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and ŵ2 = ycv2 − xw2. The matrix of g (relative to the original basis) becomes:

g =
(

0 −a
1 0

)
⊗
(
x cy

y −x
)

. It is now easy to see that fg = gf . ��

Exercises for Chapter 5

1. Suppose (σ, τ ) < Sim(q) is an unsplittable (s, t)-family where σ represents 1 and
dim q ≤ 8. If (s, t) �= (2, 2) then q must be similar to a Pfister form.

2. Complete Proposition 5.7 by listing all q such that (σ, τ ) < Sim(q), where (σ, τ )
equals:

(i) (〈1, a〉, 〈x, y〉) with 〈axy〉 � 〈1〉.
(ii) (〈1〉, 〈x, y〉).
(iii) (〈1〉, 〈x, y, z〉).

3. (i) Give a simple direct proof that if (〈1, a, b〉, 〈x〉) < Sim(q) then 〈1, abx〉 <
Sim(q).

(ii) Find some a, b, x, q such that 〈〈a, b〉〉 || q and x ∈ GF (q) but (〈1, a, b〉, 〈x〉) is
not realizable in Sim(q).

4. Round forms. (1) Lemma. A quadratic space (V , ϕ) is round iff the group
Sim•(V , ϕ) acts transitively on the set V • of anisotropic vectors.

(2) Recall that any (regular) quadratic form q has a Witt decomposition q � qa ⊥
qh where qa is anisotropic and qh is hyperbolic. These components are unique up to
isometry. An isotropic form ϕ is round iff ϕa is round and universal.

5. Level of a field. If d ∈ F define lengthF (d) to be the smallest n such that d is
a sum of n squares in F . That is, n = lengthF (d) ⇐⇒ d ∈ DF (n) − DF (n − 1).
If d is not a sum of squares then lengthF (d) = ∞. The level (or Stufe) of F is:
s(F ) = lengthF (−1).

(1) Proposition. If s(F ) is finite then s(F ) = 2m for some m.

(2) Suppose K = F(
√−d). Then s(K) is finite ⇐⇒ lengthF (d) is finite. It is

each to check that s(K) ≤ lengthF (d).

Proposition. SupposeK = F(
√−d) and definem by: 2m ≤ lengthF (d) < 2m+1.

Then s(K) = 2m.

(Hint. (1) Suppose −1 = a2
1 + · · · + a2

s and suppose 2m ≤ s < 2m+1. To prove:
−1 ∈ DF (2m). If n = 2m then −(1 + a2

n+1 + · · · + a2
s ) = (a2

1 + · · · + a2
n). By (5.2)

or Exercise 0.5, DF (2m) is a group.
(2) s(K) ≤ lengthF (d) implies s(K) ≤ 2m by (1). If s(K) = n then −1 =∑n
i=1(ai + bi

√−d)2 so that d ·∑n
i=1 b

2
i = 1 +∑n

i=1 a
2
i and

∑n
i=1 aibi = 0. Then
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d = (∑n
i=1 b

2
i

)−1 + (∑n
i=1 a

2
i

) · (∑n
i=1 b

2
i

)−1, and the first term of a sum of n
squares. Since n is a 2-power the second term is a sum of n − 1 squares, using
Exercise 0.5(4). Therefore n ≤ lengthF (d) < 2n implying n = 2m.)

6. M-indecomposables. Suppose M = M(ϕ1, . . . , ϕk, 〈b1〉, . . . , 〈bn〉) for some
bi ∈ F • and some round forms ϕj , following the notations used before (5.5).

(1) Every M-indecomposable which is isotropic must actually be hyperbolic.
(2) There is a unique hyperbolic M-indecomposable form mH.
(3) When can there exist an M-indecomposable with dimension < 2m?

7. (1) Lemma. If 〈〈x〉〉 is anisotropic and 〈〈x〉〉⊗q is isotropic then there exists β ⊂ q

such that dim β = 2 and 〈〈x〉〉 ⊗ β is hyperbolic.
(2) Corollary. If 〈a〉q � q then q � q1 ⊥ · · · ⊥ qn for subforms qi with

dim qi = 2 and 〈a〉qi � qi .
(3) If 〈〈x, y〉〉 ⊗ q is isotropic, does the analog of (1) hold?

(Hint. (1) Mimic the argument in (5.5).)

8. (1) If (〈1, a, b〉, τ ) < Sim(〈〈a, b〉〉), then τ ⊂ 〈1, a, b〉.
(2) List all pairs (σ, τ ) having an unsplittable module of dimension ≤ 4.
(3) If (〈1, a, b, c〉, τ ) < Sim(〈〈a, b, c〉〉), then τ ⊂ 〈1, a, b, c〉. Characterize the

forms τ such that (〈1, a, b, c〉, τ ) < Sim(〈〈a, b,w〉〉). Here abc ∈ GF (〈〈w〉〉) as in
(5.3).

(Hint. (1) Show dim τ ≤ 3 and use (5.7) (7) if dim τ = 1. By Expansion we may
assume dim τ = 3. Then det τ = 〈ab〉 since the Clifford algebra is not simple.)

9. When σ does not represent 1. Recall Exercise 2.2(1).
(1) Let M = M(a, b) = {q : a, b ∈ GF (q)}. Then q ∈ M(a, b) iff (〈a〉, 〈b〉) <

Sim(q). If 〈a〉 �� 〈1〉 then the hyperbolic plane is a 2-dimensional M-indecomposable.
(2) Over the rational field Q the forms H, 〈〈1〉〉 and 〈〈2, 5〉〉 are M(2, 5)-indecom-

posables. Find an M(2, 5)-indecomposable which is not similar to a Pfister form.
(Note. These proofs involve the Hasse–Minkowski Theorem over Q.)

(3) Open question. What are the possible dimensions of M(a, b)-indecompos-
ables?

10. The following are equivalent:

(i) 〈x, y〉 < Sim(q).

(ii) (〈1〉, 〈x, y〉) < Sim(q).

(iii) (〈1, xy〉, 〈x〉) < Sim(q).

(iv) 〈〈xy〉〉 || q and x ∈ GF (q).

11. (1) The following are equivalent:
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(i) (〈1, a〉, 〈1, x〉) < Sim(q).

(ii) 〈〈a〉〉 || q and 〈〈x〉〉 || q.

(iii) q � 〈〈a〉〉 ⊗ β for some form β such that ax ∈ GF (β).
(2) Find a direct proof of (ii) ⇐⇒ (iii), not using results on similarities.

(Hint. (1) To see (i) ⇐⇒ (iii) scale by a and use the Eigenspace Lemma 2.10.)

12. Proposition. (〈1, a, b〉, 〈1, x〉) < Sim(q) if and only if 〈〈a, b〉〉||q and 〈〈ab, x〉〉||q.

The proof is outlined below, following the same steps as (5.7).
(1) (〈1, a, b〉, 〈1, x〉) < Sim(q) if and only if (〈1, a, b〉, 〈1, ab, abx〉) < Sim(q).

The “only if” part of the proposition follows.
(2) For the “if” we may assume 〈a, b〉 does not represent x, so that 〈〈a, b〉〉 ��

〈〈ab, x〉〉.
(3) (8-dim case.) Suppose q � 〈〈a, b,w〉〉 and 〈〈ab, x〉〉 || q. Then 〈a, b〉 ⊥

〈w〉〈〈a, b〉〉 represents x, so that x = ar2 + bs2 + u where u ∈ DF (〈w〉〈〈a, b〉〉).
Then q � 〈〈a, b, u〉〉 and (〈1, a, b〉, 〈1, x〉) ⊂ (〈1, a, b, u〉, 〈1, a, b, u〉) < Sim(q).

(4) If ϕ = 〈〈a, b〉〉 and ψ = 〈〈ab, x〉〉, the M(ϕ, ψ)-indecomposables are all 8-
dimensional. More generally suppose ϕ = α⊗〈〈b〉〉 andψ = α⊗〈〈c1, . . . , ck〉〉 where
α is an r-fold Pfister form and ϕ � ψ . Then the M(ϕ, ψ)-indecomposables all have
dimension 2r+k+1.

(5) If 〈1, a, b,−x,−y〉 is isotropic, for what q is (〈1, a, b〉, 〈x, y〉) < Sim(q)?

(Hint. (1) Use the generators f2, f3, g1, g2.)

13. The following are equivalent:

(i) 〈〈a, b〉〉 || q and 〈〈ab, x〉〉 || q.

(ii) q � 〈〈a〉〉 ⊗ γ for some form γ where 〈〈ab〉〉 || γ and ax ∈ GF (γ ).
(Hint. Use (5.7), Exercise 11 and the Eigenspace Lemma 2.10.)

Open question. Is there some generalization which includes the Pfister factor
results of Exercises 11, 12 and 13 ?

14. Suppose that the trace map � used in (5.9) is replaced by �′ : E → F where
�′(1) = 1 and �′(√axy) = 0. If θ = r + s

√
axy determine the form �′(〈θ〉E).

15. Suppose (K, J ) is a field with non-trivial involution, where we write ᾱ for J (α).
Suppose V is a K-vector space and f : V → V is (K, J )-semilinear.

(1) Let {v1, . . . , vn} be a K-basis of V and express f (vj ) = ∑n
i=1 aij vi . Then

A = (aij ) is the matrix associated to f . A vector v = ∑n
i=1 xivi is represented by

the column vectorX = (x1, . . . , xn)
� so that f (v) = ∑n

i=1 x
′
ivi is represented by the

column vector X′ = AX̄.
(2) If f and g are (K, J )-semilinear maps on V represented by matrices A and B,

then f � g is K-linear and is represented by the matrix AB̄.
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(3) Suppose h : V × V → K is a regular hermitian form. Let M = (h(vi, vj ))

be the matrix of h, so that M� = M̄ . If v,w ∈ V correspond to the column vectors
X, Y then h(v,w) = X�MȲ . To define the adjoint involution ∼ applied to a (K, J )-
semilinear map f the usual formula makes no sense: h(f (v), w) = h(v, f̃ (w)).
(Why?) It is replaced by the definition:

h(f (v), w) = h(v, f̃ (w)).

Then f̃ is also (K, J )-semilinear and ∼ is a K-linear involution on the space of all

(K, J )-semilinear maps of V . (I.e. (α̃f ) = αf̃ , (f̃ + g) = f̃ + g̃ and ˜̃
f = f when

f is (K, J )-semilinear and α ∈ K .)
(4) If Ã is the matrix corresponding to f̃ then Ã = M−�A�M . Consequently,

f̃ = f if and only if the matrix M�A is symmetric.
(5) Does any of this become easier if we use the other definition of “hermitian”,

where h(v,w) is (K, J )-semilinear in v and K-linear in w?

16. Suppose F , E, K are as described before (5.9) and the involution trace � � tr :
K → F is given. Suppose V is a K-vector space and bq : V × V → F is a
symmetric bilinear form which admits (K, J ). Then there exists a unique hermitian
form h : V × V → K such that � � tr �h = bq . Find an explicit formula for h.

(Hint. Say b : V × V → E is the corresponding form over E. For v,w ∈ V show
that b(v,w) = bq(

√
axy · v,w)+ bq(v,w) · √

axy. Now build b up to h.)

17. Norm principle. Suppose K = F(
√
d) is a quadratic extension of F and define

s : K → F by s(x + y
√
d) = y. If α is a quadratic form over K let s∗(α) denote the

transfer to F . (See Lam (1973), p. 201 or Scharlau (1985), p. 50 for discussions of
this s∗.)

Lemma. s∗(α) is isotropic iff α represents some element of F •.

We also need the following analog of “Frobenius reciprocity”:
If ϕ is a form over F and α is a form over K then s∗(ϕE ⊗ α) � ϕ ⊗ s∗(α).
(1) Norm Principle. Let ϕ be a form over F and x ∈ K . Then

N(x) ∈ DF (ϕ) ·DF (ϕ) if and only if x ∈ F • ·DK(ϕK).
(2) Deduce Lemma 5.12.

(Hint. (1) ϕ ⊥ 〈−Nx〉ϕ is F -isotropic iff s∗(〈x〉ϕ) is F -isotropic.)

18. Examples. (1) Give an example of an unsplittable σ < Sim(q) where q is
anisotropic but is not similar to a Pfister form.

(2) Give an example of an unsplittable σ < Sim(8H ⊥ 16〈1〉) over Q where
dim σ = 8.

19. Common slot. Suppose α � 〈〈a, a′〉〉 and β � 〈〈b, b′〉〉 are 2-fold Pfister forms.
If α � β then there exists x ∈ F • such that α � 〈〈a, x〉〉 and β � 〈〈b, x〉〉.
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20. Contradiction? Conjecture. Suppose (σ, τ ) < Sim(q) is an (s, t)-family and q
represents a ∈ F •. Then there is a decomposition q = q1 ⊥ · · · ⊥ qn such that for
every i, (σ, τ ) < Sim(qi) is unsplittable, and such that q1 represents a.

(1) If q is a Pfister form the Conjecture is true. Suppose there is a Pfister form ϕ

such that: (σ, τ ) < Sim(q) iff ϕ || q. Then the Conjecture is true.
(2) Consider the set-up of (C, J )-modules and suppose V = U ⊥ U ′ where U is

an irreducible submodule. IfW ⊆ V is irreducible withW �⊆ U ′, thenW = U [f ] =
{u + f (u) : u ∈ U} is the graph of some C-homomorphism f : U → U ′. Now
specialize to the case that EndC(U) = F andU ′ ∼= U . Then any value represented by
an irreducible submoduleW must lie in (1+λ2)·DF (U) for someλ ∈ F . For a specific
case let (σ, τ ) = (〈1, 1〉, 〈1〉) and V � 〈〈1, 1〉〉. Then any irreducible submodule of V
represents only values in DF (〈〈1〉〉), and the Conjecture is false.

(3) Resolve the apparent contradiction between parts (1) and (2).

(Hint. (1) For the first statement, choose any unsplittable decomposition and let
b ∈ DF (q1). Then q � 〈ab〉q.)

21. Transfer ideals. Suppose (K, J ) is a field with involution, F is a subfield fixed
by J and t : K → F is an involution trace (that is, t is F -linear and t (ā) = t (a)). If
(V , h) is a (K, J )-hermitian space then the transfer t∗(V , h) = (V , t �h) is a quadratic
space over F . Let I((K, J )/F ) be the set of (isometry classes of) all such transferred
spaces. Then I((K, J )/F ) does not depend on the choice of t and its image in the
Witt ring W(F) is an ideal.

Suppose a, b ∈ F • and K = F(
√−a,√−b) is an extension field of degree 4.

Let J be the involution on K which induces non-trivial involutions Ja and Jb on
the subfields A = F(

√−a) and B = F(
√−b respectively. Let t : K → F be

an involution trace which induces the (unique) involution traces ta : A → F and
tb : B → F .

Proposition. I((K, J )/F ) = I((A, Ja)/F ) ∩ I((B, Jb)/F ).

(Hint. This is a restatement of Proposition 5.16. First check that I((A, Ja)/F ) =
M(〈〈a〉〉) and similarly for b.)

22. Forms of odd dimension. Assume the following result, due originally to Pfister
(1966).

Proposition. If dim δ is odd then δ is not a zero-divisor in the Witt ring W(F).

(1) If α is not hyperbolic then α || mH if and only if dim α || m. (Generalizing
(5.5) (3).)

(2) If a ∈ GF (α ⊗ δ) where dim δ is odd, then a ∈ GF (α).
(3) If ϕ is a Pfister form and ϕ || α ⊗ δ where dim δ is odd, then ϕ || α.
(4) If (σ, τ ) has unsplittables of dimension ≤ 4, the answer to the following

question is “yes”.

Odd Factor Question. If (σ, τ ) < Sim(α⊗ δ) where dim δ is odd, does it follow
that (σ, τ ) < Sim(α)?
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(Hint. (3) This seems to require the theory of function fields described in the appendix
to Chapter 9. Express α = α0 ⊥ kH where α0 is anisotropic. Apply (9.A.6) and
(5.5).)

23. Pfister factors. (1) If ϕ is a Pfister form and 〈1, b〉 ⊂ ϕ then ϕ � 〈〈b, c2, . . . , c〉〉
for some cj ∈ F •. This was proved in (5.2) (1).

Lemma. If ϕ is a 3-fold Pfister form and 〈1, a, b〉 ⊂ ϕ then ϕ � 〈〈a, b,w〉〉 for
some w.

(2) If dim α = dim β = 4, dα = dβ and c(α) = c(β) = 1 then α and β are
similar.

(Hint. (1) Given ϕ � 〈〈a, x, y〉〉 such that 〈x〉〈〈a〉〉 ⊥ 〈y〉〈〈a, x〉〉 represents b. We
may assume b = xu + yv for some u ∈ DF (〈〈a〉〉) and v ∈ DF (〈〈a, x〉〉). Then
ϕ � 〈〈a, xu, yv〉〉.

(2) Let dα = 〈d〉 and let ϕ = α ⊥ 〈d〉β. Then dim ϕ = 8, dϕ = 〈1〉 and c(ϕ) = 1
so that ϕ is similar to a Pfister form, by (3.20) (2). We may assume α = 〈1, a, b, abd〉
and find ϕ � 〈〈a, b,w〉〉 for some w. Then d is represented by 〈1〉 ⊥ 〈w〉〈〈a, b〉〉 so
that d = t2 +u for some t, u ∈ F • such that ϕ � 〈〈a, b, u〉〉. Then ϕ � 〈1, a, b, ab〉⊗
〈〈u〉〉 � α ⊗ 〈〈u〉〉. Cancel α to finish the proof.)

Notes on Chapter 5

In the proof of Lemma 5.2 we assumed that x, y �= 0, leaving the other cases to the
reader. Actually that non-zero case is sufficient if we invoke the Transversality Lemma
of Exercise 1.15

Lemma 5.5 and Proposition 5.6 follow Wadsworth and Shapiro (1977b). Lemma
5.5 is also treated in Szymiczek (1977). More recent results on round forms appear in
Alpers (1991) and Hornix (1992).

Exercise 5. These results on the level s(F ), due to Pfister, helped to motivate the
investigation of the multiplicative properties of quadratic forms. The second result
leads to examples of fields which have prescribed level 2m. See Exercise 9.11 below.

Exercise 7. See Elman and Lam (1973b), pp. 288–289. Compare Exercise 2.9.

Exercise 9. The different dimensions possible for unsplittable (〈a〉, 〈b〉)-modules
contrast with the Decomposition Theorem 4.1. The image of M(a, b) inW(F) is the
ideal A = ann(〈〈−a〉〉) ∪ ann(〈〈−b〉〉). It is known that A is generated by 1-fold and
2-fold Pfister forms. See Elman, Lam and Wadsworth (1979). For the case of global
fields see Exercise 11.6.

Exercise 12 (4) follows Wadsworth and Shapiro (1977b).

Exercise 17. The Norm Principle appears in Elman and Lam (1976), 2.13.

Exercise 19. Compare Exercise 3.10.
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Exercise 21. If E = F(
√
ab) with trivial involution then I(E/F) = M(ab) is

contained in M(〈〈a〉〉, 〈〈b〉〉). The analog of this proposition for biquadratic extensions
with trivial involution is proved in Leep and Wadsworth (1990).

Exercise 22. Proofs of the proposition appear in Lam (1973) on pp. 250 and 310,
in Scharlau (1985), p. 54, and in D. W. Lewis (1989).

Exercise 23. Compare Exercise 3.12(4) and the references given in Chapter 3. The
lemma here is a special case of Exercise 9.15.



Chapter 6

Involutions

If (C, J ) is an algebra with involution, when does a givenC-moduleV possess aλ-form
admitting C? A regular λ-form on V induces an adjoint involution on End(V ), and
every involution on End(V ) arises from some λ-form. This sign λ is called the “type”
of the involution. The question posed above is then equivalent to asking whether there
is an involution on End(V ) which is compatible with (C, J ). If C is central simple
it splits off as a tensor factor: End(V ) ∼= C ⊗ A, for some central simple algebra A.
The involutions on End(V ) compatible with (C, J ) are then exactly the maps J ⊗K ,
where K is an involution on A. The focus of our work has then moved to an analysis
of this algebra A and its involutions.

In this short chapter we describe the basic results about involutions on central
simple algebras, postponing the applications to later chapters. Those results on in-
volutions have appeared in various textbooks. In fact, most of the ideas we use go
back at least to the 1930s and are summarized in Albert’s book Structure of Algebras
(1939). We assume the reader is familiar with the general theory of central simple
algebras, including the Wedderburn Theorems, the Double Centralizer Theorem, the
existence of splitting fields, and the Skolem–Noether Theorem. However it seems
worthwhile to derive the tools we need concerning involutions. Further information
about algebras and involutions is available in the books by Rowen (1980), Scharlau
(1985), Knus (1988), and Knus et al. (1998).

If A is a ring we let A• denote the group of units, and if S ⊆ A we write S•
for the subset S ∩ A•. However, following standard practice we write GL(V ) rather
than End•(V ). If A is an F -algebra an involution J on A is defined to be an anti-
automorphism such that J 2 is the identity map. When F is the center of A then J
preserves F and the restriction is an involution on the field F . The involution is said
to be of the first kind or second kind, depending on whether or not it fixes F .

Unless explicitly stated otherwise, involutions in this book areF -linear. That is,
we assume they are of the “first kind”, inducing the identity map on the ground
field.

6.1 Definition. Let A be an F -algebra with involution J . If a ∈ A• define the map
J a : A → A by

J a(x) = a−1J (x)a for x ∈ A.
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6.2 Lemma. Let A, J and a be given as above and suppose A has center F. Then J a

is an involution if and only if J (a) = ±a. The element a is uniquely determined, up
to non-zero scalar multiple, by J and J a .

Proof. If J a is an involution then x = J aJ a(x) = a−1J (a)xJ (a−1)a for every
x ∈ A. Then a−1J (a) is central so that J (a) = εa for some ε ∈ F •. Applying J
again we find that ε2 = 1. The converse follows from the same formula. If J b = J a

for some b ∈ A• then a−1b is central and b ∈ aF •. ��

We now make a key observation: every involution on the split algebra End(V )
comes from a regular λ-form on V .

