
Math 35300: Section 001. Linear algebra II Fall 2012
John E. Harper
Purdue University

Homework 9

Exercises 1–10 should be regarded as warm-up exercises. They are intended to
test your understanding of some of the definitions and constructions introduced in
lecture. Your first step to answering these should be to go back to the lecture notes
and read again the appropriate definition or construction.

Exercise 1. In order to be able to discuss the “eigenvalues” of a linear map
f : V−→W at all, f must be

(a) epimorphic (surjective)
(b) isomorphic (bijective)
(c) endomorphic (V = W )

Exercise 2. The vector v 6= 0 is called an eigenvector for the eigenvalue c if
f(v) = cv. If instead f(−v) = cv, then

(a) −v is an eigenvector for the eigenvalue c.
(b) v is an eigenvector for the eigenvalue −c.
(c) −v is an eigenvector for the eigenvalue −c.

Exercise 3. If f : V−→V is an endomorphism and c is an eigenvalue of f , then
by the eigenspace Ec of f corresponding to the eigenvalue c, one understands

(a) the set of all eigenvectors for the eigenvalue c
(b) the set consisting of all eigenvectors for the eigenvalue c, together with the

zero vector
(c) Ker(c Id)

Exercise 4. Which of the following three vectors is an eigenvector of

f =
[
2 1
0 1

]
: R2−→R2?

(a)
[
2
1

]
(b)

[
1
1

]
(c)

[
2
−2

]
Exercise 5. Let f : V−→V be an endomorphism of an n-dimensional vector space,
and let c1, . . . , cr be the distinct eigenvalues of f . Then

(a) dimEc1 + · · ·+ dimEcr = c1 + · · ·+ cr.
(b) dimEc1 + · · ·+ dimEcr ≤ n.
(c) dimEc1 + · · ·+ dimEcr

> n.

Exercise 6. Let f : V
∼=−−→ V be an automorphism of V and c an eigenvalue of f .

Then
(a) c is also an eigenvalue of f−1.
(b) −c is an eigenvalue of f−1.
(c) 1

c is an eigenvalue of f−1.

Exercise 7. An endomorphism f of an n-dimensional vector space is diagonalizable
if and only if
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(a) f has n distinct eigenvalues.
(b) f has only one eigenvalue whose geometric multiplicity equals n.
(c) n equals the sum of the geometric multiplicities of the eigenvalues.

Exercise 8. The concepts of eigenvalue, eigenvector, eigenspace, geometric multi-
plicity, and diagonalizability have been defined for endomorphisms of (sometimes
finite-dimensional) vector spaces V . Which further “general assumption” on V have
we implicitly made here?

(a) V is always a real vector space.
(b) V is always a Euclidean vector space.
(c) no extra assumption; V is just a vector space over F.

Exercise 9. The characteristic polynomial of f =
[

1 3
−2 0

]
: C2−→C2 is given by

(a) Pf (c) = c2 + c+ 6.
(b) Pf (c) = c2 − c+ 6.
(c) Pf (c) = −c+ 7.

Exercise 10. If f, g : V−→V are endomorphisms and there exists some ϕ ∈ GL(V )
with f = ϕgϕ−1, then f and g have

(a) the same eigenvalues
(b) the same eigenvectors
(c) the same eigenspaces

Exercise 11. Determine the eigenvalues and associated eigenspaces for the follow-
ing 2× 2 matrices over both the fields F = R and F = C:

(a)
[
0 0
0 0

]
(b)

[
0 1
1 0

]
(c)

[
0 1
0 0

]

(d)
[
0 1
4 3

]
(e)

[
0 −1
1 0

]
(f)

[
0 1
−5 4

]
Exercise 12. Prove the following proposition.

Proposition 1. The following conditions on an endomorphism f : V−→V of a
finite-dimensional vector space are equivalent:

(a) Ker f > 0.
(b) Im f < V .
(c) If A is the matrix of the endomorphism with respect to an arbitrary basis,

then detA = 0.
(d) 0 is an eigenvalue of f .

Exercise 13. Prove the following: The eigenvalues of an upper or lower triangular
matrix are its diagonal entries.

Exercise 14. Prove the following: The characteristic polynomial of an endomor-
phism f : V−→V on a finite-dimensional vector space does not depend on the choice
of a basis.

Exercise 15. Let f : V−→V be an endomorphism on a vector space of dimension
2. Assume that f is not multiplication by a scalar. Prove that there is a vector
v ∈ V such that (v, f(v)) is a basis of V , and describe the matrix of f with respect
to that basis.
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Exercise 16. Find all invariant subspaces of the real endomorphism whose matrix
is as follows.

(a)
[
1 1

1

]
(b)

1
2
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Exercise 17. Let f : V−→V be an endomorphism of a vector space V . Recall that
a subspace U ⊂ V is invariant under f if f(U) ⊂ U . Show that the eigenspaces of
fn := f ◦ · · · ◦ f are invariant under f .

Exercise 18. An endomorphism f : V−→V on a vector space is called nilpotent
if fk = 0 for some k. Let f be a nilpotent endomorphism on a vector space V , and
let W i := Im f i.

(a) Prove that if W i 6= 0, then dimW i+1 < dimW i.
(b) Prove that if V has dimension n and if f is nilpotent, then fn = 0.

Exercise 19. Prove that the matrices
[
a 0
0 d

]
and

[
a b
0 d

]
(b 6= 0) are similar if

and only if a 6= d.

Exercise 20.
(a) Use the characteristic polynomial to prove that a 2× 2 real matrix A all of

whose entries are positive has two distinct real eigenvalues.
(b) Prove that the larger eigenvalue has an eigenvector in the first quadrant,

and the smaller eigenvalue has an eigenvector in the second quadrant.

Exercise 21.

(a) Find the eigenvectors and eigenvalues of the matrix
[
2 1
1 2

]
.

(b) Find a matrix P such that PAP−1 is diagonal.

(c) Compute
[
2 1
1 2

]30
.

Exercise 22. Prove that if A,B are n×n matrices and if A is invertible, then AB
is similar to BA.

Exercise 23. Prove that an endomorphism f : V−→V on a finite-dimensional
vector space is nilpotent if and only if there is a basis of V such that the matrix of
f is upper triangular, with diagonal entries zero.

Exercise 24. Let RN denote the vector space of real sequences (an)n≥1. Determine
the eigenvalues and eigenspaces of the endomorphism f : RN−→RN given by

(an)n≥1 7−→ (an+1)n≥1.

Exercise 25. Since we can both add and compose endomorphisms of V it makes
sense to use the polynomial P (t) = a0 + a1t + · · · + ant

n, ai ∈ F to define an
endomorphism P (f) = a0+a1f+· · ·+anfn : V−→V . Show that if c is an eigenvalue
of f , then P (c) is an eigenvalue of P (f).

Exercise 26. Let π : {1, . . . , n}−→{1, . . . , n} be a bijective map (permutation).
Let fπ : Rn−→Rn be defined by fπ(x1, . . . , xn) := (xπ(1), . . . , xπ(n)). Determine
the set of eigenvalues of fπ.
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Exercise 27. Let f : V−→V be an endomorphism on a real vector space V such
that f2 = Id. Define subspaces as follows:

W+ := {v ∈ V | f(v) = v}, W− := {v ∈ V | f(v) = −v}.

Prove that V is isomorphic to the direct sum W+ ⊕W−.

Exercise 28. Let f : V−→V be an endomorphism on a finite-dimensional vector
space V . Prove that there is an integer n so that (Ker fn) ∩ (Im fn) = 0.


