
Rasor-Bareis solution

1. Prove that, given a rectangle R of area 1, one can place nonoverlapping disks inside
R so that the sum of their radii is 2006.

Say the rectangle has dimensions l × w. Since 2006/n goes to zero as natural
number n increases without bound, there is n so that a = 2006/n is less than
the minimum of l and w. So there is a square S with side a contained inside R.
Now divide the square S into n2 small squares by dividing each side into n equal
intervals. So we get n2 small squares with side a/n = 2006/n2. Inscribe one disk
in each of these small squares, so that it has diameter 2006/n2. Then the total of
all the diameters is n2 · 2006/n2 = 2006 exactly.



Rasor-Bareis solution

2. Let a be a complex number and n a positive integer. Assume an = 1 and (a+1)n =
1. Show n is a multiple of 6 and a3 = 1.

Since |a|n = |an| = 1, the complex number a is on the “unit circle”: the circle
with center 0 and radius 1. Similarly, a + 1 is on the unit circle. But a + 1 is one
unit to the right of a in the complex plane. So in order for both to be on the unit
circle, the line segment joining them must be either the top or bottom side of the
regular hexagon inscribed in the unit circle so that one vertex is 1. So a has either
argument 2π/3 or −2π/3. So a3 = 1. And a + 1 has either argument π/3 or −π/3.
So in order for the nth power of a+1 to be 1, we must have nπ/3 a multiple of 2π,
so n is a multiple of 6.



Rasor-Bareis solution

3. Let f be a function from reals to reals. Assume that 2f(x) + f(1− x) = x + 4 for
all x. Determine the function f .

Substitute 1− x for x to obtain 2f(1− x) + f(x) = −x + 5.
Solve the resulting system of linear equations{

2f(x) + f(1− x) = x + 4,

2f(1− x) + f(x) = −x + 5,

for f(x), to obtain f(x) = x + 1.



Rasor-Bareis solution

4. There is an integer N > 100 such that N is a square, the last digit of N (in base
ten) is not 0, and when the last two digits are deleted, the result is still a square.
What is the largest N with this property?

Let N be a2 and let N with the last two digits deleted be b2. So a and b are
positive integers with (10b)2 < a2 < (10b)2 +100. But then 10b < a, so 10b+1 ≤ a
and 100b2 +20b+1 ≤ a2 < 100b2 +100. From this we get 20b+1 < 100, b < 99/20,
so b ≤ 4. Then 402 = 1600, 412 = 1681, 422 > 1700. So the largest N is 1681.



Rasor-Bareis solution

5. Let T be a triangle in the plane, and let P be a parallelogram that lies inside T .
Show that the area of P is at most half the area of T .
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Label the paralellogram ABCD and
the triangle XY Z.

Relabelling, we may assume that the
lines AD, BC both intersect the same
side XY of the triangle. Sliding points
A,D along line AD preserving the dis-
tance between them preserves the area
of the paralellogram. Sliding points
B,C along the line BC preserving the
distance between them also preserves
the area of the paralellogram. Thus we
construct a parallelogram abcd of the
same area as ABCD, with two of the
vertices a, b on the interval XY .

Sliding a, b on XY and c, d on the
line cd, preserving distances ab, cd, we
construct a parallelogram of the same
area as ABCD, with one of the ver-
tices coinciding with vertex X of the
triangle, and two other vertices on the
sides of the triangle through X.

Thus (perhaps increasing the area)
we can assume that the the fourth ver-
tex lies on the side Y Z of the triangle.
Say the paralellogram is XBCD with
B on side XY , C on side Y Z and D
on side ZX.

Now we may assume |Y C| ≤ |ZC|;
if not reverse the labels Y,Z and B,D.
So there is a point E on CZ with
|Y C| = |CE|. Extend line BC and
draw a line through E parallel to CD
to get parallelogram CDFE congru-
ent to XBCD. But triangle BY C is
congruent to triangle FEC, so the area
of XY Z is double the area of XBCD
plus the area of GEZ. Thus the area
of XBCD is at most half the area of
XY Z.