6.3 Lemma. Let V be an F -vector space.

(1) If B is a regular λ-form on V and f ∈ GL(V ), define the bilinear form
Bf : V × V → F by

Bf (x, y) = B(f (x), y)

for x, y ∈ V . If IB(f ) = εf where ε = ±1, then Bf is a regular ελ-form and
IBf = I

f
B . Every regular ελ-form on V arises from B in this way.

(2) If J is an involution on End(V ) then J = IB for some regular λ-form B on V.
This form B is uniquely determined, up to non-zero scalar multiple.

Proof. (1) It is easy to see that Bf is a regular ελ-form. To prove the formula for
the involutions note that Bf (x, h(y)) = B(IB(h)f (x), y) = Bf (f−1IB(h)f (x), y).
Recall that the map θB : V → V̂ is defined by 〈x|θB(y)〉 = B(x, y). If B ′ is any
regular ελ-form on V , let f = (θ

B ′ � θ−1
B )�. Then B ′ = Bf .

(2) Let B0 be a regular 1-form on V with adjoint involution I0. By the Skolem–
Noether Theorem and (6.2) we have J = I

f

0 for some f ∈ GL(V ) with I0(f ) = λf

for some λ = ±1. Then B = B
f

0 is a λ-form on V having IB = J . If B ′ is another
regular form having IB ′ = J , then (1) implies that B ′ = Bg for some g ∈ GL(V ) and
J = I

g
B = J g . Then g is in the center of End(V ), and B ′ is a scalar multiple of B. ��

An involution J is the adjoint involution of some λ-form on V . We define the type
of J to be this sign λ, and say that J is a λ-involution. Some authors say that J has
orthogonal type if its type is 1 and J has symplectic type if its type is −1.

The notion of type can be generalized by considering the behavior of involutions
under extension of scalars. If L/F is a field extension and J is an involution of the
F -algebra A, then J ⊗ 1L is an involution of the L-algebra A⊗ L. If A is a central
simple F -algebra then there are “splitting fields” L such that A⊗ L ∼= EndL(V ), for
some L-vector space V . One well-known consequence is that dimA is a square. The
algebra A is said to have degree n if dimA = n2 (and dimL V = n).
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6.4 Definition. Suppose (A, J ) is a central simple F -algebra with involution and L
is a splitting field for A. Then the involution J ⊗ 1L on A ⊗ L ∼= EndL(V ) is the
adjoint involution of some λ-form B on V . The type of J is this sign λ, and J is called
a λ-involution.

For a given splitting field L Lemma 6.3 implies that this sign λ is uniquely deter-
mined. Since any two splitting fields can be embedded in a larger field extension, it
follows that the type λ is independent of the choice of L. This independence is also
clear from the next lemma.

6.5 Lemma. Let A be a central simple F -algebra of degree n, so that dimA = n2.

(1) If J and J ′ are involutions onA then J ′ = J a for some a ∈ A• with J (a) = ±a.
Furthermore, J and J ′ have the same type if and only if J (a) = a.

(2) If J is an involution on A define Sε(A, J ) = {x ∈ A : J (x) = εx}, the subspace
of elements which are ε-symmetric for J . If J has type λ then dim Sε(A, J ) =
n(n+ελ)

2 .

Proof. (1) The existence and uniqueness (up to scalar multiple) of the element a follow
as in (6.3) (2) and (6.2). We may extend scalars to assume A ∼= End(V ) for some
vector space V . If J (a) = εa then by (6.3) J = IB for some λ-form B on V and
J ′ = IB ′ where B ′ = Ba is an ελ-form on V .

(2) We may assume that A = End(V ). The quadratic form n〈1〉 on V has adjoint
involution I which is just the transpose map on matrices. The dimensions are easily
found: dim Sε(A, J ) = n(n+ε)

2 . By (1) J = I a for some a ∈ A• with I (a) = λa.
The claim follows from the general observation that

Sε(A, Ia) = Sλε(A, I) · a. ��

We are working here in the category of “central simpleF -algebras with involution.”
If (A1, J1) and (A2, J2) are in that category we write ϕ : (A1, J1) → (A2, J2) to
indicate an F -algebra homomorphism ϕ : A1 → A2 which preserves the involutions:
J2 � ϕ = ϕ � J1. Similarity representations (as in Chapter 4) are examples of such
homomorphisms. Let us analyze some special cases of isomorphisms in this category.

6.6 Proposition. Suppose (Vi, Bi) is a regular λi-space for i = 1, 2. Let Ii denote the
involution IBi onEnd(Vi). Then (End(V1), I1) ∼= (End(V2), I2) if and only if (V1, B1)

and (V2, B2) are similar spaces.

Proof. Suppose h : (V1, B1) → (V2, B2) is a bijective similarity. Define the
map ϕ : End(V1) → End(V2) by: ϕ(f ) = hf h−1. To show that I2 � ϕ =
ϕ � I1 we check that for x, y ∈ V the expressions B2(I2(ϕ(f ))(h(x)), h(y)) and
B2(ϕ(I1(f ))(h(x)), h(y)) both reduce to the same value µ(h)B1(x, f (y)). Con-
versely suppose ϕ : (End(V1), I1) → (End(V2), I2) is an isomorphism. Since the



6. Involutions 111

dimensions are equal there is some linear bijection g : V1 → V2. By Skolem–
Noether, the map f �→ g−1ϕ(f )g is an inner automorphism of End(V1), so there
is a linear bijection h : V1 → V2 with ϕ(f ) = hf h−1. Define B ′ on V by setting
B ′(x, y) = B2(h(x), h(y)). Then h is an isometry (V1, B

′) → (V2, B2) and the
calculation above shows that IB ′ = ϕ−1 � I2 � ϕ = I1. Therefore B ′ = aB1 for some
a ∈ F •, and (V2, B2) � (V1, aB1). ��

When considering isomorphisms of two algebras with involution we often identify
the algebras and concentrate on the involutions.

6.7 Lemma. Let (A, J ) be a central simple F -algebra with involution, and let
a, b ∈ A•. Then (A, J a) ∼= (A, J b) if and only if b = rJ (u)au for some r ∈ F • and
u ∈ A•.

Proof. If α : (A, J a) → (A, J b) is the given isomorphism then α is an F -algebra
isomorphism and J b = α � J a � α−1. By Skolem–Noether there exists u ∈ A• such
that α(x) = u−1xu and the claim follows. The converse is similar. ��

For quaternion algebras we get a complete characterization of the involutions.

6.8 Lemma. Let A be a quaternion algebra with bar involution J0. Express
A = F + A0 where A0 is the set of pure quaternions.

(1) J0 is the only (−1)-involution on A.

(2) If J is a 1-involution then J = J e0 for some e ∈ A•
0. For any e ∈ A•

0, the only
involutions sending e �→ −e are J0 and J e0 .

(3) For J as above the value Ne is uniquely determined up to a square factor. De-
fine det(J ) = 〈Ne〉 in F •/F •2. Suppose J1, J2 are 1-involutions on A. Then
(A, J1) ∼= (A, J2) if and only if det(J1) = det(J2).

Proof. (1) By (6.5) J0 has type −1. Any involution J on A must equal J e0 for some
e ∈ A• with J0(e) = ±e. If J has type −1 then J0(e) = e so that e ∈ F • and J = J0.

(2) If J has type 1 then e ∈ A•
0 and J (e) = −e. The uniqueness follows since

dim S−(A, J ) = 1.
(3) If J = J e0 , the element e is determined up to a factor in F •. Hence the

norm Ne is determined up to a factor in F •2, and det(J ) is well defined. Suppose
J1 = J a0 and J2 = J b0 for some a, b ∈ A•

0. If J1 ∼= J2 use (6.7). Conversely suppose
det(J1) = det(J2). Altering b by a scalar we may assume that Na = Nb. Standard
facts about quaternion algebras (see Exercise 2) imply that there exists u ∈ A• such
that b = u−1au = (Nu)−1J (u)au and (6.7) applies. ��

Our next task is to show that the type behaves well under tensor products.
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6.9 Proposition. Let Ai be a central simple F -algebra with λi-involution Ji , for
i = 1, 2. Then J1 ⊗ J2 is a λ1λ2-involution on A1 ⊗ A2.

Proof. We may replace the field F by a splitting field to assume that Ai ∼= End(Vi)
and that Ji is the adjoint involution of a λi-form Bi on Vi . Suppose ψ is the natural
isomorphism

ψ : End(V1)⊗ End(V2) → End(V1 ⊗ V2).

To complete the proof we must verify that ψ carries IB1 ⊗ IB2 to IB1⊗B2 . To see
this recall that by definition, ψ(f1 ⊗ f2)(x1 ⊗ x2) = f1(x1) ⊗ f2(x2) whenever
fi ∈ End(Vi) and xi ∈ Vi . One can then check directly that ψ(IB1(f1) ⊗ IB2(f2))

does act as the adjoint of ψ(f1 ⊗ f2) relative to the form B1 ⊗ B2. ��

6.10 Corollary. Suppose (Vi, Bi) is a regular λi-space for i = 1, 2. Let Ii denote the
involution IBi on End(Vi).

(1) (V , B) is similar to (V1 ⊗ V2, B1 ⊗ B2) if and only if

(End(V ), IB) ∼= (End(V1), I1)⊗ (End(V2), I2).

(2) There is a homomorphism (End(V1), I1) → (End(V2), I2) if and only if (V1, B1)

“divides” (V2, B2) in the sense that (V2, B2) � (V1, B1) ⊗ (W,B) for some
λ1λ2-space (W,B).

Proof. For (1) apply (6.6) and (6.9). We prove a sharper version of (2) in the next
corollary. ��

6.11 Corollary. Suppose (C, J ) is a central simple algebra with involution andA ⊆ C

is a central simple subalgebra preserved by J . Then (C, J ) ∼= (A, J |A) ⊗ (C′, J ′)
for some central simple subalgebra C′ with involution J ′.

Suppose further that A is split so that (A, J |A) ∼= (End(U), IB) for some λ-form
B on U . If (V , q) is a quadratic (C, J )-module, one then obtains:

(V , q) � (U,B)⊗ (U ′, B ′) where (U ′, B ′) is some λ-space admitting (C′, J ′).

Proof. The algebraC′ is the centralizer ofA inC and the Double Centralizer Theorem
implies that C′ is central simple and A ⊗ C′ ∼= C. Since J preserves A it also
preserves C′ and induces some involution J ′ there. Since C is simple the given
homomorphism (C, J ) → (End(V ), Iq) is injective and we viewC as a subalgebra of
End(V ). Then as above there is a decomposition (C, J )⊗ (C′′, J ′′) ∼= (End(V ), Iq).
Therefore A ⊗ C′ ⊗ C′′ ∼= End(V ) and since A is split Wedderburn’s Theorem
implies thatC′ ⊗C′′ ∼= End(U ′) for someU ′. The involution J ′ ⊗J ′′ then induces an
involution IB ′ for some form B ′ on U ′. Therefore (End(U), IB)⊗ (End(U ′), IB ′) ∼=
(A, J |A)⊗ (C′ ⊗ C′′, J ′ ⊗ J ′′) ∼= (End(V ), Iq) and (6.10) (1) implies that (V , q) is
similar to (U,B)⊗(U ′, B ′). We may alterB ′ by a scalar to assume this is an isometry.
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Since q is quadratic and B is λ-symmetric, (6.9) implies that B ′ is λ-symmetric. By
construction (U ′, B ′) admits (C′, J ′). ��

This corollary gives another proof of the Eigenspace Lemma 2.10. See Exer-
cise 4(3) below. It also provides an interpretation of “Pfister factors” entirely in terms
of algebras, as follows.

6.12 Corollary. Suppose (V , q) is a quadratic space and a1, . . . , am ∈ F •. Then
〈〈a1, . . . , am〉〉 is a tensor factor of q if and only if there is a homomorphism
(Q1, J1)⊗· · ·⊗(Qm, Jm) → (End(V ), Iq)where each (Qk, Jk) is a split quaternion
algebra with involution of type 1 such that there existsfk ∈ Qk such thatJk(fk) = −fk
and f 2

k = −ak .

Proof. Note that (Qk, Jk) ∼= (End(F 2), Iϕk ) where ϕk � 〈〈ak〉〉. The equivalence
follows from (6.11). ��

Suppose C is a central simple F -algebra with an ε-involution J , and V is a
C-module. The relevant question is:

When is there a regular λ-form B on V admitting C?

The C-module structure provides a homomorphism π : C → End(V ) which is
injective since C is simple. We may view π as an inclusion C ⊆ End(V ) and let A
be the centralizer of C, that is, A = EndC(V ). By the Double Centralizer Theorem,
A is also a central simple F -algebra and

C ⊗ A ∼= End(V ).

In particular, the dimension of A can be found from dimC and dim V .
If V possesses a regular λ-form B admitting C then there is an involution IB

on End(V ) which is compatible with the involution J on C. That is, IB extends J
and in particular it preserves the subspace C ⊆ End(V ). Therefore IB preserves the
centralizer A and induces an involution K on A. Then J ⊗K = IB , and by (6.9) the
involution K has type ελ. Conversely if A possesses an ελ-involution K then J ⊗K

on C ⊗A ∼= End(V ) provides an involution on End(V ). Then by (6.3) and (6.9) this
involution must be IB for some regular λ-form B on V . This form B does admit C
since IB is compatible with J . Therefore, the existence of a λ-form B admitting C is
equivalent to the existence of an ελ-involution on A.

We can use these methods to prove that A must possess an involution.

6.13 Proposition. SupposeA andC are central simple algebras which are equivalent
in the Brauer group. If C has an involution then so does A.

Proof. By Wedderburn, C ∼= D ⊗ End(U) and A ∼= D ⊗ End(W) where D is some
F -central division algebra and U,W are F -vector spaces. Since End(W) always
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has a 1-involution it suffices to prove that D possesses an involution. Since J is an
anti-automorphism, we know C is isomorphic to its opposite algebra Cop, so that
C⊗C ∼= C⊗Cop is split. ThereforeC⊗D is also split, sayC⊗D ∼= End(V ). Since
D is a division algebra, V is an irreducible C-module. The dual V̂ is also a C-module
(as defined in Chapter 4) and has the same dimension as V . Therefore V̂ ∼= V and
Lemma 4.11 implies that V has some regular λ-form B admitting (C, J ), for some
λ = ±1. The adjoint involution IB on End(V ) preserves the subalgebra C, so it must
also preserve D, the centralizer of C. The restriction of IB to D is an involution. ��

Actually (6.13) is part of a famous theorem of Albert (1939). If A is a central
simple algebra admitting an involution then it certainly has an anti-automorphism. If
A has an anti-automorphism then there is an isomorphism A ∼= Aop, and therefore
[A]2 = 1 in the Brauer group Br(F ). Albert proved the converse.

6.14 Theorem. IfA is a central simple algebra with [A]2 = 1 thenA has an involution.

We refer the reader to the beautiful proof appearing as Theorem 8.8.4 in Scharlau
(1985). Several proofs have appeared in the literature. For example see Knus et
al. (1998), §3. The original version, given as Theorem 10.19 of Albert (1939), was
proved using the theory of crossed products.

6.15 Corollary. Let A be a central simple algebra with involution. There exist
involutions of both types on A unless A is a split algebra of odd degree.

Proof. Let D be the “division algebra part” of A. Then A ∼= D ⊗ End(U) for some
vector space U . By (6.14) the algebra D has an involution and there is always a
1-involution on End(U). Therefore there is an involution J on A which preserves
the subalgebras D and End(U). If there exists c ∈ A• with J (c) = −c then J and
J c have opposite type. If D �= F there exists d ∈ D with J (d) �= d, and we use
c = J (d) − d. If dimU is even then there exists a regular (−1)-form on U so there
must exist c ∈ GL(U) with J (c) = −c. The only exception is when D = F and
dimU is odd. ��

We noted in Chapter 4 that unsplittable (C, J )-modules are usually irreducible.
For a central simple algebra C the exceptions are now easy to describe.

6.16 Corollary. Let C be a central simple algebra with an ε-involution J and let V
be a C-module. The hyperbolic module Hλ(V ) is (C, J )-unsplittable if and only if
C ∼= End(V ) and λ �= ε. In this case all λ-symmetric (C, J )-modules are hyperbolic.

Proof. By Theorem 4.10 we know that Hλ(V ) is unsplittable if and only if V is
irreducible and possesses no regular λ-form admitting C. The “if” part is clear.
Conversely, we know that C ⊗ A ∼= End(V ) where A = EndC(V ). Then (6.9)
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implies that A has no ελ-involution. Since V is irreducible Schur’s Lemma implies
A is a division algebra and (6.15) implies that A = F . ��

The standard examples of central simple algebras with involution are quaternion
algebras and matrix algebras. So if A ∼= Mn(D) where D is a tensor product of
quaternion algebras, then A has an involution. In the 1930s Albert considered the
following converse question:

If D is an F -central division algebra with involution then must D be isomorphic
to a tensor product of quaternions?

There has been considerable work on this question since then. The next theorem
summarizes some major results in this area.

6.17 Theorem. Suppose D is an F -central division algebra with involution.

(1) D has degree 2m for somem. Ifm = 1 thenD is a quaternion algebra. Ifm = 2
then D is a tensor product of two quaternion algebras.

(2) There exists a division algebra D of degree 8 over its center F such that D has
an involution but has no quaternion subalgebras. For any such D the algebra
M2(D) is isomorphic to a tensor product of 4 quaternion algebras.

(3) [D] is a product of quaternion algebras in the Brauer group.

Here are references where the proofs of these statements can be found.
If deg(D) = n, Albert showed that [D]n = 1 in Br(F ), and that deg(D) and

the order of [D] involve the same prime factors. (See Albert (1939), Theorem 5.17,
p. 76, or Draxl (1983), Theorem 11, p. 66.) Consequently ifD has an involution then
[D]2 = 1 and deg(D) must be a 2-power. The stronger result when m = 2 is due to
Albert (1932), with various different proofs given by Racine (1974), Janc̆evskiı̆ (1974)
and Rowen (1978). Several proof are presented by Knus et al. (1998), §16. We prove
it in (10.21) below following Rowen’s method.

(2) Such examples were found by Amitsur, Rowen and Tignol (1979), where the
center is a purely transcendental extension of Q of degree 4. The criteria involved
in constructing this counterexample were generalized by Elman, Lam, Tignol and
Wadsworth (1982) and further counterexamples were found (all of characteristic 0).
The second statement was proved by Tignol (1978).

(3) This is part of an important theorem of Merkurjev (1981) which states that the
quaternion symbol map k2F → Br2(F ) is an isomorphism. This implies that some
matrix algebra over D is isomorphic to a tensor product of quaternion algebras.
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Exercises for Chapter 6

1. The type of JS . Let σ ∼= 〈1〉 ⊥ σ1 be a quadratic form of dimension s = 2m+ 1.
Then C = C(−σ1) is central simple of degree 2m and has the involution JS .

Lemma. JS has type 1 if and only if s ≡ ±1 (mod 8).

(1) Proof #1. Apply (6.5) directly by computing dim S+(C, JS) to be the sum
of all

(
n
j

)
where j ≡ 0, 3 (mod 4). Such sums can be evaluated using the binomial

theorem with appropriate roots of unity. (See Knuth (1968), 1.2.6, Exercise 38.)
(2) Proof #2. An explicit decomposition of C as a product of quaternions is given

in (3.14). Note that JS preserves each quaternion algebra, compute the type and apply
(6.9).

A third proof appears in (7.5) below.

2. Quaternion conjugates. LetA be a quaternion algebra over F and recall the usual
definitions of the norm and trace of an element a: Na = aā and T a = a + ā. If
a, b ∈ A we write a ∼ b to mean that a and b are conjugate, i.e. b = cac−1 for some
c ∈ A•.

Lemma. If a, b ∈ A then a ∼ b if and only if Na = Nb and T a = T b.

(Hint. See Exercise 4.10(2).)

3. Two Quaternions. Suppose (A, J ) is a central simple F -algebra with involution
and with dimA = 16. Suppose J is “decomposable”, in the sense that there exists
a J -invariant quaternion subalgebra Q1 ⊆ A. For every such subalgebra there is a
decomposition

(A, J ) � (Q1, J1)⊗ (Q2, J2).

(1) If J1 and J2 both have type 1, then (A, J ) ∼= (A1,K1)⊗ (A2,K2) where each
Aj is a quaternion algebra and each Kj is the “bar” involution, of type −1.

(2) Suppose J1 and J2 both have type −1. Then those quaternion subalgebras
Q1,Q2 are unique in a strong sense: If B is any J -invariant quaternion subalgebra on
which the induced involution has type −1, then either B = Q1 or B = Q2.

(Hint. (1) Re-arrange the generators i1 ⊗ i2, i1 ⊗ j2, etc.
(2) Compare Exercise 1.4.)

4. Explicit quaternions. Suppose (σ, τ ) is an (s, t)-pair where s + t = 2m +
1. Let (C, J ) be the associated Clifford algebra with involution. Let {e1, . . . , e2m}
be an orthogonal basis of the generating subspace such that J (ej ) = ±ej . Then
{e� : � ∈ F2m

2 } forms the derived basis of C. If e� and e� anticommute then they
generate a quaternion subalgebraQ preserved by J and C ∼= Q⊗C′ where C′ is the
centralizer of Q. Then J induces an involution J ′ on C′.

(1) (C′, J ′) is the Clifford algebra with involution associated to some (s′, t ′)-family
(σ ′, τ ′) where s′ + t ′ = 2m− 1.
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(2) Suppose (σ, τ ) < Sim(q) and Q is split. If J |Q has type −1 then q is
hyperbolic (but not necessarily (C, J )-hyperbolic). If J |Q has type 1 then (Q, J |Q) is
the Clifford algebra associated to some (2, 2)-family (〈1, a〉, 〈1, a〉) and q � 〈〈a〉〉⊗q ′
for some q ′ such that (σ ′, τ ′) < Sim(q ′). Moreover in this case we may assume
(s′, t ′) = (s − 1, t − 1).

