > 2+ 40v/15 <= 2/15 > 2 <= /15 > 1. This is true, so the original inequality is true: the expression
is positive.
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Solution # 1. We will show by induction on n > 2 that the area of an n-gon P, = A1 Ay --- A, inscribed in the circle
with center O and radius R achieves its maximum value ((1/2)R?nsin(27/n)) when the n-gon is regular. To start

the induction, note that for n = 2, when the n-gon is just a line segment, the area is 0, so this formula is correct.
Let 0; = LA;OA;41,i=1,2,--- ,n—1and 0, =27 — (6, + 62+ - - -+ 0,_1). Then the area of P, is given by

1 1 1 1
S(P,) = 2 R%sin6; + 2 R%sinfs + -+ 2 R%sin0,_, + 2 R?sin (271'— O +0:+- -+ 9n-1))~
Thus the problem is reduced to finding the maximum value of the continuous function
f(01,00,-- 0, 1) =sinf; +sinfs+ - +sinb,_1 +sin (27 — (1 + 02+ -+ 0,,_1))
in the region D, defined by the inequalities §; > 0,i=1,2,--- ,n—1,and 6, +602+---+68,_1 < 27x. Computing the
partial derivatives and equating them to 0 gives us the unique solution in the interior of D, , namely 6y = 8> = --- =
0p—1 = 27/n [and hence 0, = 27 /n]. Tt remains to show that the corresponding value f(01, - ,0,_1) = nsin(27/n)
is larger than the values of f on the boundary of D,,. This follows from the induction hypothesis, since on the

boundary of D, one or more of the #; are equal to 0, and the problem of maximization is the same problem, but
with fewer variables. But since ksin(27/k) < nsin(27/n) for all k < n, we are done.

Solution # 2. The following is an elementary solution, not invoking calculus.

If P= A1 Az A, is an inscribed n-gon, write m(P) for the number of triangles AA;0A; 41 such that
LAOA; 41 = 27 /n. [Write A1 = Ay for convenience.] We will show that if m(P) < n, then we can find an
inscribed n-gon P with larger area such that m(ﬁ) > m(P) + 1. Indeed, notice that if m(P) < n, then m(P) is at
most n — 2, and among the triangles AA;OA;11 there are at least two, call them 77 and 75, such that 77 has central
angle < 27 /n and T has central angle > 27/n. Cut-
ting and pasting, if needed, we may assume without
loss of generality that 77 and 75 are adjacent, say 77 =
AA;_10A; and Ty = AA;OA; 1. Moving the vertex A;
to a new position A such that £A4,_10A, = 2x/n (and
keeping all the other vertices fixed) increases the area of
the n-gon and increases the value of the parameter m(P).
The area increases, since the sum of the areas of the two
triangles 71, T is the sum of Area(AA;_10A4;41) and
Area(AA;_1A4;Aiy1). The first area remains unchanged
when vertex A; is moved, but Area(AA;_14;A4i41) <
Area(AA;_1 AL Ai41) since the triangles both have the
same base A;_1A;y1, but the second one has greater
height perpendicular to A;_1A4;41. (The reader should
observe that a simple modification of this argument will
work in the case when ZA;_10A; +ZA;0A;; is greater
than or equal to 7.)

After finitely many steps, always increasing the area,
we arrive at the situation where m(P) = n.

i+l

Solution # 1. Consider the function f(z) = sin!?%% 2 4 cos™® . Tt is periodic with period 27, so its minimum
value on the whole real line is the same as its minimum value on the interval [0, 27]. The function is continuous, so it
attains a minimum value on [0, 27]. The function is differentiable, so that minimum value occurs at a critical point
or an endpoint. So let us find the critical points. The derivative is f'(x) = 1998 sint®7 gz cos z — 1998 cos!®*" zsinx =
1998(sin 2)(cos )(sin*??% & — cos'?°®x). Now this derivative is zero only when one of the factors is zero; that is:
(a) when 1998 = 0 [never], or (b) when sinz = 0 [so # = 0,,27], or (¢) when cosz = 0 [so ¢ = 7/2,37/2],
or (d) when sin'*?°z = cos'%z, so sinx = dcosx [so * = 7/4,37/4,57/4,7r/4]. Plugging in these values,
we get f(z) = 1 when =z is any of the values 0,7/2,7,37/2,27 and f(x) = 1/2°?® when z is any of the values
7/4,37/4,57/4,77/4. So the minimum value is 1/2°%% as claimed.

Solution # 2. A more elementary proof may be done using the inequality a™ +b" > (a+5)" /2"~ for any positive
numbers @, b. (This may be proved by induction.) Applying the inequality with a = sin?z, b = cos® x, and n = 999,
we get: sin'??® z 4 cos!®% x> (sin? & 4 cos? #)799/299% = 172998,
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First of all we will figure out, for a given value &k, how many integers n there are with a, = k. Note that a, = &
if k—(1/2) < /n < k+(1/2); that is, if k? —k + (1/4) < n < k? + k + (1/4). Since n and k are integers, this is
equivalent to k% — k < n < k? 4 k, so there are exactly 2k such n. It follows that for every k € N,

n:a,==k

The last k such that all n with @, = k are inside the interval {1,2,---,1998} is 44 [since 44 + 44 = 1980 and
452 + 45 > 1998]. Thus we have 44 “full groups,” and a part of the 45th:

1998 1998

Z Z > —+ > —_44 2+g_884

k=1 n: an—k n=1os1 on

If @ =0, then |a| = [b| = |¢| gives b = ¢ = 0, s0 a® = b = ¢3. So we may assume a # 0. Let B = b/a and C' = ¢/a;
then we have |B|=|C|=1and 1+ B+ C = (a—i—b—i—c)/a_O

Let B = x + yi with « and y real; then C' = (=1 — z) — yi. Now |B| = |C] = 1 gives 2? + ¥ = 1 and
(1 +2)% 4+ y? = 1; subtracting these two equations yields 1 + 2z = 0, so # = —1/2. Now we can solve 2% + y* = 1
for y to get y = £/3/2, 50 B = —1/24 (/3/2)i and C = —1/2 F (v/3/2)i = B. A direct computation now gives
B?>=(C,s0 B>=BC = BB = |B|? =1 and C® = B3 = 1. Therefore, b = (Ba)® = ¢® and ¢® = (Ca)® =
The limit is 0. Tt is enough to show that a, converges to 0, where a,, = |sin« sin 2« - - -sin na. Since the sequence
ayp 1s nonincreasing and bounded below, it converges; call the limit a. Let us show that the assumption a # 0 leads
to a contradition. Indeed, note that if a # 0, then

Qn

sinna| = — il =1.
| |
a

Ap—1
But since sin? na 4 cos® na = 1, it follows that cos na — 0. But then from the addition formula for the sine, we have
1= lim |sinna| = lim |sin(n — Do cosa+sina cos(n — 1)a| =l -cosa+sina-0|=|cosal.
n—00 n—0oo

But since sin? & + cos? @ = 1, this implies that sina = 0, and that means that a, = 0 for all n. This obviously

contradicts lima,, = a # 0 and we are done.

The limit is 1/2. If we re-write the sum properly:

1
Z k—i—n n’

n
kl k=1 <1+ )

then we may recognize it as a Riemann sum for the integral ff(l/xz) dz. The integrand 1/2? is continuous on the
interval [1,2], and the norm 1/n of our partitions goes to 0 as n — 00, so these Riemann sums converge to the value
of this integral, 1/2.