Rasor-Bareis solution

6. Let f : (a, b) → R be twice continuously differentiable, and assume f ′′(x) 6= 0 for
all x ∈ (a, b). Show that two chords on the graph of f cannot bisect each other. (A
chord on the graph is a line segment that joins two points on the graph.)

Proof. Deny the result. Let AB and CD be the two chords of the graph of
f which bisect each other. Then ACBD is a parallelogram. Let xA, xB , xC , and
xD be the x-coordinates, resp., of A,B, C, and D. Without loss we may assume
that xA < xC < xB < xD. Hence the chords AC and BD are parallel in disjoint
intervals (xA, xC) and (xB , xD). By the mean value theorem f ′(x) has the same
value for an element in both intervals (xA, xC) and (xB , xD). But then f ′′(x) = 0
for some x in (a, b), contradiction.



Gordon solution

1. There is an integer N > 100 such that N is a square, the last digit of N (in base
ten) is not 0, and when the last two digits are deleted, the result is still a square.
What is the largest N with this property?

Let N be a2 and let N with the last two digits deleted be b2. So a and b are
positive integers with (10b)2 < a2 < (10b)2 +100. But then 10b < a, so 10b+1 ≤ a
and 100b2 +20b+1 ≤ a2 < 100b2 +100. From this we get 20b+1 < 100, b < 99/20,
so b ≤ 4. Then 402 = 1600, 412 = 1681, 422 > 1700. So the largest N is 1681.



Gordon solution

2. Let f : (a, b) → R be twice continuously differentiable, and assume f ′′(x) 6= 0 for
all x ∈ (a, b). Prove that two chords on the graph of f cannot bisect each other.
(A chord on the graph is a line segment that joins two points on the graph.)

Proof. Deny the result. Let AB and CD be the two chords of the graph of
f which bisect each other. Then ACBD is a parallelogram. Let xA, xB , xC , and
xD be the x-coordinates, resp., of A,B, C, and D. Without loss we may assume
that xA < xC < xB < xD. Hence the chords AC and BD are parallel in disjoint
intervals (xA, xC) and (xB , xD). By the mean value theorem f ′(x) has the same
value for an element in both intervals (xA, xC) and (xB , xD). But then f ′′(x) = 0
for some x in (a, b), contradiction.



Gordon solution

3. Let A = (aij) be a 2006×2006 “checkerboard” matrix of 0s and 1s. That is, aij = 0
if i + j is even and aij = 1 if i + j is odd. Compute the characteristic polynomial
of A.

Since the odd columns of A are all equal and the even columns of A are all
equal, the 2004 vectors (0, · · · , 1, 0,−1, 0, · · · , 0), with the 1 of the triple 1, 0,−1
ranging from the first position to the 2004th position, are linearly independent
eigenvectors for the eigenvalue 0. Since all row sums are equal to 1003, the vector
(1, · · · , 1) of all 1s is an eigenvector of A for the eigenvalue 1003. Finally, the
vector (1,−1, 1,−1, · · · , 1,−1) of alternating 1s and (−1)s is an eigenvector for the
eigenvalue −1003. Hence the characteristic polynomial of A is x2004(x2 − 10032).

Remark. As an alternate method to find the zero eigenvalues, note that there
are only two different rows, so the row space has dimension 2, so the matrix has
rank 2. Therefore, all but 2 of the eigenvalues are zero.



Gordon solution

4. A sequence {an} of positive real numbers satisfies a0 = 1 and an+2 = 2an − an+1

for n ≥ 0. (Note that a1 is not specified.) Find a2006; justify your answer.

Answer: a2006 = 1.
Proof I. Note that by the recursion formula,

a2 = −1(a1) + 2

a3 = 3(a1)− 2

a4 = −5(a1) + 6

a5 = 11(a1)− 10
...

which suggests the following pattern: for every n,there exists an integer mn so that
an = mn(a1) + (−mn + 1). This is easily proved by induction on n: we already see
that the hypothesis is true for n = 2 and n = 3. Suppose now that it is true for all n
less than some N > 3. Then, aN = 2aN−2−aN−1 = 2(mN−2(a1)+(−mN−2+1))−
(mN−1(a1)+(−mN−1+1)(a1)) = (2mN−2−mN−1)(a1)+(−(2mN−2−mN−1)+1),
proving the assertion for n = N with mN = 2mN−2 −mN−1.