(3) The Eigenspace Lemma 2.10 follows by these methods.
(4) Suppose σ < Sim(q) where σ = 〈1, a1, . . . , a2m〉. Decompose the associated

(C, J ) into quaternion subalgebras with involution:
(C, J ) ∼= (Q1, J1) ⊗ · · · ⊗ (Qm, Jm) as in (3.14). Then [Qk] = [dαk,−a2k−1a2k]
where αk = 〈1, a1, . . . , a2k−1〉 and Jk has type (−1)k . Deduce some consequences
of (2). For instance: If α ⊂ σ < Sim(q) where dim α ≡ 2 (mod 4), α �= σ and
dα = 〈1〉, then q is hyperbolic. (Compare Yuzvinsky (1985).) Many results of this
nature follow more easily from Exercise 2.5.

(5) Suppose C is split and J has type 1 so that (C, J ) ∼= (End(V ), Iq) where
(V , q) is a quadratic space of dimension 2m. Further suppose C ∼= Q1 ⊗ · · · ⊗Qm

where each Qk is a split quaternion algebra preserved by the involution J . Then q is
similar to a Pfister form.

5. Trace forms once more. (1) Let A be a central simple F -algebra with involution.
There is an algebra isomorphism ϕ : A⊗A ∼=−→EndF (A) defined as follows, using an
anti-autormophism ι of A: ϕ(a ⊗ b)(x) = axι(b) for every a, b, x ∈ A. Let J1 and
J2 be involutions of the same type on A so that J1 ⊗ J2 is a 1-involution on A ⊗ A,
inducing an involution IB on EndF (A). The isometry class of this symmetric bilinear
form B on A depends only on the isomorphism classes of the involutions J1, J2, and
is independent of the choice of ι.

(2) The form B : A× A → F can be chosen to satisfy:
B(axb, y) = B(x, J1(a)yJ2(b)) for every a, b, x ∈ A. Express B as a trace form.

(3) Suppose A = C(−σ1 ⊥ τ) is the Clifford algebra for an (s, t)-pair (σ, τ ) such
that s + t is odd. Let J1 = J2 be the corresponding (s, t)-involution. Then B is a
Pfister form.

(4) Let A =
(

−a,x
F

) ∼=
(−b,y

F

)
be a quaternion algebra, so that 〈〈a,−x〉〉 �

〈〈b,−y〉〉. Let J1 be the involution corresponding to (〈1, a〉, 〈x〉), and J2 the involution
for (〈1, b〉, 〈y〉). Then J1 ⊗ J2 yields IB on EndF (A). Then (A,B) � 〈〈a, xb〉〉 �
〈〈b, ya〉〉.
(Hint. (2) Let J1 = Jw2 forw ∈ A• with J1(w) = w. ThenB(x, y) = tr(wJ1(x)y) =
tr(wyJ2(x)).

(3) Use Exercise 3.14.)

6. ⊗ of irreducibles. (1) Suppose A1 and A2 are central simple F -algebras with
irreducible modules V1, V2, respectively. Then V1 ⊗V2 becomes anA1 ⊗A2-module
where the action is defined “diagonally”: (a1 ⊗ a2)(v1 ⊗ v2) = (a1v1)⊗ (a2v2). Let
Di be the “division algebra part” of Ai . That is Ai ∼= Mni (Di).
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Lemma. V1 ⊗ V2 is an irreducible A1 ⊗ A2-module if and only if D1 ⊗D2 is a
division algebra.

(2) Here is an analog to Corollary 6.11: Suppose (C, J ) ∼= (A1, J1)⊗ (A2, J2) in
the category of central simple algebras with involution. Suppose Vk is an Ak-module
so that V = V1 ⊗V2 is aC-module. If q is a quadratic form on V which admits (C, J )
does it follow that (V , q) ∼= (U1, q1) ⊗ (U2, q2) for some quadratic spaces (Uk, qk)
admitting Ak?

(Hint. (1) Count the dimensions. Suppose Di has degree di over F . Then
dim Vi = nid

2
i . If D1 ⊗ D2 ∼= Mr (D) for a division algebra D of degree d over

F then d1d2 = rd. Compute that an irreducible A1 ⊗ A2-module has dimension
n1n2rd

2. Then V1 ⊗ V2 is irreducible if and only if dim V1 ⊗ V2 = n1n2rd
2.)

7. Uniqueness of the forms. Suppose q and q ′ are regular quadratic forms on the
vector space V where dim V = n.

(1) Suppose S ⊆ End(V ) is a linear subspace which is a (regular) subspace of
similarities for both forms q and q ′. Must the induced forms σ , σ ′ on S coincide?

(2) Suppose S, T ⊆ End(V ) are linear subspaces and that (S, T ) is an (s, t)-family
relative to both q and q ′. Then the induced forms (σ, τ ) and (σ ′, τ ′) coincide. Express
n = 2mn0 where n0 is odd and suppose further that s + t ≥ 2m + 1. Then J = J ′
and q ′ = c · q for some c ∈ F •.

(Hint. (1) Let J, J ′ be the involutions and express J ′ = J g . For each f ∈ S,
σ ′(f ) = ζ ·σ(f ) for some ζ ∈ F with ζ n = 1. This ζ is independent of f . Are there
examples where ζ �= 1?

(2) LetC be the associated Clifford algebra and note that the similarity representa-
tion C → End(V ) is surjective. In fact this uniqueness holds true whenever the given
family is “minimal” as defined in the next chapter.)

Notes on Chapter 6

The analysis of central simple algebras with involution was covered in some depth by
Albert (1939), who used somewhat different terminology. Most of the results in this
chapter have appeared in other books. See especially Knus et al. (1998), §3.

The invariant det(J ) in (6.8) is generalized in (10.24) below.
The ideas for (6.11), Exercise 4 and Exercise 6 follow Yuzvinsky (1985).

Exercise 1. The computation of the type of the standard involution of a central
simple Clifford algebra was done by Chevalley (1954) using a different technique.
The dimension counting method is mentioned in Jacobson (1964).



Chapter 7

Unsplittable (σ, τ)-Modules

Given (σ, τ ), what is the dimension of an unsplittable (σ, τ )-module? We present a
complete answer when the associated Clifford algebraC is split or reduces to a quater-
nion algebra. We also characterize the (s, t)-pairs (σ, τ ) which have unsplittables of
minimal dimension.

Notations. Let (σ, τ ) be a pair of quadratic forms where dim σ = s, dim τ = t .
Assume σ represents 1 and define σ1 by σ = 〈1〉 ⊥ σ1. Define β = σ ⊥ −τ and
β1 = σ1 ⊥ −τ . Let C = C(−β1) be the associated Clifford algebra with involution
J = JS . Then dimC = 2s+t−1. Let z be an “element of highest degree” in C and
Z = F + Fz.

The Basic Sign Calculation (2.4) says: J (z) = z if and only if s ≡ t or
t + 1 (mod 4). A direct calculation shows that dβ = d(−β1) and c(β) = c(−β1).
As noted in (4.2) an unsplittable (σ, τ )-module has dimension 2k for some k where
s + t ≤ 2k + 2. When can equality hold?

7.1 Lemma. Suppose s + t = 2m + 2. Then (σ, τ ) < Sim(V , B) for some
2m-dimensional λ-space (V , B) (for some λ = ±1) if and only if dβ = 〈1〉, c(β) = 1
and s ≡ t (mod 4).

Proof. If such (V , B) exists letπ : C → End(V ) be the representation. By comparing
dimensions we must have C ∼= C0 × C0 and π(C0) = End(V ). Therefore dβ = 〈1〉
and c(β) = [C0] = 1. Furthermore π(z) must be a scalar, so that J (z) = z since
the involutions are compatible. The Basic Sign Calculation (2.4) then implies that
s ≡ t (mod 4).

Conversely since s + t − 1 is odd and c(β) = 1 we find [C0] = 1 so that
C0 ∼= End(V ) for some V with dim V = 2m. Since dβ = 〈1〉 the Structure The-
orem implies that C ∼= C0 × C0 and the restriction of J to C0 induces an involution
I on End(V ), corresponding to a λ-form B on V by (6.3). From s ≡ t (mod 4) we
find J (z) = z, so the composite map C → C0 ∼= End(V ) is compatible with the
involutions and (V , B) becomes a (C, J )-module. ��

Note. The conditions dim β = even, dβ = 〈1〉 and c(β) = 1 are equivalent to:
β ∈ J3(F ). (Recall that J3(F ) is the ideal of the Witt ring introduced at the end of
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Chapter 3, and that J3(F ) = I 3F by Merkurjev’s Theorem.) Since β = σ ⊥ −τ ,
those conditions say: σ ≡ τ (mod J3(F )), or equivalently: dim σ ≡ dim τ (mod 2),
dσ = dτ and c(σ ) = c(τ ).

7.2 Lemma. Let (V , B) be a λ-symmetric (C, J )-module where dim V = 2m and
s+ t = 2m+ 1. Then IB is the unique involution on End(V ) compatible with (C, J ).
Consequently every (C, J )-module of dimension 2m is C-similar to (V , B).

Proof. The uniqueness of the involution is clear since the representationC → End(V )
is bijective. If (V ′, B ′) is another (C, J )-module of dimension 2m then V ′ ∼= V as
C-modules. Let h : V → V ′ be a C-isomorphism and define the form B1 on V
by: B1(x, y) = B ′(h(x), h(y)). Then h is a C-isometry (V , B1) → (V ′, B ′) and
the forms here admit (C, J ). By the uniqueness of the involution, IB1 = IB so that
B1 = aB for some a ∈ F •. Then h is an a-similarity (V , B) → (V ′, B ′). (Compare
the proof of (6.6).) ��

This result is also true if s + t = 2m + 2, except that the C-module may have to
be “twisted” by the main automorphism of C to ensure that V ′ ∼= V . (There are two
irreducible C-modules as described in (4.12).)

The next step is to separate the types of the involutions used above. This refinement
of (7.1) is equivalent to computing the type of the involution JS .

7.3 Proposition. Suppose s+ t = 2m+2. Then (σ, τ ) < Sim(V , q)where (V , q) is a
quadratic space of dimension 2m if and only if dβ = 〈1〉, c(β) = 1 and s ≡ t (mod 8).
For the case of alternating forms the congruence changes to s ≡ t + 4 (mod 8).

Proof. Suppose that dβ = 〈1〉, c(β) = 1 and s ≡ t (mod 4). Then (σ, τ ) <
Sim(V , B) for some 2m-dimensional λ-space (V , B). If s ≡ t (mod 8) we will show
λ = 1. By (2.8) we have an example of an (m+1,m+1)-family (α, α) < Sim(W, ϕ)
where dimW = 2m. Since s ≡ t (mod 8) the Shift Lemma (2.6) produces (σ ′, τ ′) <
Sim(W, ϕ) where dim σ ′ = s and dim τ ′ = t . Extending scalars to an algebraic
closure K of F we see that σ � σ ′ and τ � τ ′ over K , and Lemma 7.2 implies that
(V , B) and (W, ϕ) are similar over K and we conclude that λ = 1. Analogously if
s ≡ t + 4 (mod 8) then λ = −1.

Conversely, suppose (σ, τ ) < Sim(V , q) where dim V = 2m. Then dβ = 〈1〉,
c(β) = 1 and s ≡ t (mod 4), by (7.1). If s ≡ t + 4 (mod 8) we obtain a contradiction
from the proof above. Therefore s ≡ t (mod 8). A similar argument works when
λ = −1. ��

7.4 Corollary. (1) If s + t is odd then C is central simple, and JS has type 1 iff
s ≡ t ± 1 (mod 8).

(2) If s+ t is even thenC0 is central simple, and the restriction J+ of JS has type 1
iff s ≡ t or t + 2 (mod 8).
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Proof. (1) Suppose s + t = 2m + 1. Extending to a splitting field we may assume
C ∼= End(V ) where dim V = 2m. If JS has type λ there is an induced λ-form B on V
so that (σ, τ ) < Sim(V , B). By the Expansion Lemma 2.5, (σ, τ ) expands to either
an (s + 1, t)-family or an (s, t + 1)-family in Sim(V , B). Apply (7.3).

(2) As in (3.9)C0 becomes a Clifford algebra and J+ is the involution correspond-
ing to an (s−1, t)-family. Now apply part (1) to compute the type. A similar argument
works in the case t ≥ 1, viewing C0 as the algebra for a (t, s − 1)-family. ��

So far in this chapter we have analyzed cases where c(β) = 1. We push these ideas
one step further by allowing c(β) = quaternion. This means that c(β) is represented
by a (possibly split) quaternion algebra in the Brauer group.

7.5 Corollary. (1) Suppose (σ, τ ) < Sim(V , B)where dim V = 2m. If s+t ≥ 2m−1
then c(β) = quaternion.

(2) If c(β) = quaternion and s + t ≤ 2m − 1 then there are λ-symmetric (σ, τ )-
modules of dimension 2m, for both values of λ.

Proof. (1) Generally s + t ≤ 2m + 2. We have seen that if s + 1 ≥ 2m + 1 then
c(β) = 1. If s + t = 2m then C0 is central simple and we have C0 ⊗ A ∼= End(V )
where A is the centralizer of C0. Counting dimensions we find dimA = 4 so that A
is a quaternion algebra and c(β) = [C0] = [A] = quaternion. If s + t = 2m − 1 a
similar argument works.

(2) Suppose s+ t is odd. It suffices to settle the case s+ t = 2m−1. If c(β) = [A]
where A is a quaternion algebra, then [C ⊗ A] = 1 so that C ⊗ A ∼= End(V )
where dim V = 2m. Since involutions of both types exist on A there are regular
λ-forms on V which admit C, for both values of λ. Suppose s + t is even. Then
s + t + 1 ≤ 2m− 1 and we can apply the odd case to (σ, τ ⊥ 〈1〉) after noticing that
c(β ⊥ 〈−1〉) = c(β) = quaternion. ��

Next we consider expansions of a given (s, t)-family, generalizing the Expansion
Lemma 2.5. Recall that when s + t is odd we can “adjoin z” to (S, T ) ⊆ Sim(V , q)
to form a family (S0, T0) which is one dimension larger. This larger family has
s0 ≡ t0 (mod 4) and dβ0 = 〈1〉. Furthermore the module V is not a faithful
C(0)-module, for the larger Clifford algebra C(0). This means that C(0) → End(V ) is
not injective, so that the element “z” for the larger family acts as a scalar. Conversely
every non-faithful family arises this way from a smaller family.

7.6 Expansion Proposition. Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family where
dim V = 2m and s+ t = 2m−1. Then (S, T ) expands to an (s′, t ′)-family (S′, T ′) ⊆
Sim(V , q) where s′ + t ′ = 2m+2. Moreover, any expansion of (S, T ) either is inside
(S′, T ′) or is obtained from (S, T ) by adjoining z.
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Proof. The Clifford algebra C is central simple of dimension 22m−2. The represen-
tation C → End(V ) is then injective and we view C as the subalgebra of End(V )
generated by S and T . By the Double Centralizer Theorem, C ⊗A ∼= End(V ) where
A = EndC(V ) is the centralizer ofC. Then dimA = 4 so thatAmust be a quaternion
algebra, and Iq preserves C so it induces an involution K on A.

The element z ∈ C anti-commutes with every element of S1 ∪ T and J (z) = ±z.
If a ∈ A and K(a) = ±a then az can be adjoined to S or T , depending on
whether Iq(za) = K(a)J (z) equals −za or za. When a = 1 we have the situa-
tion of the Expansion Lemma 2.5. To adjoin more than one dimension to (S, T ) we
need anticommuting elements of A, so let us stick to the pure quaternions A0. De-
fine the eigenspaces A0 = A+ ⊕ A− where K(x) = λx for x ∈ Aλ. Then either
(S + zA+, T + zA−) or (S + zA−, T + zA+) forms an (s′, t ′)-family in Sim(V , q).
Since dimA+ + dimA− = 3 we see that s′ + t ′ = s + t + 3 = 2m+ 2.

For the uniqueness suppose (S", T ") is some expansion of (S, T ), say (S", T ") =
(S ⊥ R−, T ⊥ R+). Then R− + R+ ⊆ zA since every element of R− + R+
anticommutes with S1 ∪ T . If R− +R+ = Fz then the family (S", T ") was obtained
just by adjoining z. Otherwise R− + R+ ⊆ zA0. Furthermore if f ∈ Rε then
K(f ) = ±f , and it follows that R− and R+ are contained in A+ and A−, in some
order. Therefore (S", T ") is contained in (S′, T ′). ��

Of course the exact dimension ofA+ (either 0 or 2 as in (6.8)), and whether zA+ is
adjoined to S or to T , depend on the values of s and t . We do not need to keep careful
track of this in the proof above because we know from (7.3) that s′ ≡ t ′ (mod 8).

Exactly when does a given pair (σ, τ ) possess a quadratic module of dimension
2m? We can now refine Theorem 2.11 and answer this question, provided the Witt
invariant is quaternion.

7.7 Theorem. Suppose c(β) = quaternion. Then there is a quadratic (σ, τ )-module
of dimension 2m if and only if one of the following holds:

(1) s + t ≤ 2m− 1.

(2) s+ t = 2m and either: dβ = 〈1〉 and s ≡ t (mod 4), or: c(β) is split byF(
√
dβ)

and s ≡ t − 2, t or t + 2 (mod 8).

(3) s + t = 2m+ 1, c(β) = 1 and s ≡ t + 1 or t − 1 (mod 8).

(4) s + t = 2m+ 2, dβ = 〈1〉, c(β) = 1 and s ≡ t (mod 8).

Proof. Suppose (σ, τ ) < Sim(V , q) where dim V = 2m. Then we know that s + t ≤
2m+ 2. If s + t ≤ 2m− 1 then (7.5) applies and if s + t = 2m+ 2 we use (7.3). If
s + t = 2m+ 1, then by the Expansion Lemma 2.5 we can expand (σ, τ ) to a larger
family (σ ′, τ ′). By (7.3) we know that dβ ′ = 〈1〉, c(β ′) = 1 and s′ ≡ t ′ (mod 8).
Since β ′ = β ⊥ 〈d〉 for some d ∈ F •, it follows that c(β) = c(β ′ ⊥ 〈−d〉) =
c(β ′)[dβ ′, d] = 1 and either s ≡ t + 1 or s + 1 ≡ t (mod 8).
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Now suppose that s+t = 2m. Choose a subfamily (σ0, τ0)where s0+t0 = 2m−1.
If the original family is non-faithful then it must be obtained from (σ0, τ0) by adjoining
z and we conclude from the Expansion Lemma that dβ = 〈1〉 and s ≡ t (mod 4).
Otherwise by (7.6) the family (σ, τ ) lies within a full expansion (σ ′, τ ′)where s′+t ′ =
2m+ 2. Then (s′, t ′) must equal (s + 2, t), (s + 1, t + 1) or (s, t + 2), and we know
that s ≡ t − 2, t or t + 2 (mod 8). Also β ′ = β ⊥ 〈x, y〉 for some x, y ∈ F •.
Then dβ = d(β ′ ⊥ 〈−x,−y〉) = 〈−xy〉 and c(β) = c(β ′ ⊥ 〈−x,−y〉) = [−x,−y]
which is split by the field F(

√−xy) = F(
√
dβ).

For the converse suppose (σ, τ ) is given satisfying one of those conditions. If
s + t = 2m− 1 we are done by (7.5) and if s + t = 2m+ 2 we apply (7.3). Suppose
s + t = 2m + 1. Letting d = −dβ we find that c(β ⊥ 〈d〉) = c(β)[dβ, d] = 1
since c(β) = 1. Let (σ ′, τ ′) equal either (σ ⊥ 〈d〉, τ ) or (σ, τ ⊥ 〈−d〉), according
as s ≡ t − 1 or t + 1 (mod 8). Then by (7.3) we have (σ, τ ) ⊂ (σ ′, τ ′) < Sim(V , q)
where dim V = 2m.

Suppose s + t = 2m. In the case dβ = 〈1〉 and s ≡ t (mod 8) we can remove
one dimension from σ or τ to get a subfamily (σ0, τ0) having s0 + t0 = 2m− 1 and
c(β0) = c(β) = quaternion. Then there is a quadratic (σ0, τ0)-module of dimension
2m, and the Expansion Lemma makes it a (σ, τ )-module. In the final case suppose
dβ = 〈d〉 and c(β) = [d, x] for some x ∈ F •. Define β ′ = β ⊥ 〈−x, xd〉 and
note that dβ ′ = 〈1〉 and c(β ′) = c(β)[−x, xd][d, d] = 1. Define a pair (σ ′, τ ′) by
enlarging (σ, τ ) appropriately to make β ′ � σ ′ ⊥ −τ ′ and s′ ≡ t ′ (mod 8). Then
again by (7.2) we get (σ, τ ) ⊂ (σ ′, τ ′) < Sim(V , q) where dim V = 2m. ��

The information in this theorem can be restated to provide the dimension of an
unsplittable (σ, τ )-module whenever c(β) = quaternion. We do this now, choosing
the notation so that in each case the smallest possible unsplittable dimension is 2m.
That is, m = δ(s, t) in the sense of (2.15).

7.8 Theorem. Let (σ, τ ) be a pair of quadratic forms where σ represents 1 and
dim σ = s and dim τ = t . Define β = σ ⊥ −τ and suppose c(β) = quaternion. Let
ψ be an unsplittable quadratic (σ, τ )-module.

If s ≡ t (mod 8) let s + t = 2m+ 2. Then m ≡ t − 1 (mod 4) and:

dimψ = 2m iff dβ = 〈1〉 and c(β) = 1.

dimψ = 2m+1 iff the first case fails and either dβ = 〈1〉 or c(β) is split by
F(

√
dβ).

dimψ = 2m+2 otherwise.

If s ≡ t ± 1 (mod 8) let s + t = 2m+ 1. Then m ≡ t or t − 1 (mod 4) and:

dimψ = 2m iff c(β) = 1.

dimψ = 2m+1 otherwise.

If s ≡ t ± 2 (mod 8) let s + t = 2m. Then m ≡ t ± 1 (mod 4) and:
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dimψ = 2m iff c(β) is split by F(
√
dβ).

dimψ = 2m+1 otherwise.

If s ≡ t + 4 (mod 8) let s + t = 2m. Then m ≡ t + 2 (mod 4) and:

dimψ = 2m iff dβ = 〈1〉.
dimψ = 2m+1 otherwise.

If s ≡ t ± 3 (mod 8) let s + t = 2m− 1. Then m ≡ t + 2 or t + 3 (mod 4) and:

dimψ = 2m.

