
Markov Processes

1. Introduction

Before we give the definition of a Markov process, we will look at an example:

Example 1: Suppose that the bus ridership in a city is studied. After examining several years of data, it was

found that 30% of the people who regularly ride on buses in a given year do not regularly ride the bus in the

next year. Also it was found that 20% of the people who do not regularly ride the bus in that year, begin to

ride the bus regularly the next year. If 5000 people ride the bus and 10,000 do not ride the bus in a given year,

what is the distribution of riders/non-riders in the next year? In 2 years? In n years?

First we will determine how many people will ride the bus next year. Of the people who currently ride the

bus, 70% of them will continue to do so. Of the people who don’t ride the bus, 20% of them will begin to ride

the bus. Thus:

5000(0.7) + 10, 000(0.2) = The number of people who ride bus next year. = b1

By the same argument as above, we see that:

5000(0.3) + 10, 000(0.8) = The number of people who don’t ride the bus next year. = b2

This system of equations is equivalent to the matrix equation: Mx = b where

M =

(
0.7 0.2

0.3 0.8

)
,x =

(
5000

10, 000

)
and b =

(
b1

b2

)

Note b =

(
5500

9500

)
. For computing the result after 2 years, we just use the same matrix M , however we use b

in place of x. Thus the distribution after 2 years is Mb = M2x. In fact, after n years, the distribution is given

by Mnx.

The forgoing example is an example of a Markov process. Now for some formal definitions:

Definition 1. A stochastic process is a sequence of events in which the outcome at any stage depends on

some probability.

Definition 2. A Markov process is a stochastic process with the following properties:

(a.) The number of possible outcomes or states is finite.

(b.) The outcome at any stage depends only on the outcome of the previous stage.

(c.) The probabilities are constant over time.

If x0 is a vector which represents the initial state of a system, then there is a matrix M such that the state of the

system after one iteration is given by the vector Mx0. Thus we get a chain of state vectors: x0,Mx0,M
2x0, . . .

where the state of the system after n iterations is given by Mnx0. Such a chain is called a Markov chain and

the matrix M is called a transition matrix.

The state vectors can be of one of two types: an absolute vector or a probability vector. An absolute vector

is a vector whose entries give the actual number of objects in a give state, as in the first example. A probability

vector is a vector where the entries give the percentage (or probability) of objects in a given state. We will take

all of our state vectors to be probability vectors from now on. Note that the entries of a probability vector add

up to 1.
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Theorem 3. Let M be the transition matrix of a Markov process such that Mk has only positive entries for

some k. Then there exists a unique probability vector xs such that Mxs = xs. Moreover limk→∞Mkx0 = xs

for any initial state probability vector x0.

The vector xs is called a the steady-state vector.

2. The Transition Matrix and its Steady-State Vector

The transition matrix of an n-state Markov process is an n×n matrix M where the i, j entry of M represents

the probability that an object is state j transitions into state i, that is if M = (mij) and the states are

S1, S2, . . . , Sn then mij is the probability that an object in state Sj transitions to state Si.

What remains is to determine the steady-state vector. Notice that we have the chain of equivalences:

Mxs = xs ⇔ Mxs − xs = 0⇔ Mxs − Ixs = 0⇔ (M − I)xs = 0⇔ xs ∈ N(M − I)

Thus xs is a vector in the nullspace of M − I. If Mk has all positive entries for some k, then dim(N(M − I))=1

and any vector in N(M − I) is just a scalar multiple of xs. In particular if x =


x1

...

xn

 is any non-zero vector in

N(M − I), then xs = 1
cx where c = x1 + · · ·+ xn.

Example:

A certain protein molecule can have three configurations which we denote as C1, C2 and C3. Every second

the protein molecule can make a transition from one configuration to another configuration with the following

probabilities:

C1 → C2, P = 0.2 C1 → C3, P = 0.5

C2 → C1, P = 0.3 C2 → C3, P = 0.2

C3 → C1, P = 0.4 C3 → C2, P = 0.2

Find the transition matrix M and steady-state vector xs for this Markov process.

Recall that M = (mij) where mij is the probability of configuration Cj making the transition to Ci. Therefore

M =


0.3 0.3 0.4

0.2 0.5 0.2

0.5 0.2 0.4

 and M − I =


−0.7 0.3 0.4

0.2 −0.5 0.2

0.5 0.2 −0.6


.

Now we compute a basis for N(M − I) by putting M − I into reduced echelon form:

U =


1 0 −0.8966

0 1 −0.7586

0 0 0

 and we see that x =


0.8966

0.7586

1

 is the basis vector for N(M − I)

Consequently, c = 2.6552 and xs =


0.3377

0.2857

0.3766

 is the steady-state vector of this process.
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Note also that the nullspace of M − I can be found using MATLAB and the function null( ):

x = null(M− eye(3))

xs = x/sum(x)
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