We also claim that for n > 1, mn is negative for even n and positive for odd n.
This is again proved by induction and the recursive formula for mn which was just
discovered. This implies that for every n > 3, mn−2 and mn−1 have opposite signs,
and therefore that mn = 2mn−2 −mn−1 implies |mn| > |mn−1|. This means that
limn→∞ |mn| = ∞.

Now, suppose that a1 6= 1. If a1 > 1, then there exists a positive integer L
so that a1 > 1 + 1

L . Since limn→∞ |mn| = ∞, there exists an even n so that
|mn| > L. Then, since all elements of {an} are positive, an = mn(a1)+(−mn+1) =
−|mn|(a1) + (|mn| + 1) > 0. Therefore, a1 < |mn|+1

|mn| = 1 + 1
|mn| , which is a

contradiction since |mn| > L. If a1 < 1, then there exists a positive integer M
so that a1 > 1 − 1

M . Since limn→∞ |mn| = ∞, there exists an odd n so that
|mn| > M . Then, since all elements of {an} are positive, an = mn(a1)+(−mn+1) =
|mn|(a1) + (−|mn| + 1) > 0. Therefore, a1 > |mn|−1

|mn| = 1 − 1
|mn| , a contradiction

since |mn| > M . We have then shown that the only possibility is that a1 = 1. The
recursion formula an+2 = 2an − an+1 then implies that an = 1 for all n, and in
particular that a2006 = 1.

Proof II. This is a linear homogeneous difference equation with constant coeffi-
cients. The monic polynomial associated with it is x2 + x − 2, which has roots 1
and −2. So the solutions of the difference equation all have the form

an = b(1)n + c(−2)n, for n ≥ 0.

Now, if c 6= 0 then the sequence an is eventually alternating, which contradicts the
assumption that an are all positive. And a0 = 1, so b = 1. Therefore an = 1 for all
n.



Gordon solution

5. Let ABC be a triangle in the plane.
Erect squares externally on its sides
AB and BC. Let X and Y be the cen-
ters of these squares and let Z be the
midpoint of CA. Prove that the trian-
gle XY Z is an isosceles right triangle.
(It may help to use complex numbers.)

Proof. Let ABC be a triangle, labelled clockwise, and let Z be the midpoint of
AC. The center of the square erected externally on AB is

X = A +
B −A

2
+ i

B −A

2
=

(1− i)A + (1 + i)B
2

.

The center of the square erected externally on BC is

Y = B +
(C −B)

2
+ i

C −B

2
=

(1− i)B + (1 + i)C
2

.

Since Z = (A + C)/2, we have

Y − Z =
(1− i)B + (1 + i)C

2
− A + C

2
=
−A + (1− i)B + iC

2

and

X − Z =
(1− i)A + (1 + i)B

2
− A + C

2
=
−iA + (1 + i)B − C

2
= i (Y − Z).

Therefore X −Z and Y −Z are orthogonal and of the same length, so XY Z is an
isosceles right triangle.



Gordon solution

6. For each integer k > 1, let rk be the remainder when 21003 is divided by k. Prove
that r2 + r3 + · · ·+ r1003 > 2006.

There are 501 odd integers k with 3 ≤ k ≤ 1003, and for each of them we have
rk ≥ 1, so they give us a total contribution at least 501. There are 250 integers of the
form 2(2s+1), and they each have remainder at least 2, so their total contribution
at least 2 · 250 = 500. There are 124 integers of the form 4(2s + 1), their total
contribution at least 4 · 124 = 496. There are 62 integers of the form 8(2s + 1),
their total contribution at least 8 · 62 = 496. And k = 48 = 16 · 3 contributes at
least 16. So the total is at least 2009 > 2006.