Proof. These criteria can be read off directly from (7.7). ��

The pairs (σ, τ ) whose unsplittable quadratic modules are as small as possible
are the nicest kind. Recall from (2.15) that for given (s, t) the smallest unsplittable
module that an (s, t)-family can have is 2δ(s,t). We define an (s, t) pair (σ, τ ) to
be a minimal pair if its unsplittable quadratic modules have this smallest possible
dimension 2δ(s,t). Then (σ, τ ) is minimal if and only if c(β) = quaternion and (σ, τ )
satisfies the conditions for dimψ = 2m given in (7.8).

Remark. The dimensions of unsplittables for alternating (σ, τ )-modules can be found
by altering in (7.8) each of the congruences for s and t by 4 (mod 8). (See Exercise
2.6.) We can also define (σ, τ ) to be a (−1)-minimal pair if its unsplittable alternating
modules have the smallest possible dimension.

7.9 Proposition. Suppose (σ, τ ) is an (s, t)-pair where s ≥ 1, t ≥ 0 and where the
dimension of a quadratic unsplittable is 2m. Then (σ, τ ) is minimal if and only if one
of the following equivalent conditions holds:

(1) m = δ(s, t).

(2) Each unsplittable quadratic (σ, τ )-module remains unsplittable after any scalar
extension.

(3) s > ρt (2m−1).

(4) s + t =


2m+ 1 if m ≡ t

2m if m ≡ t + 1
2m− 1or 2m if m ≡ t + 2
2m− 1, 2m, 2m+ 1 or 2m+ 2 if m ≡ t + 3

(mod 4).

Proof. (1) ⇐⇒ (2) follows from the definition of “minimal”.
(3) ⇐⇒ (4): Use the formulas in (2.13). The lower bounds in (4) come from

condition (3). For the upper bounds note that there exists a (σ, τ )-module of dimension
2m so that s ≤ ρt (2m).

(2) �⇒ (3): Suppose (σ, τ ) is a minimal (s, t)-pair with an unsplittable module
(V , q) of dimension 2m. If s ≤ ρt (2m−1) then there is some (s, t)-pair (σ ′, τ ′)
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having a module of dimension 2m−1. Passing to an extension fieldK we may assume
(σ ′, τ ′) � (σ, τ ). But then (VK, qK) is not unsplittable, contrary to hypothesis.

(3) �⇒ (2): If s > ρt (2m−1) then (σ, τ )must be minimal since no (s, t)-pair can
have a module of dimension 2m−1. ��

For example the possible sizes of minimal (s, t) pairs with s ≥ t and having
unsplittables of dimension 8 are: (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (6, 0),
(7, 0), (8, 0). Every pair (s〈1〉, t〈1〉) is minimal (see Exercise 4). The minimal
pairs are characterized by a strong uniqueness property for their unsplittable modules.
Compare Lemma 7.2.

7.10 Proposition. An (s, t)-pair (σ, τ ) is minimal if and only if there exists a (σ, τ )-
module (V , q) such that Iq is the unique 1-involution on End(V ) compatible with
(C, JS).

Proof. Let (σ, τ ) < Sim(V , q), view V as a C-module and recall that Iq is a
1-involution on End(V ) compatible with (C, JS). Let A = EndC(V ) and K the
involution on A induced by Iq . Then the 1-involutions on End(V ) compatible with
(C, JS) are exactly the involutions I aq where a ∈ A• and K(a) = a. The unique
involution property is equivalent to requiring that S+(A,K) have dimension 1. Since
this condition is independent of scalar extension we may assume F is algebraically
closed.

If s ≤ ρt (2m−1) then there is a quadratic (C, JS)-module (W, ϕ) of dimension
2m−1. Let V = W ⊕ W and consider the forms ϕ ⊥ 〈b〉ϕ on V for b ∈ F •. For
different values of b these forms provide unequal 1-involutions on End(V ) compatible
with (C, JS).

Conversely suppose (σ, τ ) < Sim(V , q) where dim V = 2m and s > ρt (2m−1).
We will show that Iq is unique. If s + t ≥ 2m + 1 the uniqueness is clear since C
maps surjectively onto End(V ). Suppose s + t = 2m − 1 so that A = EndC(V )
is a quaternion algebra with C ⊗ A ∼= End(V ). Then Iq is unique iff K is the bar
involution on A, which occurs iffK has type −1. By (6.7) this is equivalent to saying
that JS has type −1 and by (7.4) it occurs iff s ≡ t±3 (mod 8). Since s+ t = 2m−1,
this congruence is the same as m ≡ t + 2 or t + 3 (mod 4).

The remaining case is when m ≡ t + 1 (mod 4) and s + t = 2m. Then s ≡
t + 2 (mod 8). As before we have C0 ⊗ A′ ∼= End(V ) for a quaternion algebra A′
having an induced involution K ′. Then A = EndC(V ) is the centralizer of z′ = π(z)

in A′. (Here π is the corresponding representation of C.) Since s ≡ t + 2 (mod 8),
the sign computation says that JS(z) = −z so that K(z′) = −z′. Then z′ is a pure
quaternion and A = F + Fz′. Therefore S+(A,K) = F so that Iq is unique. ��

The uniqueness of the involution Iq for a minimal pair (σ, τ ) implies that all
(σ, τ )-unsplittables are C-similar (with the standard exception when C is not simple).
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7.11 Corollary. Suppose (σ, τ ) is a minimal (s, t)-pair with unsplittable quadratic
module (V ,ψ). Then every unsplittable (σ, τ )-module is C-similar to (V ,ψ), (up to
a twist by the main automorphism when C is not simple). Consequently, (σ, τ ) <
Sim(α) if and only if ψ || α.

Proof. Suppose (V ′, ψ ′) is another (σ, τ )-unsplittable. ThenV andV ′ areC-modules,
dim V = dim V ′ = 2m and s > ρt (2m−1).

Claim. We may assume V ′ ∼= V as C-modules. For if C is simple the modules
are certainly isomorphic. Otherwise s + t is even and we know s + t ≥ 2m − 1. If
s+ t = 2m+2 the two module structures differ only by the usual “twist” as described
in (4.12), so we can arrange V ′ ∼= V . Suppose s + t = 2m. If there exist two
differentC-module structures then both cases in Theorem 7.7 (2) hold true. Therefore
s ≡ t (mod 8), dβ = 〈1〉 and c(β) = 1. But then there exists an (s, t)-family on some
quadratic space of dimension 2m−1 contrary to the hypothesis s > ρt (2m−1). This
proves the claim.

The argument is completed as in the proof of (7.2). ��

Suppose (σ, τ ) < Sim(q) is an (s, t)-family with s + t ≥ 2m− 1. If dim q = 2m

then the Expansion Proposition 7.6 implies that there exists an (m+ 1,m+ 1)-family
in Sim(q). This statement can fail if we allow dim q = 2mn0, as seen in Exercise 10.
However the assertion does generalize in some cases.

7.12 Corollary. Suppose (σ, τ ) < Sim(q) is an (s, t)-family and dim q = n = 2mn0
where n0 is odd. If s = ρt (n) is the maximal value, then (σ, τ ) is minimal pair and
there exists an (m+ 1,m+ 1)-family in Sim(q).

Proof. Since s = ρt (2m) > ρt (2m−1) the pair is minimal. Let (σ, τ ) < Sim(ψ) be
the unique unsplittable, so that dimψ = 2m and q � ψ ⊗ γ where dim γ is odd.
Since s + t ≥ 2m− 1 the Expansion Proposition 7.6 implies that Sim(ψ) admits an
(s′, t ′)-family where s′ + t ′ = 2m + 2. Then s′ ≡ t ′ (mod 8) and shifting produces
an (m+ 1,m+ 1)-family. ��

From Theorem 7.8 we can read off the criteria for an (s, t)-pair (σ, τ ) to be minimal.
It is interesting to display this calculation explicitly in the case of a single form σ over
the real field R.

7.13 Proposition. Let σ = p〈1〉 ⊥ r〈−1〉 over R. Then σ is not minimal if and only
if there is a dot (•) in the corresponding entry of the following table, indexed by the
values of p and r (mod 8).
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Proof. Using calculations of dσ and c(σ ) in Exercises 3.5 and 3.6 we can translate the
criteria in (7.8) to congruence conditions on dim σ and sgn σ . These yield the table.��

Remark. The proof also shows that σ is (−1)-minimal if and only if σ ⊥ 2H is
minimal. Some of the symmetries in this table are explored in Exercise 4.

At this point we can complete the classification of (s, t)-pairs which have hyper-
bolic type, as defined in (4.14) and discussed in (6.16). Recall that these are the pairs
(σ, τ ) such that the unsplittables are not irreducible. With our usual notations, this
says that an irreducible C-module does not have a symmetric bilinear form admitting
(C, J ). Some of the details of the proof below are left to the reader.

7.14 Proposition. Let (σ, τ ) be an (s, t)-pair such that σ represents 1, and
β = σ ⊥ −τ . Then (σ, τ ) is of hyperbolic type if and only if one of the follow-
ing conditions holds:

s ≡ t ± 3 (mod 8) and c(β) = 1.

s ≡ t ± 2 (mod 8) and dβ = 〈1〉.
s ≡ t + 4 (mod 8) and c(β) is split by F(

√
dβ).

Proof. Let C = C(−σ1 ⊥ τ) with involution J = JS as usual, and let V be
an irreducible C-module. Then (σ, τ ) has hyperbolic type iff there is no symmet-
ric bilinear form on V which admits (C, J ). Equivalently, there does not exist a
1-involution on End(V ) compatible with (C, J ).

Suppose s + t is odd so that C is central simple. Then A = EndC(V ) is a central
division algebra and C ⊗ A ∼= EndF (V ). By (6.13) there exists an involution K
on A, and J ⊗ K induces an involution I on End(V ). If A �= F then by (6.15) A
has involutions of both types and one of them yields a 1-involution I . If A = F

then type(I ) = type(J ). Then by (7.4) we see that (σ, τ ) has hyperbolic type iff
c(β) = [A] = 1 and s ≡ t ± 3 (mod 8).
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Suppose s+ t is even so thatC = C0 ⊗Z whereZ = F⊗Fz. LetA = EndC0(V ),
so thatA is central simple andC0 ⊗A ∼= EndF (V ). First assume that dβ = 〈d〉 �= 〈1〉.
Then Z ∼= F(

√
d) is a field and we may view Z ⊆ A.

Claim. There exist involutions K+, K− on A such that Kε(z) = εz.
This follows from an extension theorem for involutions due to Kneser, (see Scharlau

(1985), Theorem 8.10.1). The claim is also proved below in Exercise 10.13.
Let K = Kε with ε chosen to make K(z) = J (z). Define B = CentA(Z) =

EndC(V ) so that B is a division algebra with center Z. If there exists x ∈ B• with
K(x) = −x then K and Kx are involutions of both types on A and compatible with
(C, J ). Therefore if our 1-involution on End(V ) fails to exist then no such x exists,
and we see that K(z) = z and B = Z. From the dimensions of centralizers we see
that Amust be a quaternion algebra containing the subfield Z. Furthermore, J+ ⊗K

must have type −1. Since K(z) = z we know that s ≡ t (mod 4) and K has type 1.
Then J+ must have type −1 and s ≡ t + 4 (mod 8) by (7.4). Thus in this case when
s + t is even and dβ �= 〈1〉, we see that (σ, τ ) is of hyperbolic type iff c(β) = [A] is
split by F(

√
d) and s ≡ t + 4 (mod 8).

Finally suppose dβ = 〈1〉 so that z2 = 1 and z acts as ±1 on the irreducible module
V . Then V is an irreducible C0-module and A is a division algebra. If J (z) = −z
there can be no compatible involutions at all. This is the case s ≡ t+2 (mod 4) already
noted after (4.14). Otherwise s ≡ t (mod 4) so that J (z) = z and any involution K
on A is compatible with (C, J ). As before if A �= F there exist involutions of both
types onA. Then (σ, τ ) has hyperbolic type iffA = F and the induced involution J+
on C0 has type −1. By (7.4) this occurs iff c(β) = 1 and s ≡ t + 4 (mod 8). ��

Remark. The criteria for (σ, τ ) to be of (−1)-hyperbolic type are obtained by cycling
the congruences above by 4 (mod 8).

7.15 Corollary. Let σ = p〈1〉 ⊥ r〈−1〉 over R. Then σ is of hyperbolic type if and
only if there is a dot (•) in the corresponding entry of the following table, indexed by
the values of p and r (mod 8).

Proof. Apply the proposition and the calculations of dσ and c(σ ). ��
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Remark. From the symmetries of the tables we see that σ has hyperbolic type if and
only if σ ⊥ 4H does as well. Analysis of the proof shows that σ has (−1)-hyperbolic
type if and only if σ ⊥ 4〈1〉 has hyperbolic type.

If (S, T ) ⊆ Sim(V , q) is a pair of amicable subspaces, then so is (S′, T ′) =
(f Sg, f T g) for any f, g ∈ Sim•(V , q). Conversely if (S, T ) and (S′, T ′) are pairs of
amicable subspaces in Sim(V , q), how can we tell whether they are equivalent in this
way? One obvious necessary condition is that the induced pairs of quadratic forms
(σ, τ ) and (σ ′, τ ′) be similar. For minimal pairs that condition suffices.

7.16 Corollary. Suppose (S, T ) and (S′, T ′) are pairs of amicable subspaces of
Sim(V , q) which are similar as quadratic spaces: S′ � 〈c〉S and T ′ � 〈c〉T for some
c ∈ F •. If dim V = 2m and s > ρt (2m−1), then there exist f, g ∈ Sim•(V , q) such
that (S′, T ′) = (f Sg, f T g).

Proof. We may assume 1V ∈ S. Then there existsf ∈ S′ withµ(f ) = c. We compose
with f−1 to assume S′ � S and T ′ � T . The Clifford algebraC = C(−σ1 ⊥ τ)with
the involution J = JS then has two representations π and π ′ on (V , q) corresponding
to these two (s, t)-families. That is, (V , q) becomes a (C, J )-module in two ways. In
the notation used at the start of Chapter 4, the subspaces S̆, T̆ ⊆ C satisfy: S = π(S̆),
T = π(T̆ ), and S′ = π ′(S̆), T ′ = π ′(T̆ ).

Since s > ρt (2m−1) the (C, J )-module structures on V must be unsplittable. By
(7.11) these two unsplittables areC-similar (possibly after twistingπ in the non-simple
case). Let h : V → V be a C-similarity carrying the π -structure to the π ′-structure.
Then h(π(c)x) = π ′(c)h(x) for all c ∈ C and x ∈ V . That is, π ′(c) = h�π(c)�h−1.
Therefore S′ = hSh−1 and T ′ = hT h−1. ��

In some cases we can eliminate the restriction on dimensions in (7.16). We are
given (C, J ) and two quadratic (C, J )-modules (V , q) and (V ′, q ′) which are F -
similar, and hope to conclude that they are C-similar. First suppose C is simple, so
that V and V ′ are isomorphic as C-modules. They break into unsplittables

V = V1 ⊥ · · · ⊥ Vk and V ′ = V ′
1 ⊥ · · · ⊥ V ′

k.

Assuming (σ, τ ) is minimal we see from (7.11) that all Vi and V ′
j are C-similar.

In order to glue these similarities we must find the unsplittables together with C-
similarities gj : Vj → V ′

j such that the norms µ(gj ) are all equal. For example
suppose F = R and (V , q) is positive definite. Then any C-similarity between the
unsplittable components has positive norm so it can be scaled to yield a C-isometry,
and the “gluing” works. The same idea goes through in a few more cases over R (see
Exercise 8).

Suppose now that C is not simple, so that s + t is even and dσ = dτ . In order
to ensure that the two C-module structures on V are isomorphic, we require that the
two (s, t)-families have the same “character”. Let z = z(S1 ⊥ T ) be an element
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of highest degree with z2 = 1. As mentioned before (4.12) there are exactly two
irreducible C-modules V+ and V−, chosen so that z acts as ε1Vε on Vε. Any C-
module V is isomorphic to a direct sum of n+ of copies of V+ and n− copies of V−,
for some integers n+, n− ≥ 0. Then

dim V = (n+ + n−) · 2m and trace(π(z)) = (n+ − n−) · 2m,

where 2m = dim V+ = dim V−. Therefore two C-modules are isomorphic iff they
have the same dimension and the same value for trace(π(z)).

Since we are interested only in the spaces S, T and not in the representation π ,
we may “twist” π by replacing it by π � α where α is the canonical automorphism
of C. This operation leaves the subspaces S and T unchanged but it alters the sign
of trace(π(z)). Therefore the non-negative integer | trace(π(z))| depends only on the
given family (S, T ), and not on the choice of the representation π .

7.17 Definition. If (S, T ) ⊆ Sim(V , q) is an (s, t)-family, let z be an element of
highest degree in the Clifford algebra C, chosen so that if C is not simple then z2 = 1.
Define χ(S, T ) = | trace(π(z))|, the character of the family.

7.18 Lemma. If χ(S, T ) �= 0 then s ≡ t (mod 4), dσ = dτ and (S, T ) is maximal.

Proof. If (S, T ) can be expanded in Sim(V , q) then there exists f ∈ Sim•(V , q)
which anticommutes with π(z), so that trace(π(z)) = 0. If s + t is odd then (S, T )
can be expanded. If s ≡ t + 2 (mod 4) then J (z) = −z so that trace(π(z)) = 0.
Finally suppose s ≡ t (mod 4) but dσ �= dτ . Then Z = F + Fz ∼= F(

√
d) is

a field and the minimal polynomial for π(z) is x2 − d, which is irreducible. Then
trace(π(z)) = 0 since the characteristic polynomial must be a power of x2 − d. ��

7.19 Proposition. Suppose (V , q) is positive definite over the real field R. Suppose
(S, T ) and (S′, T ′) are (s, t)-families in Sim(V , q) such that χ(S, T ) = χ(S′, T ′).
Then (S′, T ′) = (hSh−1, hT h−1) for some h ∈ O(V , q).

Proof. Since the forms are positive definite over R we have S � S′ � s〈1〉 and
T � T ′ � t〈1〉 as quadratic spaces. For C and J as usual, we see that (V , q)
becomes a quadratic (C, J )-module in two ways. We may twist the representation
π by α, if necessary, to assume that trace(π(z)) = trace(π ′(z)). Then these two C-
module structures are isomorphic. The two (C, J )-modules can then be broken into
unsplittables

V = V1 ⊥ · · · ⊥ Vk and V ′ = V ′
1 ⊥ · · · ⊥ V ′

k

in such a way thatVi andV ′
i are isomorphicC-modules. Since (s〈1〉, t〈1〉) is a minimal

pair we know as in (7.11) that Vi and V ′
i are C-similar. The norm of such a similarity

must be positive in R so we may scale it to find a C-isometry hi : Vi → V ′
i . Glue
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these hi’s together to obtain an isometry h : (V , q) → (V , q) carrying the π -structure
to the π ′-structure. This completes the proof, as in (7.16). ��

7.20 Corollary. (1) Suppose (S, T ) ⊆ Sim(V , n〈1〉) over R. If χ(S, T ) = 0 then
(S, T ) can be enlarged to a family of maximal size. That trace condition always holds
if s �≡ t (mod 4).

(2) Every sum of squares formula of size [r, n, n] over R is equivalent to one over Z.

Exercises for Chapter 7

1. Maximal families. Suppose (S, T ) ⊆ Sim(V , B) is an (s, t)-family with associ-
ated representation π : C → End(V ).

(1) If π is non-faithful then (S, T ) is maximal. More generally if χ(S, T ) �= 0 (as
defined in (7.17)) then (S, T ) is maximal.

(2) Find examples of faithful maximal families. If (S, T ) ⊆ Sim(V , B) is maximal
and faithful, what can be said about the algebra A = EndC0(V )?

(Hint. (1) If f ∈ Sim•(V ) anticommutes with S1 + T then f must anticommute with
π(z).)

2. Why is c(β) split by F(
√

β)? In the situation of Theorem 7.7 suppose s+ t = 2m
and there is a quadratic module (V , q) of dimension 2m. LetZ ∼= F(

√
β) be the center

of the Clifford algebraC and supposeZ is a field. ThenC is a central simpleZ-algebra
and there is an induced Z-action on V . Then dimZ C = 22m−2, dimZ V = 2m−1 and
C ∼= EndZ(V ). Therefore 1 = [C]Z = [C0 ⊗ Z] and c(β) = [C0] is split by
F(

√
β). If s ≡ t (mod 4) then J (z) = z. Compute type(J ) as a Z-involution to see

s ≡ t (mod 8). Is there a similar argument when dβ = 〈1〉?

3. The following can be proved by methods of Chapter 2 or by applying (7.8).
(1) If the dimension of an unsplittable (σ, τ )-module is 2m then the dimension of

an unsplittable (σ ⊥ 〈a〉, τ ⊥ 〈a〉)-module is 2m+1.
(2) If (σ, τ ) is a minimal pair and α is any quadratic form, then (σ ⊥ α, τ ⊥ α)

is also minimal. If α represents 1 then (α, α) is minimal. If (σ, τ ) < Sim(ϕ) is
unsplittable, what is the unsplittable quadratic module for (σ ⊥ α, τ ⊥ α)?

(3) For any s ≥ 1, t ≥ 0 the pair (s〈1〉, t〈1〉) is minimal with (unique) unsplittable
module 2m〈1〉, where m = δ(s, t).

4. (1) If (σ, τ ) is minimal and ϕ = 〈〈a, b, c〉〉 then (σ ⊥ ϕ, τ) is also minimal.
(2) If (σ, τ ) is minimal and a ∈ DF (σ) then (〈a〉σ, 〈a〉τ) is also minimal.
(3) If σ is minimal then σ ⊥ 8〈1〉, σ ⊥ 8〈−1〉 and σ ⊥ H are minimal. If σ is

also isotropic then 〈−1〉σ is minimal. Interpret these in terms of the symmetry of the
table in (7.13).
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(4) Repeat the observations above using “hyperbolic type” rather than “minimal”.
Observe from (7.13) and (7.15) that the entry (p, r) is marked in one chart iff (p,−r)
is marked in the other. Is there any deeper explanation of this coincidence?

(Hint. (1) Express ϕ = α ⊥ (dα)α where α = 〈1, a, b, c〉 and shift.)

5. Suppose (σ, τ ) has the property that every unsplittable (σ, τ )-module is similar to
a Pfister form. Then (σ ⊥ α, τ ⊥ α) has the same property.

6. Suppose (σ, τ ) is a pair where σ represents 1 with unsplittables of dimension
2m. Then there exist subforms σ ′ ⊂ σ and τ ′ ⊂ τ such that σ ′ represents 1 and
(σ ′, τ ′)-unsplittables have dimension 2m−1.

7. (1) Given an (s, t)-pair (σ, τ ) where σ = 〈1〉 ⊥ σ1, let β = σ ⊥ −τ . For which
a ∈ F • is the (s + 1, t)-pair (σ ⊥ 〈a〉, τ ) minimal? This occurs if and only if one of
the following conditions holds:

s ≡ t or t − 2 (mod 8) and c(β) = [dβ,−a].

s ≡ t + 1 or t − 3 (mod 8) and c(β) is split by F(
√−a · dβ).

s ≡ t + 2 or t + 4 (mod 8) and c(β)[dβ,−a] = quaternion.

s ≡ t + 3 (mod 8) and dβ = 〈−a〉 and c(β) = quaternion.

s ≡ t − 1 (mod 8) and dβ = 〈−a〉 and c(β) = 1.

(2) For what (s, t) is it possible that a non-minimal (s, t)-pair can be expanded to
a minimal (s + 1, t)-pair?

(3) Similarly analyze the cases where (σ, τ ⊥ 〈b〉) is minimal.

(Hint. (2) δ(s + 1, t) = 1 + δ(s, t) if and only if s − t ≡ 0, 1, 2, 4 (mod 8).)

8. Conjugate subspaces. (1) Suppose {1V , f2, . . . , ft } is an orthogonal basis of some
subspace of Sim(V , q). Define

S = span{1V , f2, f3, f4} and S′ = span{1V , f2, f3, f2f3}.
Then S′ cannot be expressed as f Sg for any f, g ∈ GL(V ).

(2) Explain Exercise 1.16 using the more abstract notions of (7.16). The strong
conjugacy in that exercise seems to require a Clifford algebra C such that c̄ · c ∈ F

for every c ∈ C.
(3) Supposeσ , q are forms overR such thatσ is minimal and both forms represent 1.

Suppose S, S′ ⊆ Sim(V , q) with 1V ∈ S ∩ S′, S � S′ � σ , and χ(S) = χ(S′).
Question. For which σ , q does it follow that S′ = hSh−1 for some h ∈ O(V , q)?
From (7.19) we know it is true when σ , q are positive definite. The same argument

proves the statement when σ is positive definite and dim σ �≡ 0 (mod 4), (in those
cases the algebra C is simple). If σ is of hyperbolic type the statement is certainly
true. It fails in all other cases.
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(Hint. Ifσ is definite andC is not simple let (Vε, ψε) be the positive definite irreducible
(C, J )-modules. Let V = ψ1 ⊥ 〈−1〉ψ1 ⊥ ψ−1 ⊥ 〈−1〉ψ−1 and V ′ = ψ1 ⊥ ψ1 ⊥
〈−1〉ψ−1 ⊥ 〈−1〉ψ−1 to get a counterexample. If σ is indefinite and regular type, an
irreducible (C, J )-module (W,ψ) admits no C-similarity of norm −1. Then ψ ⊥ ψ

and ψ ⊥ 〈−1〉ψ are C-isomorphic and F -isometric, but are not (C, J )-similar. (Use
the Cancellation Theorem mentioned after (4.10).)

9. Spaces not containing 1. Suppose S ⊆ Sim(V , q), choose g ∈ S• and define the
character χ(S) = χ(g−1S) following (7.17) for spaces containing 1V .

(1) This value is independent of the choice of g.
(2) Generalize the definition and (7.19) to amicable pairs (S, T ) ⊆ Sim(V , q).

(Hint. Recall z(S) defined in Exercise 2.8. Suppose dim S ≡ 0 (mod 4) and dS = 〈1〉.
If we choose z(S)2 = 1 then χ(S) = | trace(z(S))|.)

10. Non-minimal behavior. There exists an example where (〈1, a〉, 〈x〉) < Sim(V , q)
where dim q = 12 but such that Sim(q) does not admit any (3, 3)-family. Compare
this with the assertion in (7.12). Find an explicit example over R.

(Hint. Recall (5.7) (4) and find q such that 〈〈a〉〉 || q, x ∈ GF (q) but q does not have a
2-fold Pfister factor.)

11. Unique unsplittables. A pair (σ, τ ) is defined to have unique unsplittables if all
unsplittable quadratic (σ, τ )-modules are (C, J )-similar, possibly after twisting the
associated representation in the non-simple case.

(1) If (σ, τ ) < Sim(ϕ) is unsplittable and (σ, τ ) has unique unsplittables, then:
(σ, τ ) < Sim(q) if and only if ϕ || q.

(2) Suppose (σ, τ ) is an (s, t)-pair where s + t is odd, and suppose (σ, τ ) <
Sim(V , q) is unsplittable. Let C be the associated Clifford algebra with centralizer
A, so that C ⊗ A ∼= End(V ) and J ⊗ K ∼= Iq as usual. Then (σ, τ ) has unique
unsplittables iff every f ∈ A with K(f ) = f can be expressed as f = r ·K(g)g for
some g ∈ A and r ∈ F .

12. Let (σ, τ ) be an (s, t)-pair and suppose c(β) = [−x,−y] �= 1.
If s ≡ t±3 (mod 8) then (σ, τ ) has unique unsplittables, as defined in Exercise 11.
If s ≡ t ± 1 (mod 8) then the (C, J )-similarity classes of unsplittables are in

one-to-one correspondence with DF (〈x, y, xy〉)/F •2.

(Hint. Let (V , q) be unsplittable so that C ⊗ A ∼= End(V ) where A = (−x,−y/F )
with induced involution K . If s ≡ t ± 3 then K = bar. Otherwise every (C, J )-
unsplittable arises from a 1-involution on A. These are the involutions Ke

0 where
K0 = bar and e ∈ A•

0. Apply (6.8) (3).)

13. By Exercise 3.15(3) we know that 〈〈a1〉〉⊗〈1, a2, . . . , am〉 < Sim(〈〈a1, . . . , am〉〉).
This module is unsplittable iff m is odd. That space of dimension 2m is minimal
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iff m �≡ 0 (mod 4). From Corollary 7.11 we find that: If m �≡ 0 (mod 4) and
if the forms 〈〈a1〉〉 ⊗ 〈1, a2, . . . , am〉 and 〈〈b1〉〉 ⊗ 〈1, b2, . . . , bm〉 are similar, then
〈〈a1, . . . , am〉〉 � 〈〈b1, . . . , bm〉〉.

14. More on trace forms. (1) Lemma. Let C = C(−α ⊥ τ) where dim α = a,
dim τ = t and a+ t = 2m is even. Let J = JA,T be the involution extending the map
(−1) ⊥ (1) on −α ⊥ τ . Then J has type 1 iff a − t ≡ 0 or 6 (mod 8).

Recall the notation P(α) from Exercise 3.14.
(2) Suppose α and τ are forms as above and c(−α ⊥ τ) = 1.

If a − t ≡ 2 or 4 (mod 8), the Pfister form P(α ⊥ τ) is hyperbolic.

If a − t ≡ 0 or 6 (mod 8), then P(α ⊥ τ) � q ⊗ q for some form q.

(3) If dim q = 2m and there is an (m+ 1,m+ 1)-family in Sim(q) then q ⊗ q is
a Pfister form.

(4) Corollary. If dim σ = 2m and σ ∈ I 3F then

P(σ) �
{

2m〈1〉 ⊗ ψ if m ≡ 0
hyperbolic if m �≡ 0

(mod 4).

(Hint. (2) ForC andJ as above define the trace formBJ onC byBJ (x, y) = �(J (x)y).
By Exercise 3.14, (C, BJ ) � P(α ⊥ β) as quadratic spaces. Also C ∼= End(V )
where dim V = 2m and J induces an involution IB on End(V ) for some λ-form
B. The induced map � : End(V ) → F is the scalar multiple of the trace map
having �(1V ) = 1. By Exercise 1.13 it follows that (C, BJ ) � (V ⊗ V,B ⊗ B). If
a − t ≡ 2 (mod 8) then B is an alternating form by (1), and B ⊗ B is hyperbolic.
Otherwise B corresponds to a quadratic form q.

(4) Let ϕ be a 2m-fold Pfister form. Then ϕ � q ⊗ q iff ϕ � 2m〈1〉 ⊗ψ for some
m-fold Pfister form ψ . This can be proved using:

Lemma. If ϕ and γ are Pfister forms and γ ⊂ ϕ then ϕ � γ ⊗ δ where δ is a
Pfister form.

See Exercise 9.15 or Lam (1973), Chapter 10, Exer. 8.)

Notes on Chapter 7

The idea of using a chart as in (7.13) follows Gauchman and Toth (1994), §2.
The equivalence and expansion results in (7.18) and (7.19) were done over R by

Y. C. Wong (1961) using purely matrix methods.

Exercise 13. Wadsworth and Shapiro (1977b) used a different method to prove
that if ϕ is a round form and if ϕ ⊗ (〈1〉 ⊥ α) and ϕ ⊗ (〈1〉 ⊥ β) are similar then
ϕ ⊗ P(α) � ϕ ⊗ P(α). The main tool for this proof is Lemma 5.5 above.



Chapter 8

The Space of All Compositions

The topological space Comp(s, n) of all composition formulas of type Rs×Rn → Rn

turns out to be a smooth compact real manifold. After deriving general properties of
Comp(s, n), we focus on the spaces of real composition algebras. For example the
space Comp(8, 8) has 8 connected components, each of dimension 56. Since these
algebras have such a rich structure we compute the dimensions by another method, by
considering autotopies, monotopies and the associated Triality Theorem.

The spaces Comp(s, n) are accessible since they are orbits of certain group actions.
This analysis requires the reader to have some familiarity with basic results from the
theory of algebraic groups. For instance we use properties of orbits and stabilzers,
and we assume some facts about the the orthogonal group O(n) and the symplectic
group Sp(n) (e.g. their dimensions and number of components).

We begin with the general situation, specializing to the real case later. Let (S, σ )
and (V , q) be quadratic spaces over the field F , with dimensions s, n respectively. To
avoid trivialities, assume s > 1 so that n is even. Define the sets

Bil(S, V ) = {m: S × V → V : m is bilinear}
Comp(σ, q) = {m ∈ Bil(S, V ) : q(m(x, y)) = σ(x) · q(y) for every x ∈ S, y ∈ V }

Then Bil(S, V ) is an F -vector space of dimension sn2 and Comp(σ, q) is an affine
algebraic set (since it is the solution set of the Hurwitz Matrix Equations). If the base
field needs some emphasis we may write CompF (σ, q), etc.

The product of orthogonal groups O(σ )× O(q)× O(q) acts on Comp(σ, q) by:

((α, β, γ ) •m)(x, y) = γ (m(α−1(x), β−1(y))) for x ∈ S and y ∈ V.
This definition can be recast using the notation of similarities. If m ∈ Comp(σ, q)
define

m̂ : S → Sim(V , q) by m̂(x)(y) = m(x, y).

Then m̂ is a linear isometry from (S, σ ) to the subspace Sm = image(m̂) ⊆ Sim(V , q).
This m̂ determines the compositionm and we think of m̂ as an element of Comp(σ, q).
The group action becomes:

((α, β, γ ) • m̂)(x) = γ � m̂(α−1(x)) � β−1 for x ∈ S.
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The subspace Sm is carried to γ � Sm � β−1 by this action.

8.1 Lemma. If 〈a〉q � q then Comp(σ, q) ∼= Comp(〈a〉σ, q).

Proof. Given h ∈ Sim•(q) with µ(h) = a. If m ∈ Comp(σ, q) then sending m to
h �m provides the isomorphism. ��

We view (S, σ ) as a quadratic space with a given orthogonal basis {e1, e2, . . . , es}.
In the applications it will be Rs or Cs with the standard orthonormal basis. We may
assume that σ represents 1. For if Comp(σ, q) �= ∅, choose a ∈ DF (σ) ⊆ GF (q) and
apply (8.1). Then we may assume that the given basis was chosen so that σ(e1) = 1.

8.2 Definition. Comp1(σ, q) = {m ∈ Comp(σ, q) : m̂(e1) = 1V }.

We define Bil1(S, V ) similarly and note that it is a coset of a linear subspace of
dimension (s − 1)n2 in the vector space Bil(S, V ).

8.3 Lemma. Comp(σ, q) ∼= O(q)× Comp1(σ, q), an isomorphism of algebraic sets.

Proof. Define ϕ : O(q)× Comp1(σ, q) → Comp(σ, q) by ϕ(g,m0) = g � m0. The
inverse map is given by ϕ−1(m) = (m̂(e1), m̂(e1)

−1 � m). Note that ϕ and ϕ−1 are
polynomial maps since m̂(e1)

−1 = Iq(m̂(e1)). ��

The action of O(q) × O(q) on Comp(σ, q) becomes the following action on
O(q)× Comp1(σ, q):

(β, γ ) • (g, m̂0) = (γgβ−1, β " m̂),
where β " m̂ denotes the conjugation action of O(q) on Comp1(σ, q) given by:

(β " m̂)(x) = β � m̂ � β−1 for x ∈ S.
To analyze this conjugation action we introduce the “character” ofm ∈ Comp1(σ, q),
as mentioned in the discussion before (7.17).

The map m̂ : S → Sim(V ) sends e1 �→ 1V . The associated Clifford algebra
C = C(−σ1) is generated by {e2, . . . , es}, and m̂ induces a similarity representation
πm : C → End(V ) where πm(ei) = m̂(ei). This makes V into a C-module which we
denote by Vm. Define the element z = e2 . . . es ∈ C as usual. When s ≡ 0 (mod 4)
and dσ = 〈1〉 then C is not simple and admits an irreducible unsplittable module. In
that case we normalize our choice of basis to ensure that z2 = 1. That normalization
is automatic if σ � s〈1〉 and an orthonormal basis is chosen.

8.4 Definition. If m ∈ Comp1(σ, q) define the character χ(m) = trace(πm(z)).
Define

Comp1(σ, q; k) = {m ∈ Comp1(σ, q) : χ(m) = k}.
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If s �≡ 0 (mod 4) or if dσ �= 〈1〉 we know that χ(m) = 0. Generally, χ(m) is an
even integer between −n and n. As we mentioned in the discussion before (7.17):

χ(m) = χ(m′) if and only if Vm ∼= Vm′ as C-modules.

It easily follows that χ(m) = χ(β " m), so that the O(q)-orbit of m is inside
Comp1(σ, q;χ(m)).

This character can be extended to the whole set Comp(σ, q) by using the isomor-
phism ϕ in (8.3). Then the O(q)×O(q)-orbit ofm is contained in Comp(σ, q;χ(m)).
See Exercise 1 for more details.

8.5 Lemma. Suppose σ = s〈1〉, q = n〈1〉 and F is R or C. Then O(q) acts
transitively on Comp1(σ, q; k), and O(q)× O(q) acts transitively on Comp(σ, q; k).

Proof. If m,m′ ∈ Comp1(σ, q; k) then Vm ∼= Vm′ as C-modules. As in (7.19), these
two structures are C-isometric, so there exists β ∈ O(V , q) such that β � π(c) =
π ′(c) � β for every c ∈ C. Then β � m̂(x) = m̂′(x) � β for every x ∈ F s and hence
β " m̂ = m̂′. The second transitivity follows using (8.3). ��

To analyze the O(q)-orbit Comp1(σ, q; k) we gather information about the stabi-
lizer subgroup. Let us return briefly to the more general situation with σ = 〈1〉 ⊥ σ1
and q over F . For m ∈ Comp1(σ, q), define an automorphism group

Aut(m) = {β ∈ O(q) : β "m = m}
= {β ∈ O(q) : β � f � β−1 = f for every f ∈ Sm}.

Since the C-module structure Vm is determined by the elements of Sm,

Aut(m) = O(V , q) ∩ EndC(V ).

8.6 Lemma. (1) Suppose s is odd and let A = EndC(V ). Then A is central simple,
C ⊗ A ∼= End(V ), and Iq induces an involution “∼” on A, which has type 1 if and
only if s ≡ ±1 (mod 8). Then

Aut(m) ∼= {a ∈ A : ã · a = 1}.
(2) Suppose s is even and let A = EndC0(V ). Then A is central simple, C0 ⊗A ∼=

End(V ), and Iq induces an involution “∼” on A, which has type 1 if and only if
s ≡ 0, 2 (mod 8). Let y = πm(z) ∈ A, where z = z(S) ∈ C. Then y2 ∈ F •,
ỹ = (−1)s/2 · y and

Aut(m) ∼= {a ∈ A : ay = ya and ã · a = 1}.

Proof. The properties of A have been mentioned earlier, the type calculation follows
from (7.4) and (6.9), and the description of Aut(m) is a restatement of the definition.

��
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The group Aut(m) is an algebraic group (it is an algebraic set defined over F and
the multiplication and inverse maps are defined by polynomials). We can determine
the dimension of Aut(m) by extending scalars and computing that dimension in the
case F is algebraically closed.

Since we are primarily concerned with the sums-of-squares forms over R and C,
let us simplify the notations a little and define:

Comp1(s, n) = Comp1(s〈1〉, n〈1〉),
and similarly for Comp1(s, n; k), Bil(s, n), etc. We also use the standard notation
O(n) in place of O(n〈1〉). The stabilizer Aut(m) ⊆ O(n) changes only by conjugation
in O(n) as m varies in the orbit Comp1(s, n; k). Then as an abstract algebraic group,
Aut(m) depends only on s, n and k and we sometimes write it as Aut(s, n; k).

8.7 Proposition. Let m ∈ Comp1(s, n; k).
(1) If s is odd let ε = type(∼) = (−1)(s

2−1)/8. Then: dim Aut(s, n; k) = n2

2s −
εn

2(s+1)/2 .

(2) If s ≡ 2 (mod 4) then: dim Aut(s, n; k) = n2

2s .

(3) If s ≡ 0 (mod 4) let ε = type(∼) = (−1)s/4. Then: dim Aut(s, n; k) =
n2+k2

2s − εn

2s/2
.

Proof. We may assume F is algebraically closed. Choose m ∈ Comp(s, n; k).
(1) From (8.6) we know that A ∼= Mr (F ) where: r · 2(s−1)/2 = n. If ε = 1 then

Aut(m) ∼= O(r) has dimension 1
2 · r(r − 1). If ε = −1 then Aut(m) ∼= Sp(r) has

dimension 1
2 · r(r + 1).

(2) We have A ∼= Mr (F ) where: r · 2
s
2 −1 = n, and we may assume y ∈ A

satisfies y2 = 1 and ỹ = −y. Let W be an irreducible A-module so that dimW = r ,
A ∼= End(W), and tilde induces an ε-symmetric form b : W × W → F . The
(±1)-eigenspaces of y are then totally isotropic subspaces of W , each of dimension

r/2. Using dual bases for these eigenspaces the Gram matrix of b is

(
0 1
ε1 0

)
.

Representing a ∈ A as a block matrix

(
a1 a2
a3 a4

)
we have ã =

(
a�

4 εa�
2

εa�
3 a�

1

)
.

If a ∈ Aut(m) then ay = ya implies that a =
(
a1 0
0 a4

)
. Therefore Aut(m) ∼={(

c 0
0 c−�

)
: c ∈ GLr/2(F )

}
and the dimension result follows.

(3) We have A and r as above, and y ∈ A satisfies y2 = 1 and ỹ = y. Then V is
a direct sum of r (isomorphic) irreducible C0-modules

V = V1 ⊕ · · · ⊕ Vr where dim Vi = 2
s
2 −1 = n

r
.
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Therefore A = EndCo(V ) ∼= Mr (F ), since the only C0-linear maps from Vi to Vj are
scalars. Each Vi is an irreducible C-module, and these come in two non-isomorphic
versions: V+ and V−, depending on the action of π(z). Suppose there are pε copies
of Vε, so that p+ + p− = r . We may replace z by −z if necessary (adjusting via
the automorphism α of C) to assume p+ ≥ p−. Then k = χ(m) = trace(π(z)) =
(p+ − p−) · n

r
. In the representation A ∼= Mr (F ) the element y = π(z) ∈ A

has matrix

(
1p+ 0
0 −1p−

)
. If a ∈ A commutes with y then a =

(
a+ 0
0 a−

)
where aε ∈ Mpε (F ). As before (A,∼) ∼= (End(W), Ib) for some ε-symmetric space
(W, b). Since ỹ = y the eigenspaces of y are orthogonal, and b induces regular
forms on them. If ε = 1 then Aut(m) ∼= O(p+) × O(p−) while if ε = −1 then
Aut(m) ∼= Sp(p+)× Sp(p−). Therefore dim Aut(m) = 1

2 · (p+(p+ − ε)+p−(p− −
ε)) = 1

4 · ((p+ +p− − ε)2 + (p+ −p−)2 − 1) and a calculation completes the proof.
��

Let us review some of the properties of group actions. If G is a group acting
on a set W and x ∈ W we write G · x = {gx : g ∈ G} for the orbit of x and
Gx = {g ∈ G : gx = x} for the stabilizer (isotropy subgroup) of x. The map
G → G · x induces a bijection between the left cosets of Gx and the orbit G · x:

G/Gx ↔ G · x.
At this point we assume that the reader knows some of the basic theory of algebraic
groups as presented, for example, in Humphreys (1975). Suppose thatG is an algebraic
group,W is a (nonempty) algebraic variety over C andG acts morphically onW (i.e.
the mapG×W → W is a morphism of varieties). In general an orbitG · x might be
embedded in W in some complicated way, but it can still be viewed as a variety.

8.8 Lemma. SupposeH is a closed subgroup of an algebraic groupG. ThenG/H is
a nonsingular variety with dim(G/H) = dim(G)− dim(H), and with all irreducible
components of this dimension. If G acts morphically on a variety W , then Gx is a
closed subgroup ofG, the orbitG ·x is a nonsingular, locally closed subset ofW , and
the boundary of G · x is a union of orbits of strictly lower dimension. Furthermore,

dimG · x = dimG− dimGx.

Proof. See Humphreys (1975), §8, §4.3, and §12. ��

A set Y is “locally closed” if it is the intersection of an open set and a closed set, in
the Zariski topology. Equivalently, Y is an open subset of its closure Ȳ . The boundary
of Y is the closed set Ȳ − Y . As one consequence, the closureG · x is a subvariety of
W with the same dimension as the orbit G · x.
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These ideas from algebraic geometry require the base field to be algebraically
closed. In some cases we can extract geometric information about the real part of a
complex variety.

8.9 Lemma. Suppose W is a nonsingular algebraic variety over C, which is defined
over R. If the set of real points W(R) is nonempty then it is a smooth real manifold
and dimW(R) as a manifold coincides with dimW as a variety.

Proof outline. These statements about W(R) are well-known to the experts, but I
found no convenient reference. The ideal of W is I(W) = {f ∈ C[X] : f (ζ ) =
0 for every ζ in W }. Here X = (x1, . . . , xn) is the set of indeterminates. Let
f1, . . . , ft be a set of generators for I(W) and consider the t × n Jacobian matrix
J = ( ∂fi

∂xj

)
. Recall the classical Jacobian criterion for nonsingularity: W is nonsin-

gular if and only if for every ζ ∈ W , rank(J (ζ )) = n− dimW . (See e.g. Hartshorne
(1977), p. 31.)

SinceW is defined over R we can arrange fi ∈ R[X], (see Exercise 2). Now view
fi as a real valued C∞-function on Rn andW(R) as a “level surface” of {f1, . . . , ft }.
By the Implicit Function Theorem the constant rank of the Jacobian matrix J at points
ζ ∈ W(R) implies that W(R) is a smooth real manifold whose dimension equals
dimW . ��

8.10 Proposition. Suppose 1 < s ≤ ρ(n). Then Comp1
C
(s, n) is a nonempty, non-

singular algebraic variety. Each nonempty Comp1
C
(s, n; k) is a variety with two

irreducible components both of dimension equal to

1

2
n(n− 1)− dim Aut(s, n; k).

Moreover each nonempty Comp1
R
(s, n; k) is a smooth compact, real manifold with two

connected components. The dimension of each component equals the value displayed
above. Similar statements hold for Comp

C
(s, n; k) and Comp

R
(s, n; k).

Proof. The set is nonempty by the basic Hurwitz–Radon Theorem, and it is certainly
an affine algebraic set, hence a closed subvariety of Bil(s, n). Most of the remaining
statements follow using (8.3), (8.5), (8.8) and (8.9). Since O(n) has two components
given by the cosets of O+(n), the statement that there are two components is equivalent
to:

If m ∈ Comp1(s, n; k) then Aut(m)is contained in O+(n).

Since Aut(m) = O(n) ∩ EndC(V ), every f ∈ Aut(m) centralizes the algebra C and
hence commutes with every element of the subspaceSm ⊆ Sim(V , n〈1〉). This implies
f ∈ O+(n), by the result of Wonenburger (1962b) mentioned in Exercise 1.17(4). The
compactness follows since O(n,R) is a compact group acting transitively on the set
of real points, as in (8.5). ��
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Here is a list of these dimensions in a few small cases. If s ≡ 0 (mod 4) the
maximality of s forces the representation to be non-faithful so that χ(m) = ±n. In
those cases Comp1(s, n) = Comp1(s, n; n) ∪ Comp1(s, n; −n).

(s, n) dim Aut(s, n) dim Comp1(s, n) dim Bil1(s, n)
(2, 2) 1 0 4
(4, 4) 3 3 48
(8, 8) 0 28 448
(9, 16) 0 120 2048

The values in the first two columns follow from (8.7) and (8.10).
The dimension of Comp(s, n) can be determined using (8.3) (see Exercise 4). For

example

dim Comp(4, 4) = 9 and dim Comp(8, 8) = 56.

The proposition also determines the number of connected components. For exam-
ple Comp

R
(4, 4) = O(4) × Comp1

R
(4, 4) and Comp1

R
(4, 4) = Comp1

R
(4, 4; 4) ∪

Comp1
R
(4, 4; −4). Since O(4) and Comp1(4, 4; ±4) each have two components,

Comp
R
(4, 4) has eight connected components, each of dimension 9. Similarly

Comp
R
(8, 8) has eight components each of dimension 56.

Let us now consider the set of all subspaces of similarities, as a subset of the
Grassmann variety of all s-planes in n-space. Recall that the character χ(S) was
defined in (7.17) and if S′ = γ · S · β−1 then χ(S′) = χ(S). Some information is lost
in passing from χ(m) to χ(S). In fact, if S = Sm, then χ(S) = |χ(m)|.

8.11 Definition. Sub(s, n) is the set of all linear subspaces S ⊆ Sim(n〈1〉) such that
dim S = s and the induced quadratic form on S is regular.

Sub(s, n; k) = {S ∈ Sub(s, n) : χ(S) = k},
Sub1(s, n) = {S ∈ Sub(s, n) : 1V ∈ S}

and Sub1(s, n; k) is defined similarly.

As usual, Sub(s, n) = Sub(s, n; 0) when s �≡ 0 (mod 4). If F = R the regularity
condition on the induced quadratic form is automatic. We may view Sub(s, n; k)
and Sub1(s, n; k) as nonsingular algebraic varieties, since they are orbits of algebraic
group actions. Note that sending m to Sm = image(m̂) provides a surjection

ϕ : Comp(s, n; k) → Sub(s, n; |k|).

The action of O(n)×O(n) on Comp(s, n; k) descends to the action (β, γ )•S = γ Sβ−1

on Sub(s, n; |k|).
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8.12 Lemma. Suppose k ≥ 0 and Comp(s, n, k) is nonempty.

dim Sub(s, n; k) = dim Comp(s, n; k)− s(s − 1)

2
,

dim Sub1(s, n; k) = dim Comp1(s, n; k)− (s − 1)(s − 2)

2
.

Proof. Given S ∈ Sub(s, n; k), the fiber ϕ−1(S)= {m ∈ Comp(s, n; k) : Sm = S} ∼=
{m̂ : Rs → S an isometry} ∼= O(s), and the first dimension formula follows. For the
second formula, restrict ϕ to ϕ1 : Comp1 → Sub1 and compute the fiber ϕ−1

1 (S) ∼=
{m̂ : Rs → S an isometry with m̂(e1) = 1V } ∼= O(s − 1). ��

For example, dim Sub1(4, 4) = 0. In fact we have already seen (in Exercise 1.4)
that Sub1(4, 4) contains exactly two elements.

8.13 Proposition. Sub1
R
(s, n; k) and SubR(s, n; k) are smooth real manifolds. If

Sub1
R
(s, n; k) is nonempty, then it has two connected components and SubR(s, n; k)

has four connected components.

Proof. The fact that these spaces are manifolds follows from the general theory as
before. Since the components of O(n) are the cosets of O+(n), the O(n)× O(n) orbit
SubR(s, n; k) breaks into four O+(n) × O+(n) orbits, each of which is connected.
Given S ∈ Sub1

R
(s, n; k), these four orbits are represented by:

S βSβ−1

βS Sβ

where β ∈ O−(n), i.e. det(β) = −1. We must show that these four orbits are disjoint.
For if that is done certainly SubR(s, n; k) has those four components. Moreover the
two orbits of O+(n) acting (by conjugation) on Sub1

R
(s, n; k) are contained in the

larger orbits represented by the first row above, and hence are also disjoint.
Recall from Exercise 1.17 that if f ∈ S or if f ∈ βSβ−1 then f is proper, and

hence if f ∈ βS or f ∈ Sβ then f is not proper. Therefore the orbits in the top row
above are disjoint from the orbits in the bottom row. To complete the argument we
invoke the following lemma, whose proof is surprisingly tricky. ��

8.14 Lemma. Suppose 1V ∈ S ⊆ Sim(V , q) and s = dim S > 2. If β, γ ∈
Sim•(V , q) and γ Sβ−1 = S then β and γ are proper.

See Exercise 12 for an outline of the proof.

Finally we turn to a case of particular interest: real division algebras. Recall that
a real division algebra is defined to be a finite dimensional R-vector spaceD together
with an R-bilinear mapping m : D × D → D such that: m(x, y) = 0 only when
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x = 0 or y = 0. No associativity or commutativity is assumed; an identity element is
not assumed to exist. Each of the classical composition algebras R, C, H, O is a real
division algebra satisfying many algebraic properties. There are several classification
results, each assuming that the division algebra satisfies some algebraic property and
then listing all the possibilities up to isomorphism. Here are some classical examples
when A is a real division algebra with 1:

• If A is associative then A ∼= R, C or H (Frobenius 1877).

• If A is a composition algebra then A ∼= R, C, H or O (Hurwitz 1898).

• If A is alternative then A ∼= R, C, H or O (Zorn 1933).

• If A is commutative then A ∼= R or C (Hopf 1940).

Actually in 1898 Hurwitz proved that dimA = 1, 2, 4, 8 and only stated the
uniqueness of the solutions. This uniqueness was worked out by his student E. Robert
(1912). The classification results mentioned above are described further in Koecher
and Remmert (1991), §8.2, §8.3, §9.3. The Hopf theorem was proved using topology,
as outlined in Exercise 12.12.

More recent work in this direction has been done with quadratic division algebras,
with flexible ones (satisfying the flexible law: xy ·x = x ·yx), with algebras having a
large derivation algebra, and with various other types. Flexible real division algebras
were classified by Benkart, Britten and Osborn (1982). A survey of such results
appears in Benkart and Osborn (1981).

Can general real division algebras be classified is some reasonable way? Even
determining the possible dimensions for such algebras is a deep question. In 1940
Stiefel and Hopf used algebraic topology to prove that if D is an n-dimensional real
division algebra then n = 2m for some m. (See (12.4) below.) Finally in 1958 Bott’s
Periodicity Theorem was used to prove that n must be 1, 2, 4 or 8. This theorem later
became an corollary of topological K-theory. (See Exercise 0.8 and (12.20).)

Let Div(n) be the set of n-dimensional real division algebras. Then Div(n) is
nonempty only when n = 1, 2, 4 or 8. It is fairly easy to describe Div(1) and Div(2)
explicitly. The challenge is to describe the sets Div(4) and Div(8), and possibly to find
some general algebraic classifications. Useful results in this direction remain elusive.
Let us consider four algebraic methods for constructing examples of division algebras.

(1) Isotopes. Two F -algebrasD,D′ are isotopic if there exist bijective linear maps
f, g, h : D → D′ such that

f (xy) = g(x) · h(y) for every x, y ∈ D.

IfD is a division algebra then any isotope ofD is also a division algebra. Then isotopy
is an equivalence relation on Div(n). This concept was introduced in Steenrod’s work
on homotopy groups and was formalized by Albert (1942b). Every division algebra is
isotopic to one with an identity element (see Exercise 0.8). Then Div(1) and Div(2)
each have only one isotopy class, but Div(4) and Div(8) are much more complicated.
The concept of isotopy (or isotopism) arises naturally in several contexts. For example,
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two division rings are isotopic if and only if they coordinatize isomorphic projective
planes. See Hughes and Piper (1973), p. 177.

(2) Mutations. A mutation of an F -algebra D with parameters r, s ∈ F is given
by altering the multiplication of D to mr,s : D ×D → D defined by

mr,s(x, y) = rxy + syx.

If D is a composition division algebra over R then this mutation is also a division
algebra with identity, provided r �= ±s. The “bar” map is still an involution for the
mutation and if r + s = 1 the elements of the mutation have the same inverses as they
do in D. (Compare Lex (1973).)

(3) Bilinear perturbations. Suppose D is a composition algebra over R and
β : D × D → R is a bilinear form. Define mβ : D × D → D by mβ(x, y) =
xy + β(x, y) · 1. This furnishes a division algebra if and only if the quadratic
form Q(x) = x · x̄ + β(x, x̄) is anisotropic. For example let � : D → R be the
trace map �(x) = 1

2 · (x + x̄). If D is a division algebra, then β(x, y) = �(xy)

or �(x)�(y) yield division algebras. We also get division algebras from β(x, y) =
t1 · �(xy) + t2 · �(xȳ) + t3 · �(x)�(y) for certain values of the real parameters t1, t2,
t3. The examples in Hähl (1975) are of this type.

(4) Twisted quaternions. Choosing b ∈ C, define an algebra Hb = C ⊕ Cj , with
multiplication given as follows. For r, s, u, v ∈ C define

(r + sj) · (u+ vj) = (ru+ bsv̄)+ (rv + sū)j.

Then Hb is a 4-dimensional R-vector space with basis {1, i, j, ij}, 1 ∈ C is the identity
element, jx = x̄j for every x ∈ C and j2 = b. If b < 0 then Hb

∼= H, the associative
quaternion algebra. If b �∈ R then Hb is a division algebra (use the formula to analyze
zero-divisors) and Hb is not associative: in fact, j · j2 �= j2 · j . Even though every
non-zero element of Hb has a left inverse and a right inverse, those inverses can differ.
For example, (b−1j) · j = 1 but j · (b−1j) �= 1. The twisted quaternion algebras
discussed by Bruck (1944) are of this type. Such algebras are studied more generally
by Waterhouse (1987).

If the entries of the multiplication table of a real division algebra are altered by
small amounts then the result yields another division algebra. That is, the collection
Div(n) ofn-dimensional real division algebras is an open set. Generally, let Bil(r, s, n)
be the set of all bilinear maps f : Rr × Rs → Rn. It is a vector space of dimension
rsn. Such a map f is defined to be nonsingular if f (x, y) �= 0 whenever x �= 0
in Rr and y �= 0 in Rs . Let Nsing(r, s, n) be the set of all nonsingular elements in
Bil(r, s, n). Then Div(n) = Nsing(n, n, n).

8.15 Lemma. Nsing(r, s, n) ⊆ Bil(r, s, n) is an open set.

Proof. If f ∈ Bil(r, s, n) then f (Sr−1, Ss−1) ⊆ Rn is a compact subset, since the
spheres Sk are compact. Define ω(f ) to be the distance between 0 and this compact
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subset. The map ω : Bil(r, s, n) → [0,∞) is continuous and Nsing(r, s, n) is the
complement of ω−1(0). ��

It is usually difficult to determine whether Nsing(r, s, n) is nonempty. (See Chap-
ter 12.) But if it is nonempty, then Nsing(r, s, n) is an open set of dimension rsn. For
the classical cases of Div(n) we obtain:

dim Comp(4, 4) = 9 dim Div(4) = 64
dim Comp(8, 8) = 56 dim Div(8) = 512.

Therefore the algebraic constructions of division algebras (e.g. by isotopy or mutation)
cannot produce all the possible division algebras of dimension 4 or 8. For example
the set of algebra multiplications which are isotopic to a fixed octonion algebra forms
one orbit of an action of GL(8)× GL(8)× GL(8). This orbit has dimension at most
3 · 82 = 192 inside Div(8). Compare Exercise 18.

Let us now consider real division algebras with a (2-sided) identity element. To
facilitate the discussion we simplify and extend some of the notations. As before let
e = e1 = (1, 0, . . . , 0) be the first element of the standard basis of Rn. Define:

Bil(n) = {m : Rn × Rn → Rn such that m is bilinear};
Bil1(n) = {m ∈ Bil(n) : e is a left identity element for m};

Bil11(n) = {m ∈ Bil(n) : e is a 2-sided identity element for m}.
Then m ∈ Bil(n) is a multiplication on Rn (setting x ∗ y = m(x, y)). It is a division
algebra if: m(x, y) = 0 implies x = 0 or y = 0. It is a composition algebra if it
satisfies the norm property: |m(x, y)| = |x| · |y| for every x, y ∈ Rn. Let us use
similar notations for the sets of division algebras and composition algebras:

Div(n) Div1(n) Div11(n)

Comp(n) Comp1(n) Comp11(n).

Of course these are nonempty only when n = 1, 2, 4 or 8. Note that Bil(n) is a
vector space of dimension n3; Bil1(n) is a coset of a linear subspace with dimension
(n − 1)n2; and Bil11(n) is a coset of a linear subspace of dimension (n − 1)2n. We
know that Div(n) is an open subset of Bil(n). Similarly, Div1(n) ⊆ Bil1(n) and
Div11(n) ⊆ Bil11(n) are open subsets.

What is the dimension of Comp11(n) and how many connected components does it
have? We present the answer to this question twice, using different methods. The first
uses the direct group action ideas mentioned above. The second approach employs
the Triality Theorem.

8.16 Propositon. Comp11(4) is a set of two points.
Comp11(8) is a nonsingular algebraic variety with two components each isomor-

phic to 7-dimensional projective space.
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Proof. Let R be the base field (although more general fields F will work here as well).
Suppose m ∈ Comp11(4). Then xy = m(x, y) makes R4 into a composition algebra
with identity element e = e1. The mappingm is determined by the values eiej where
{e1, . . . , e4} is the given orthonormal basis. We know that e2

2 = e2
3 = e2

4 = −1 and
e2e3 = ±e4. The other values eiej are determined by that choice of sign since m is
associative. Then either m is the standard quaternion multiplication, m(x, y) = xy,
or else m comes from the opposite algebra: m(x, y) = yx. These are the two points
in Comp11(4). (Exercise 1.4 is relevant here.)

If m ∈ Comp11(8) ⊆ Comp1(8, 8) we defined the character χ(m) as trace(π(z)),
using the associated representation π : C → End(V ) and the central element z
satisfying z2 = 1. Then π(z) = ±1 and χ(m) = ±8. Then Comp11(8) is a union
of two disjoint components Comp11(8,+) ⊆ Comp1(8, 8; 8) and Comp11(8,−) ⊆
Comp1(8, 8; −8). Any m ∈ Comp11(8) has an associated operation m′ defined:
m′(x, y) = m(y, x). Since χ(m′) = −χ(m), those two spaces are isomorphic.

Recall that O(8) acts transitively on the space Comp1(8, 8; 8) as in (8.5). Let
m0(x, y) = x · y = xy be the standard octonion multiplication. If m(x, y) = x ∗ y
lies in Comp1(8, 8; 8) thenm arises fromm0 by the action of someβ ∈ O(8). Working
through the defnitions, we find:

β(x ∗ y) = x · β(y) for every x, y.

Certainly this operation ∗ admits e as a left-identity element. Ifm lies in Comp11(8,+)
then e is also a right-identity: x ∗ e = x. This occurs if and only if β(x) = x · β(e)
for every x. Thus β = Rb is a right multiplication map on the octonions, for some
b = β(e) with |b| = 1. This provides a surjective map from the sphere S7 of unit
octonions to the space Comp11(8,+), sending b to the operation ∗ determined by:

(x ∗ y) · b = x · (y · b).

To examine the fibers of this map, suppose b, c ∈ S7 both go to the same operation.
Then

(x · yb)b−1 = (x · yc)c−1 for every x, y.

Setting x = b and using the Moufang identity (as in (1.A.10)) we find: by =
(byb)b−1 = (b · yc)c−1 so that by · c = b · yc. Exercise 1.27 implies that 1, b, c must
be linearly dependent. Interchanging b and c if necessary we may write c = r+sb for
some r, s ∈ R. The alternative law then implies that (w ·b−1) ·c = w ·(b−1 ·c). In par-
ticular x ·yc = (x ·yb)(b−1c) and plugging in c = r+sb yields: rxy = r(x ·yb)b−1.
Suppose c is not a scalar multiple of b, so that b is not scalar and r �= 0. Then
xy · b = x · yb for every x, y and Exercise 1.27 implies b is a scalar, a contradiction.
Hence c = ±b.

Consequently Comp11(8,+) is exactly the sphere S7 with antipodal points iden-
tified, so it is 7-dimensional projective space. ��
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We can also analyze the space Comp(8) by using the action of the full group
O(8)×O(8)×O(8). This approach yields another proof of (8.16) but more importantly
it leads to a consideration of the interesting phenomenon of “triality”.

The group O(8) × O(8) × O(8) acts transitively on Comp(8). This fact follows
from the Clifford algebra theory (see (8.5)), but more direct proofs can be given for this
case. What is the stabilizer of the standard octonion algebra D ? From the definition
of the action, this stabilizer is related to the group of autotopies defined below. The
next results are valid over general fields F (where 2 �= 0), provided D is a division
algebra.

The results here are well known but the terminology follows ideas of J. H. Conway.
As in the appendix of Chapter 1, we use [x] = x̄x to denote the norm form in the
octonion algebra and we write O(D) for the orthogonal group of this norm form. For
the usual case over R this group becomes O(8).

8.17 Definition. Let D be an octonion division algebra over F . If α, β, γ ∈ GL(D)
the triple (α, β, γ ) is an autotopy of D if γ (xy) = α(x) · β(y) for every x, y ∈ D.
If (α, β, γ ) is an autotopy define γ to be a monotopy. Let Autot(D) and Mon(D)
the groups of all autotopies and monotopies of D, respectively. Define Autoto(D)
and Mono(D) to be the corresponding groups of isometries (restricting to the case
α, β, γ ∈ O(D)).

It is easy to see that Autot(D) is a group under componentwise composition and
Mon(D) is the image of the projection π : Autot(D) → GL(D) sending (α, β, γ )
to γ . Similarly Mono(D) is the image of Autoto(D). If ϕ ∈ Aut(D) is an algebra
automorphism then (ϕ, ϕ, ϕ) is an autotopy and ϕ is an isometry. Hence Aut(D) ⊆
Mono(D).

8.18 Lemma. ker(Autoto(D) → Mono(D)) ∼= {±1}.

Proof. An element of the kernel is (α, β, 1) where α(x)β(y) = xy. Then α(x) = xa

andβ(y) = by for every x, y (where a = β(1)−1 and b = α(1)−1). Then xa ·by = xy

and consequently xa · z = x · az for every x, z. This says that a is in the nucleus
N (D) = F (as in Exercise 1.27). ��

If (α, β, γ ) is an autotopy then each of α, β, γ is a monotopy. To see this suppose
z = xy and consider the resulting “braiding sequence”: xy = z, x = zy−1, z−1x =
y−1, z−1 = y−1x−1, yz−1 = x−1, y = x−1z. Each of these six expressions leads
to another autotopy. For example from x = zy−1 we find α(zy−1) = α(x) =
γ (z)β(y)−1 so that (γ, ιβι, α) is also an autotopy. (Here ι denotes the inverse map:
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ι(x) = x−1). The six associated autotopies are best displayed in a hexagon:

(α, β, γ )

(ιαι, γ, β) (γ, ιβι, α)

(β, ιγ ι, ιαι) (ιγ ι, α, ιβι)

(ιβι, ιαι, ιγ ι)

Therefore α, β, γ are monotopies.
Recall from (1.A.10) thatD satisfies various weak forms of associativity, including:

a · ab = a2b and ba · a = ba2 (the alternative laws)
ax · a = a · xa (flexible law)
a(xy)a = ax · ya (Moufang identity)

Setting La(x) = ax, Ra(x) = xa and Ba(x) = axa, Moufang says that (La, Ra, Ba)
is an autotopy for every a ∈ D•. Therefore each La , Ra and Ba is a monotopy. It is
clear that these maps are similarities, relative to the norm form. In fact, La,Ra, Ba ∈
Sim+(D) by Exercise 1.17.

The bi-multiplication map Ba is closely related to the hyperplane reflection τa on
D, relative to the norm form [x] = x̄x. Recall that τa(x) = x − 2[x,a]

[a] · a. Since

xā + ax̄ = 2[x, a] we find τa(x) = −[a]−1 · ax̄a. Then τ1(x) = −x̄ and

Ba = [a] · τaτ1.
This proves again that Ba ∈ F • O+(D) ⊆ Sim+(D).

8.19 Triality Theorem. Mon(D) = Sim+(D) and Mono(D) = O+(D)

Consequently every γ ∈ O+(D) has associated maps α, β ∈ O+(D) making
(α, β, γ ) an autotopy, and these α, β are unique up to sign. This three-fold symmetry
among α, β, γ is a version of the Triality Principle studied in Lie theory and elsewhere.

For the usual cases over R we find that Mon(8) = Sim+(8) = R• · O+(8) has
dimension 29, and using (8.18): dim Autot(8) = 30. Similarly dim Mono(8) =
dim Autoto(8) = 28.

As a step toward the proof of this theorem we show that monotopies are similarities.

8.20 Lemma. Mon(D) ⊆ Sim•(D).

Proof. If (α, β, γ ) is an autotopy, γ (xy) = α(x) · β(y). Then γ (x) = α(x) · β(1).
Since α, γ ∈ GL(D), β(1) must be invertible and we may set a = β(1)−1 and
conclude: α(x) = γ (x) · a. Similarly β(y) = b · γ (y) where b = α(1)−1 and

γ (xy) = γ (x)a · bγ (y) for every x, y ∈ D.
The elements a, b are called the “companions” of γ . Take norms to find [γ (xy)] =
r · [γ (x)] · [γ (y)], where r = [ab]. Then the form q(x) = r · [γ (x)] satisfies
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q(xy) = q(x)q(y) and D is a composition algebra relative to q. It follows (Exercise
13) that the forms q(x) and [x] coincide, and γ is a similarity. ��

Proof of the Triality Theorem. The “bar” map J (x) = x̄ is an anti-monotopy and an
improper similarity. (Define (α, β, γ ) to be an anti-autotopy if γ (xy) = α(y)β(x),
etc.) If g ∈ Sim•(D) then g = Lg(1) � h where h ∈ O(D). This h can be expressed
as a product of hyperplane reflections τa (by a weak form of the Cartan–Dieudonné
Theorem). As mentioned before (8.19), each τa is a scalar multiple of Ba � J so it is
an anti-monotopy. Therefore g is in the group generated by maps Lu, Ba and J so
that g is a monotopy or an anti-monotopy. Moreover, g is a monotopy if and only if
an even number of τa’s are involved, if and only if g is a proper similarity. Conversely
if g ∈ Mon(D) then g ∈ Sim•(D) and the same parity argument shows that g is
proper. ��

We can use this theorem to analyze the spaces of composition algebras over R or C.
These numbers, summarized in the next corollary, agree with the earlier computations.

8.21 Corollary. The table below lists the number of components and the dimensions
of the spaces under discussion.

# of components dimension
Comp(8) 8 56
Comp1(8) 4 28
Comp11(8) 2 7

Proof. The group O(8)3 has 8 components and acts transitively on Comp(8). Since
Comp(8) ∼= O(D)3/Autoto(D) we find dim Comp(8) = 3 · 28 − 28 = 56. Since
Autoto(D) ⊆ O+(D)3, which is one component of O(D)3, there are still 8 components
in Comp(8).

Using (8.5) we know that O(8) acting on Comp1(8) has two orbits and Stab(D) =
{β ∈ O(8) : β(xy) = xβ(y) for every x, y ∈ D}. If β ∈ Stab(D) then β = Rb
where b = β(1) and xy · b = x · yb (compare the proof of (8.16)). Then b is scalar
(as in Exercise 1.27) and Stab(D) = {±1}, so that Comp1(8) ∼= O(8)/{±1} has 4
components and dimension 28.

Finally if ∗ is in Comp1(8) define a new multiplication ♥ by: x ♥ y = R−1
e (x) ∗ y.

That is, ♥ is defined by the formula: (x ∗ e) ♥ y = x ∗ y. Then e is a 2-sided identity
element for ♥ (see Exercise 0.8). The projection map π : Comp1(8) → Comp11(8),
defined by π(∗) = ♥, acts as the identity map on Comp11(8). O(8) acts on Comp(8)
by: (α • m)(x, y) = m(α(x), y), and the subgroup O(7) = {α ∈ O(8) : α(e) = e}
acts on Comp1(8). The point is that every O(7)-orbit in Comp1(8) contains exactly
one element in Comp11(8). The uniqueness is easy and the existence follows since
π(m) = R−1

e •m. Then Comp11(8) becomes the orbit space Comp1(8)/O(7). There-
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fore Comp11(8) has half as many components as Comp1(8) and dim Comp11(8) =
dim Comp1(8)− dim O(7) = 28 − 21 = 7. ��

For n = 4 or 8, the eight components of Comp(n, n) are represented by the eight
standard multiplications:

xy yx

x̄y yx̄

xȳ ȳx

x̄ȳ ȳx̄

Since e ∗ y = y for every multiplication in Comp1(n), all the ȳ terms are eliminated
and the four components of Comp1(n) are represented by the top four multiplications
in the list. Similarly the two components of Comp11(n) are represented by the first
two cases: xy and yx.

We compared the dimensions of Comp(n) and Div(n) in the table after (8.10). For
algebras with identity we see that Comp11(8) is a compact 7-dimensional space inside
Div11(8)which is an open subset of the flat space Bil11(8) of dimension 392. Actually
the set of composition algebras inside Div11(8) is a little larger, because Comp11(8)
uses a fixed norm form on R8. See Exercise 20.

Exercises for Chapter 8

1. Defining χ(m). Suppose m ∈ Comp(σ, q). Then m̂ : S → End(V ) and the
space (S, σ ) has a given orthogonal basis {e1, . . . , es}. In the case s ≡ 0 (mod 4) and
dσ = 〈1〉 we also assume that σ(e1) . . . σ (es) = 1. We defined χ(m) to equal χ(m0)

where m0 = ϕ−1(m) as in (8.3).
(1) Setting fi = m̂(ei) ∈ Sm we have χ(m) = trace(f̃1f2f̃3f4 . . .).
(2) If s �≡ 0 (mod 4) or if dσ �= 〈1〉 then χ(m) = 0. In any case, χ(m) is an even

integer between −n and n. (See (7.18).)
(3) If (α, β, γ ) ∈ O(σ )× O(q)× O(q) then χ((α, β, γ ) •m) = (det α) · χ(m).

(Hint. (1) image(m̂0) has orthogonal basis 1V , f̃1f2, . . . , f̃1fs so the element “ z”
equals (f̃1f2)(f̃1f3) . . . (f̃1fs). Then z = f̃1f2f̃3f4 . . . , at least up to some scale
factor. If s ≡ 0 (mod 4) and dσ = 〈1〉 then z̃ = z and z2 = µ(z) = 1, and the scale
factor needed was 1. Compare Exercise 2.8.

(3) See Exercise 2.8 (3), (4).)

2. Generation of radical ideals. In (8.9) the variety W is defined over R. This
means thatW = Z(g1, . . . , gk), the zero set for a list of polynomials gj ∈ R[X]. The
Jacobian criterion might not work directly for these gi . (Provide an example where
it fails.) In the proof of (8.9) we need to know that I(W) is generated by elements
of R[X]. If A = (g1, . . . , gk)C[X] the Nullstellensatz says that I(W) = √

A, the
radical of the ideal A. Our claim follows from a more general result:
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Lemma. SupposeK/F is a separable algebraic extension of fields. If B ⊆ F [X]
is an ideal, then

√
B ⊗K = √

B ⊗K .

(Hint. It is enough to show that the ringK[X]/(
√

B ⊗K) is reduced (i.e. has no non-
zero nilpotent elements). Since

√
B is an intersection of primes, F [X]/

√
B embeds

into some direct product of fields. It suffices to show: if L/F is a field extension then
L⊗K is reduced. We may assume here that K/F is finite and separable.)

3. Suppose W is an algebraic variety and G is an algebraic group which acts mor-
phically on W , all defined over C. If G(C) acts transitively on W(C) then W is a
nonsingular variety and all the irreducible components ofW have the same dimension.
Moreover if G, W and the G-action are defined over R then W(R) is a smooth real
manifold. Does it follow that G(R) acts transitively on W(R)?

(Hint. LetG = W = C• (an affine variety embedded in C2), with actiong•w = g2w.)

4. Connected components. Comp1
R
(s, n) has 2c components and Comp

R
(s, n) has

4c components, where c is the number of k for which Comp1
R
(s, n; k) �= ∅. If

C = C((s − 1)〈−1〉) then c is the number of non-isomorphic n-dimensional
C-modules. Hence

c =
{

1 if s �≡ 0 (mod 4)
1 + n

2m otherwise.

The irreducible dimension 2m can be computed directly from the structure of C.

5. Characters. Let D be a quaternion or octonion algebra with left representation
L : D → Sim(D) and compute the character of L. Similarly compute the character
of the right representation. Are the left and right characters equal?

6. More division algebras. LetD be a real composition algebra with n = dimD = 2,
4 or 8. Suppose b : D × D → D is an R-bilinear map with the property that
|b(x, y)| < 1 whenever |x| = |y| = 1. Define

mb : D ×D → D by mb(x, y) = xy + b(x, y).

Then (D,mb) is a division algebra. If we assume only |b(x, y)| ≤ 1 what further
conditions are needed to ensure that mb is a division algebra? This construction
provides a space of division algebras of dimension n3. Does it equal the whole space
Div(n) = Nsing(n, n)?

7. Inverses. Suppose A is an F -algebra, where F is a field.
(1) If A is an alternative division algebra and dimA is finite then A must have an

identity element.
(2) Suppose A has an identity element and every non-zero element of A has an

inverse (that is: if 0 �= a ∈ A, there exists b ∈ A with ab = ba = 1). Does it follow
that A is a division algebra? Find a counterexample where F = R, dimA = 3.



152 8. The Space of All Compositions

(3) A strong inverse for a ∈ A is a−1 ∈ A such that a−1 · ax = x = xa · a−1 for
every x ∈ A. Suppose every non-zero element of A has a strong inverse. Check that
(a−1)−1 = a and deduce that A is a division algebra. In a composition algebra every
a with [a] �= 0 has a strong inverse.

Theorem. Suppose A is a ring with 1. Then: every non-zero element of A has a
strong inverse if and only if A is an alternative division ring.

(Hint. (1) If a �= 0, find e with ae = a. Prove e2 = e.
(2) Let A = R3 with basis {1, i, j}, choose δ ∈ A and define i2 = j2 = −1

and ij = −ji = δ. Then every non-zero element has an inverse. (Define “bar” and
compute u · ū = ū ·u.) Moreover, if δ �= 0 then uv = vu = 0 implies u = 0 or v = 0.
Hence inverses are unique, but clearly A cannot be a division algebra.

(3) The proof of the theorem is elementary but not easy. See Hughes and Piper
(1973), pp. 137–138 and p. 151, or see Mal’cev (1973), pp. 91–94.)

8. Components. Div(n) is a nonempty open subset of Bil(n), provided n = 1,
2, 4, 8.

(1) Describe the topological spaces Div11(2) and Div(2) explicitly. Check that
Div11(2) is the “interior” of a certain parabola in Bil11(2) ∼= R2. Then Div(2) is
8-dimensional with 4 components. Everything in Div(2) is isotopic to C and
Autot(C) ∼= C∗ × C∗ × {1,−1}.

(2) Ifm ∈ Div(n) and 0 �= x ∈ Rn, define λ(m) = sgn(det(mx)), wheremx is the
left multiplication map. This λ(m) is independent of x. Let ρ(m) be the sign for the
right multiplications. For signs ε, η let Divεη = {m ∈ Div(n) : λ(m) = ε and ρ(m) =
η}. These four subsets are represented by xy, x̄y, xȳ, xy.

(3) If m ∈ Div++(n) there is a path in Div++(n) from m to some m1 ∈ Div11(n).
(4) Buchanan (1979) used homotopy theory to prove:

Theorem. If n = 4 or 8 then Div11(n) has two connected components, represented
by the multiplications xy and yx.

Corollary. Div(4) and Div(8) each have 8 connected components, represented by
the eight standard multiplications.

(Hint. (3) By Exercise 0.8, there exist f, g ∈ GL+(n) with (f, g) ∗ m ∈ Div11(n).
Choose paths in GL+(n) from 1n to f and from 1n to g.)

9. Sub(s, n; k). Define ϕ : O(n)×Sub1(s, n; k) → Sub(s, n; k) by: ϕ(g, T ) = gT .
Then ϕ is surjective with fiber ϕ−1(S) ∼= S ∩ O(n), which is the unit sphere in S.
Hence dim Sub(s, n; k) = n(n−1)

2 + dim Sub1(s, n; k) − (s − 1). Is this consistent
with (8.12)?

10. How does the O(s) action relate to the O(n)× O(n) action?
(1) Let α ∈ O(s) and m ∈ Comp1(s, n). Then χ(α •m) = (det α) · χ(m). Each

orbit of the group O(s)× O(n) equals Comp1(s, n; k)∪ Comp1(s, n; −k) for some k.
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(2) Let S ∈ Sub1(s, n; k). Define Aut&(S) = {(β, γ ) ∈ O(n)× O(n) : γ Sβ−1 =
S} and consider the induced group homomorphism Aut&(S) → O(S). The image is
O+(n) if χ(S) �= 0, and it is O(n) if χ(S) = 0.

(3) There is an exact sequence

1 → Aut(m) → Aut&(S) →
{

O(S) if χ(S) = 0
O+(S) if χ(S) �= 0

}
→ 1.

Compute dim Aut&(S) and use this to give another computation of dim Sub(s, n).
(4) Similarly analyze Aut(S) = {β ∈ O(n) : βSβ−1 = S}.

(Hint. (2) If α ∈ O+(S) then α is in the image, using C-isometries as in (8.5) or
(7.19). Conversely suppose α is in that image. If χ(m) �= 0 apply part (1).)

11. Automorphism groups. There are several reasonable definitions for “the” auto-
morphism group of a composition m ∈ Comp(s, n). For example,

Aut(m) = {β ∈ O(n) : β "m = m} = {β ∈ O(n) : (1, β, β) •m = m},
as defined above.

Aut&(m) = {(β, γ ) ∈ O(n)× O(n) : (1, β, γ ) •m = m}.
Aut%(m) = {(α, β) ∈ O(s)× O(n) : (α, β, β) •m = m}.
Autot(m) = {(α, β, γ ) : (α, β, γ ) •m = m}.

These are related to the groups Aut(S) and Aut&(S) defined in Exercise 10. What are
the dimensions of these algebraic groups?

12. Proper similarities. Here is a sketch of the proof of (8.14). Suppose 1V ∈ S ⊆
Sim(V , q) and s = dim S > 2.

First Step. If g ∈ Sim•(V , q) and gSg−1 = S then g is proper.
(1) Find a counterexample when dim S = dim V = 2. If dim S = 2 and 4 || dim V

then g is proper.
(2) Suppose C = C(W, ϕ) is a Clifford algebra with center Z. If x ∈ W is

anisotropic then xWx−1 = W . (In fact the mapw �→ xwx−1 is the reflection through
the line Fx.)

Lemma. If u ∈ C• and uWu−1 = W then u = y · x1 · x2 . . . xk for some y ∈ Z
and xi ∈ W .

(3) Proof of First Step when s is odd. C = C(−S1) is central simple, andC⊗A =
End(V ) where A = EndC(V ). The involution Iq = “∼” preserves C and A. Then
gCg−1 = C so there exists u ∈ C• such that a = u−1g ∈ A. Since g̃g = µ(g)

conclude that ãa and ũu are scalars. Since a commutes with elements of S it is
proper, by Exercise 1.17. Since uS1u

−1 = S1 and Z = F , the lemma implies
u = x1 · x2 . . . xk for some xi ∈ S1. Hence g = ua is proper.

(4) Proof of First Step when s is even. C0 is central simple, and C0 ⊗A = End(V )
where A = EndC0(V ). As before, there exists u ∈ C•

0 such that a = u−1g ∈ A
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and ãa and ũu = β are scalars. Then a is proper since it commutes with f2f3.
Since Z = F ⊕ Fz is the center of C, gzg−1 = εz for some ε = ±1. Then
aza−1 = u−1gzg−1u = εz and hence aS1a

−1 = S1 since S1 ⊆ zC0. Therefore
uS1u

−1 = S1 and the lemma applies as before to show that u and g = ua are proper.
(5) h ∈ S implies hSh ⊆ S.
(6) Suppose F is algebraically closed. If f ∈ S there exists h ∈ S with h2 = f .
(7) Suppose γ Sβ−1 = S as in (8.14). Assume F is algebraically closed and use

(6) to find h ∈ S such that h2 = γ−1β. Let g = γ h so that g−1 = hβ−1. By (5),
gSg−1 = γ hShβ−1 = S and the First Step implies that g is proper. Since h is proper
conclude that both β and γ are proper.

(Hint. (1) Exercise 1.17.
(2) The map w �→ uwu−1 is in O(W), and hence is a product of hyperplane

reflections. Compare Cassels (1978), pp. 175–177 or Scharlau (1985), pp. 334–336.
(5) Choose the basis of S so that h = a + bf2 and compute hfjh.
(6) If f = r + sf2 let h = x + yf2 and solve for x and y.)

13. Norm form uniqueness. Suppose D is a composition algebra (with identity)
relative to two quadratic forms q(x) and q ′(x). These forms must coincide.

(Hint. The theory in Chapter 1 provides associated involutions x̄ and x̃ so that q(x) =
x · x̄ and q ′(x) = x · x̃. Show that these involutions coincide.)

14. Trilinear map. (1) For euclidean spaces U , V , W the following are equivalent:
(a) There is a bilinear f : U×V → W with the norm property |f (u, v)| = |u|·|v|.
(b) There is a trilinear mapg : U×V×W → R such that |g(u, v,w)| ≤ |u|·|v|·|w|

and moreover for every u, v there exists a non-zero w such that equality holds.
(2) If dimU = dim V = dimW then condition (b) is symmetric in U , V , W .

(Hint. (2) f , g are related by g(u, v,w) = 〈f (u, v)|w〉, where 〈x|y〉 is the dot
product.)

15. The Triality Theorem implies that for every γ ∈ O+(8), there exist α, β ∈ O+(8)
such that (α, β, γ ) is an autotopy, relative to the standard octonion multiplication.
Moreover α, β are uniquely determined up to sign.

(1) Every γ ∈ O+(8) equals BāBbBc̄ . . . Bḡ , a product of (at most) 7 bi-multi-
plication maps.

(2) Then α = LāLbLc̄ . . . Lḡ and β = RāRbRc̄ . . . Rḡ , up to sign.
(3) Every α ∈ O+(8) can be expressed as a product of 7 of the maps La and also

as a product of 7 of the maps Ra .
(4) If (α, β, γ ) ∈ Autot(D) then: α = β = γ is an automorphism ⇐⇒ α(1) =

β(1) = 1. Compare Exercise 1.24.
(5) How much of this theory goes through for octonion algebras over a general

field?
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(Hint. (1) The Cartan–Dieudonné Theorem (proved in Artin (1957) or Lam (1973))
implies that γ = τ1 · τa . . . τg for some 7 unit vectors a, . . . , g ∈ R8 = D. Then
γ = BāBbBc̄ . . . Bḡ .

(2) Use the explicit autotopies (Lu, Ru, Bu) and the uniqueness of α, β.
(5) There are some difficulties with scalars over a general field F . For instance

the group B generated by the Ba’s consists of all θ(σ ) · σ where σ ∈ O+(D) and
θ(σ ) denotes the spinor norm of σ . The group F • · B can be a proper subgroup of
Sim+(D). Does the group generated by the La’s equal Sim+(D)?)

16. Automorphism and autotopy. (1) If D is the octonion division algebra over R
determine dim Aut(D).

(2) The “companion” map Autoto(8) → S7 × S7 sends (α, β, γ ) ∈ Autoto(8) to
(a, b) = (β(1)−1, α(1)−1). Then α = Ra � γ and β = Lb � γ . The nonempty fibers
of this companion map are the cosets (α, β, γ ) · Aut(D).

(3) Autoto(8) is a connected 2-fold covering group of Mono(8) = O+(8).
(4) The companion map is surjective.
How does composition of autotopies corresponding to an operation on the associ-

ated companion pairs in S7 × S7?

(Hint. (1) dim Aut(D) = 14. For D is generated by unit vectors i, j , v such that
D = H ⊥ Hv where H is the quaternion algebra generated by i, j . If ϕ ∈ Aut(D)
then ϕ(i) can be any unit vector in {1}⊥, a choice in S6. Given ϕ(i), then ϕ(j) can be
any unit vector in {1, i}⊥, etc.

(3) π : Autoto(8) → Mono(8) is a homomorphism with kernel {(1, 1, 1),
(−1,−1, 1)}. Find a path between those two points in Autoto(8) by using autotopies
(La, Ra, Ba).

(4) Compute dimensions.)

17. Dimension 1, 2, 4. (1) Analyze the spaces Comp11(1) and Comp11(2).
(2) Work out the parallels of (8.17) through (8.21) for quaternion algebras. Deduce

that dim Autot(4) = 11 and dim Autoto(4) = 9. What is the analog of the companion
map of Exercise 16?

18. Isotopy and isomorphism. Let D be a quaternion or octonion division algebra
over R.

(1) If n = 4 or 8 let Isotop(n) be the set of all multiplications on Rn which are
isotopic to the multiplication of D. (Why is this independent of the choice of D?)
Then Isotop(n) can be viewed as an algebraic variety. What is its dimension?

(2) Similarly analyze Isomor(n), the set of algebras isomorphic to D.

(Hint. (1) Isotop(n) is an orbit of GL(n)3 with stabilizer Autot(D).
(2) Isomor(n) is an orbit of GL(n) with stabilizer Aut(D).)
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19. Loops. An inverse loop is a set G with a binary operation such that (i) there is
an identity element 1 ∈ G; and (ii) for every x ∈ G there exists x−1 ∈ G satisfying:
x−1 · xy = y = yx · x−1 for every y ∈ G. An autotopy on G is a triple (α, β, γ ) of
invertible maps on G such that: γ (xy) = α(x)β(y) for every x, y.

(1) If xy = z then x = zy−1, z−1x = y−1, . . . , and we get the associated hexagon
of six autotopies of G. Define a monotopy and deduce that α, β, γ are monotopies.

(2) γ is a monotopy if and only if there exist a, b ∈ G such that γ (xy) =
γ (x)a · bγ (y) for every x, y. The elements a, b are the companions of γ . Note that
α = Ra � γ and β = Lb � γ provide the autotopy, and a = β(1)−1 and b = α(1)−1.

(3) For a as above, Ba(x) = axa is unambiguously defined and (La, Ra, Ba) is an
autotopy. Similarly we find autotopies (Ba, L−1

a , La), (R−1
a , Ba, Ra) etc. These imply

the Moufang identities: ax · ya = a(xy)a; axa · a−1y = a · xy; xa−1 · aya = xy · a.
(4) If a ∈ G the following are equivalent:

(i) a is the image of 1 under a monotopy;
(ii) (La, Ra, Ba) is an autotopy;
(iii) the Moufang identities hold for a.

A Moufang loop (or “Moup”) is an inverse loop in which every a, x, y satisfies
the Moufang identities. Then G is a Moufang loop if and only if the monotopies act
transitively on G.

(Hint. (3) (β, ιγ ι, ιαι)�(γ, ιβι, α)−1 = (βγ−1, ιγβ−1ι, ιαια−1) = (La, Ra, ιαια
−1)

is an autotopy, so that ιαια−1(xy) = ax · ya for every x, y. Then Ba(x) = ax · a =
a ·xa and (La, Ra, Ba)works. The six autotopies derived from this one provide other
examples.)

20. Other norm forms. Fix e �= 0 in R8 and let Compe(8) be the set of all multipli-
cations m ∈ Bil(8) which make R8 into a composition division algebra with identity
element e. Here we do not assume that the standard inner product is the norm form.
Then Compe(8) ⊆ Div11(8). Is Compe(8) a nice topological space? What is its
dimension?

(Hint. If PD(n) = { positive definite quadratic forms on Rn}, then dim PD(n) =
n(n + 1)/2 since PD(n) ∼= GL(n)/O(n). Then PD1(8) = {q ∈ PD(8) : q(e) = 1}
has dimension 35. Is there a bijection: Compe(8) ↔ Comp11(8)× PD1(8)?)

21. For which α, β, γ ∈ GL(8) does the action of (α, β, γ ) on Bil(8) preserve the
subset Div11(8)?

(Idea. Let m1(x, y) = xy be the octonion multiplication with identity e. If
ϕ ∈ GL(8) with ϕ(e) = e then mϕ = (ϕ, ϕ, ϕ) • m1 is in Div11(8). Then
(rϕ, sϕ, rsϕ) preserves Div11(8) when r, s ∈ R•. Conversely if (α, β, γ ) pre-
serves it then ϕ−1γ−1(x) = ϕ−1α−1(x) · ϕ−1β−1(e) and ϕ−1γ−1(y) = ϕ−1α−1(e) ·
ϕ−1β−1(y) for every x, y ∈ D and every such ϕ. Must α−1(e) and β−1(e) be scalar
multiples of e?)
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22. Split octonion algebras. In (8.17) through (8.21) we assumed that the octonion
algebra D is a division algebra (so the norm form [x] is anisotropic). Are the same
results true when D is a “split” octonion algebra, that is, when the norm form [x] on
D is hyperbolic?

(Note. IfF is infinite the non-invertible elements form the zero set of a polynomial
function. Therefore almost all elements of D are invertible.)

23. Robert’s Thesis (1912). Let A be the set of all n×nmatricesAwhose entries are
C-linear forms in X = (x1, . . . , xs) and which satisfy A� ·A = (x2

1 + · · · + x2
s ) · In.

(1) Each A ∈ A corresponds to a unique m ∈ Comp
C
(s, n).

(2) O(n) × O(n) acts on A by: (P,Q) ∗ A = P · A ·Q�. This corresponds to
the action on Comp described above. Consequently A is an algebraic variety, and we
know the number of components and their dimensions.

(Hint. (1) Recall the original treatment by Hurwitz as described in Chapter 0.)

Notes on Chapter 8

The ideas presented in the first part of the Chapter are based on results of Petersson
(1971) and of Bier and Schwardmann (1982). The homology and stable homotopy
groups of the topological spaces Comp1(s, n) were computed by Bier and Schward-
mann.

Zorn characterized finite dimensional alternative division algebras over any base
field. One proof appears in Schafer (1966), p. 56. The result has a remarkable
generalization, due to Kleinfeld, Bruck and Skornyakov:

Theorem. Any simple alternative ring, which is not a nilring and which is not asso-
ciative, must be an octonion algebra over its center.

This theorem is proved in Kleinfeld (1953) and in Zhevlakov et al. (1982), §7.3.
An easier proof, assuming characteristic �= 2, is given in Kleinfeld (1963).

There are more constructions of real division algebras, usually done by “twisting”
the standard algebras in various ways. For example see Althoen, Hansen and Kugler
(1994). Further information on real division algebras is contained in Myung (1986).
Certain “pseudo-octonion” algebras are 8-dimensional division algebras (without an
identitiy element) which are especially symmetric. See also Elduque and Myung
(1993).

The dimension argument after (8.15) showing that not all division algebra multi-
plications are isotopic to a composition algebra is due to Petersson.

Dimension counts show how hard it might be to get a useful classification of
real division algebras. However, there is a positive result about general elements of
Div11(n).
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Theorem. IfD is a real division algebra with identity and dimD > 1, thenD contains
a subalgebra isomorphic to C. That is, there exists a ∈ D with a2 = −1.

Proofs appear in Yang (1981) and Petro (1987). Both proofs use topological
properties to prove that the map x �→ x2 is surjective on D.

Following (8.15), Div(n) = Nsing(n, n, n). Bier (1979) showed that Nsing(r, s, n)
is a semi-algebraic set and hence has a finite number of connected components. He
also proved that if n ≥ r + s − 1 then Nsing(r, s, n) is dense in Bil(r, s, n) and if
moreover n > (r # s)+ r+ s−1 then Nsing(r, s, n) is connected. (This notation r # s
is defined in Chapter 12.)

The viewpoint and terminology of autotopies and monotopies, as defined in (8.17),
was explained to me in 1980 by J. H. Conway. Versions of Conway’s approach are
also seen in Exercises 16 and 20, as well as in the appendix to Chapter 1.

Our presentation of the Triality Principle 8.19 basically follows van der Blij and
Springer (1960), who prove it without restrictions on the characteristic of the ground
field. Some simplifications in the proof use Conway’s approach. Other authors use
the terms autotopism and isotopism. See Hughes and Piper (1973), Chapter VIII.

Over any field F (with characteristic �= 2), every m ∈ Comp(4, 4) is isotopic to a
quaternion algebra H . Letting xy be the multiplication in H , then the multiplication
m(x, y) is expressible as one of four types:

(1) axcyb (2) axbȳc (3) cx̄ayb (4) ax̄cȳb

where a, b, c ∈ H and N(abc) = 1. For what choices of a, b, c are two of these
algebras isomorphic? This question is analyzed by Stampfli-Rollier (1983).

Kuz’min (1967) discusses the topological space of all isomorphism classes of
n-dimensional real division algebras (with identity). He considers the subspaces of
power-associative algebras, quadratic algebras, etc., and determines their dimensions.

Exercise 4. Bier and Schwardmann (1982) discuss this number of components.

Exercise 7. (2) A similar remark is made in Althoen and Weidner (1978).
(3) Stronger theorem: If every non-zero element of A has a strong right inverse,

then A is alternative. This result is related to the geometry of projective planes. See
Hughes and Piper (1973), pp. 140–149.

Exercise 8. Buchanan’s proof uses homotopy theory.
Define A(n) = {A ∈ GLn(R) : A has no real eigenvalues } and W(n) = {W ∈

O(n) : W is skew-symmetric }. Buchanan proves W(n) is a strong deformation retract
of A(n). The space W(n) has two connected components, separated by the Pfaffian
(see (10.8)). Any m ∈ Div11(n) induces m̂ : Rn − {0} → A(n) and this maps
to W(n). The standard composition algebras yield multiplications xy and yx with
unequal Pfaffians. Hence Div11(n) has at least two components. A computation of
πn−2(A(n)) leads to a proof that there are only two components.

A somewhat simpler proof in the case n = 4 is given by Gluck, Warner and Yang
(1983), §8. The components are separated by their “handedness”.
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Exercise 11. The group Aut%(m)was studied by Riehm (1982), a work motivated
by a question of A. Kaplan (1981). Those ideas were extended in Riehm (1984).

Exercise 15–16. This threefold symmetry for α, β, γ in O+(8) is one aspect of
triality. The sign ambiguities can be removed if we work with the covering group
Spin(8) instead. From Exercise 16(3) it follows that Autoto(8) ∼= Spin(8). Many
aspects of triality have appeared in the mathematical literature. For example see Knus
et al. (1998), §35, and Chapter 10.

Exercise 19. This approach to Moufang loops is due to J. H. Conway. Connections
between Moufang loops and geometry are described in Bruck (1963).

Exercise 23. E. Robert, in his 1912 thesis, analyzed these matrices A in the cases
r = n = 4, 8. He showed essentially that Comp

C
(n, n) consists of two orbits of

O(n)× O(n), distinguished by the “character”.



Chapter 9

The Pfister Factor Conjecture

We focus now on the form q rather than on (σ, τ ). Suppose F is a field (in which
2 �= 0). Given n, which n- dimensional forms q over F admit the largest possible
families in Sim(q)? We stated the following conjecture in (2.17).

9.1 Pfister Factor Conjecture. Let q be a quadratic form over F with dim q = n =
2mn0 where n0 is odd. If there is an (m+ 1,m+ 1)-family in Sim(q) then q � ϕ⊗ω
where ϕ is an m-fold Pfister form and dimω is odd.

One attraction of this conjecture is that it relates the forms involved in the Hurwitz–
Radon type of “multiplication” of quadratic forms with the multiplicative quadratic
forms studied by Pfister. We will reduce the question to the case n = 2m and to prove
it wheneverm ≤ 5. The difficulties in extending our proof seem closely related to the
difficulties in extending Pfister’s result (3.21) for forms in I 3F . For certain special
classes of fields we can prove the conjecture. For example, it is true for every global
field. In the appendix we describe (without proofs) some results about function fields
of quadratic forms and use that theory to provide another proof of the cases m ≤ 5.

This conjecture can be restated in terms of the original sort of composition defined
in Chapter 1. For as noted in the (7.12), if dim q = 2m · (odd), then there exists
σ < Sim(q) with dim σ = ρ(n) if and only if there exists an (m+ 1,m+ 1)-family
in Sim(q).

If either σ or τ is isotropic then (σ, τ ) < Sim(q) implies that q is hyperbolic,
by (1.9). In this case the conjecture is trivial so we may assume that σ and τ are
anisotropic.

9.2 Conjecture PC(m). Suppose q is a quadratic form over F with dim q = 2m. If
there exists an (m+ 1,m+ 1)-family in Sim(q), then q is similar to a Pfister form.

Proof that PC(m) is equivalent to the Pfister Factor Conjecture 9.1. Certainly (9.1)
implies PC(m). Conversely assume PC(m) and suppose q is given with dim q =
n = 2mn0 and with an (m+ 1,m+ 1)-family (σ, τ ) < Sim(q). The Decomposition
Theorem 4.1 implies that all the (σ, τ )-unsplittables have the same dimension 2k .
Since q is a sum of unsplittables, 2k || n so that k ≤ m. If ϕ is an unsplittable then
s + t = 2m + 2 implies dim ϕ = 2m. Then the uniqueness in (7.2) implies that
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all (σ, τ )-unsplittables are similar to ϕ. Therefore q � ϕ ⊗ ω for some form ω

of dimension n0, which is odd. The form ϕ is similar to a Pfister form by PC(m).
Absorbing the scale factor into ω, we may assume ϕ is a Pfister form. ��

9.3 Lemma. PC(m) is true for m ≤ 3.

Proof. The cases m = 1, 2 are vacuous. Suppose m = 3 and dim q = 8 and q admits
a (4, 4)-family. By (1.10) a (3, 0)-family 〈1, a, b〉 < Sim(q) already implies that
〈〈a, b〉〉 || q, forcing q to be similar to a Pfister form. ��

Suppose dim q = 2m and (σ, τ ) < Sim(q) is an (m + 1,m + 1)-family. As
mentioned after (7.1) we have dσ = dτ , c(σ ) = c(τ ), so that σ ≡ τ (mod J3(F )). If
applications of the Shift Lemma can transform the pair (σ, τ ) into some pair (δ, δ), then
(2.16) implies the Conjecture PC(m). To state this idea more formally we introduce
the set Pm of all (s, t)- pairs of quadratic forms over F where s+ t = 2m+2. Define
the relation ∼∼∼ on Pm to be the equivalence relation generated by three “elementary”
relations motivated by the ideas in Chapter 2:

(1) (σ, τ )∼∼∼ (τ, σ ).

(2) (σ, τ )∼∼∼ (〈a〉σ, 〈a〉τ) whenever a ∈ DF (σ)DF (τ).
(3) (σ ⊥ ϕ, τ ⊥ ψ) ∼∼∼ (σ ⊥ 〈d〉ψ, τ ⊥ 〈d〉ϕ) whenever dim ϕ ≡ dimψ (mod 4)

and 〈d〉 = (det ϕ)(detψ).

The motivation for this definition arises from the following basic observation:

If (σ, τ )∼∼∼ (σ ′, τ ′) then: (σ, τ ) < Sim(V , B) if and only if (σ ′, τ ′) < Sim(V , B).

9.4 Definition. Let P ◦
m be the set of all (s, t)-pairs (σ, τ ) such that s + t = 2m+ 2,

dσ = dτ , c(σ ) = c(τ ) and s ≡ t (mod 8). Equivalently, P ◦
m is the set of all

(σ, τ ) ∈ Pm such that σ ≡ τ (mod J3(F )) and s ≡ t (mod 8).

We first observe that P ◦
m is a subset of Pm preserved by the equivalence relation.

9.5 Lemma. Suppose (σ, τ ) ∈ Pm.

(1) (σ, τ ) ∈ P ◦
m if and only if (σ, τ ) < Sim(q) for some q with dim q = 2m.

(2) If (σ, τ )∼∼∼ (σ ′, τ ′) and (σ, τ ) ∈ P ◦
m, then (σ ′, τ ′) ∈ P ◦

m.

Proof. (1) Apply (7.3).
(2) This follows from (1) and ideas from Chapter 2. Here is a more direct proof.

We may assume that the (s′, t ′)-pair (σ ′, τ ′) is obtained from the (s, t)-pair (σ, τ ) by
applying one of the three elementary relations. Since s ≡ t (mod 8) is easily follows
that s′ ≡ t ′ (mod 8). Let β = σ − τ and β ′ = σ ′ − τ ′. The elementary relations
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imply the following equations in the Witt ring:

β ′ = −β if type 1.
β ′ = 〈a〉β if type 2.
β ′ = β + 〈〈d〉〉 ⊗ (ϕ ⊥ −ψ) if type 3.

Now β ∈ I 2F so that β ≡ 〈x〉β (mod I 3F) for every x ∈ F •. Also since
d(ϕ ⊥ −ψ) = (dϕ)(dψ) = 〈d〉, Exercise 3.7 (4) implies 〈〈d〉〉 ⊗ (ϕ ⊥ −ψ) ∈ I 3F .
Then in each case β ′ ≡ β (mod I 3F). Since I 3F ⊆ J3(F ) we have β ′ ∈ J3(F ) so
that (σ ′, τ ′) ∈ P ◦

m. ��

In trying to prove PC(m) by induction we are led to a related question.

9.6 The Shift Conjecture SC(m). If (σ, τ ) ∈ P ◦
m then (σ, τ ) ∼∼∼ (σ ′, τ ′) where σ ′

and τ ′ represent a common value.

Of courseσ ′ and τ ′ represent a common value if and only if the formβ ′ = σ ′ ⊥ −τ ′
is isotropic. If SC(m′) is true for every m′ ≤ m then PC(m) follows. Here is a more
formal statement of this idea.

9.7 Lemma. If SC(m) and PC(m− 1) are true over F then PC(m) is also true over
F .

Proof. Suppose (σ, τ ) < Sim(q) is an (m+1,m+1)-family where dim q = 2m. Then
(7.3) implies (σ, τ ) ∈ P ◦

m. By SC(m) we may alter σ , τ to assume σ � σ ′ ⊥ 〈a〉
and τ � τ ′ ⊥ 〈a〉. The Eigenspace Lemma 2.10 implies that q � q ′ ⊗ 〈〈a〉〉 and
(σ ′, τ ′) < Sim(q ′). By PC(m− 1) this q ′ is similar to a Pfister form and therefore so
is q. ��

If SC(m) is true over F for all m then the Pfister Factor Conjecture holds over F .
In nearly every case where PC(m) has been proved for a field F , the condition SC(m)
can be proved as well.

Before discussing small cases of this conjecture we note that: if F satisfies SC(m)
for allm then I 3F = J3(F ), which is a major part of Merkurjev’s Theorem. Therefore
it seems unlikely that an easy proof of the Shift Conjecture will arise.

9.8 Proposition. Suppose SC(m′) is true over F for all m′ ≤ m. If β ∈ J3(F ) and
dim β = 2m+ 2 then β ∈ I 3F .

Proof. Writeβ = σ ⊥ −τ for some forms σ , τ of dimensionm+1. Then (σ, τ ) ∈ P ◦
m

and application of SC(m′) for m′ = m, m− 1, m− 2, . . . implies that (σ, τ )∼∼∼ (δ, δ)

for some form δ. By the proof of (9.5), β = σ − τ ≡ δ − δ ≡ 0 (mod I 3F). ��

9.9 Proposition. SC(m) is true for m ≤ 4.
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Proof. Let (σ, τ ) ∈ P ◦
m. Ifm ≤ 2 the equal invariants imply that σ � τ (see Exercise

3.5). If m = 3 then (σ, τ ) ∼∼∼ (ϕ, 0) where ϕ � σ ⊥ (dτ)τ . Then dim ϕ = 8 and
ϕ ∈ J3(F ) so that ϕ is similar to a Pfister form by (3.21). If ϕ � 〈a〉〈〈x, y, z〉〉 then
(ϕ, 0)∼∼∼ (δ, δ) where δ � 〈a〉〈1, x, y, z〉. Now supposem = 4. Then β = σ ⊥ −τ ∈
J3(F ) and dim β = 10. This β must be isotropic by Pfister’s Theorem (3.21), and σ
and τ represent a common value. ��

It seems difficult to know whether a general pair (σ, τ ) can be shifted to some better
(σ ′, τ ′). In some cases knowledge of certain types of subforms yields the result.

9.10 Lemma. Suppose (σ, τ ) is an (s, t)-pair. Then (σ, τ )∼∼∼ (σ ′, τ ′) for some σ ′ and
τ ′ which represent a common value, provided there exist subforms ϕ ⊂ σ and ψ ⊂ τ

such that ϕ �= 0, σ ; dim ϕ ≡ dimψ (mod 4) and det ϕ = detψ .

For example, this definition holds if s > 2 and σ and τ contain 2-dimensional
subforms of equal determinant. The condition also holds if s > 4 and σ contains a
4-dimensional subform of determinant 〈1〉.

Proof. Express σ = σ1 ⊥ ϕ and τ = τ1 ⊥ ψ . Since ϕ �= 0, σ , we may express
σ1 = 〈x〉 ⊥ σ2 and ϕ = 〈a〉 ⊥ ϕ1. Use (2.6) to shift 〈x〉 ⊥ ϕ1 andψ . Since det(〈x〉 ⊥
ϕ1))(detψ) = 〈ax〉 we obtain (σ ′, τ ′) = (σ2 ⊥ 〈a〉 ⊥ 〈ax〉ψ , τ1 ⊥ 〈ax〉(〈x〉 ⊥ ϕ1)).
Both σ ′ and τ ′ represent a. ��

9.11 Proposition. SC(5) is true.

Proof. Suppose (σ, τ ) ∈ P ◦
5 . We may shift (σ, τ ) to a (10, 2)-pair (σ0, τ0). Then

β = σ0 ⊥ −τ0 is a 12-dimensional element of J3(F ). If β is isotropic then σ0
and τ0 represent a common value and we are done. Assume β is anisotropic and
write τ0 � 〈−a〉〈1,−b〉, for some a, b ∈ F •. Then β � 〈a〉〈〈−b〉〉 ⊥ σ0. Pfister’s
Theorem 3.21 implies that β � ϕ1 ⊥ ϕ2 ⊥ ϕ3, where 〈a〉〈〈−b〉〉 ⊂ ϕ1 and each ϕi is
4-dimensional of determinant 〈1〉. Then ϕ2 ⊂ σ and (9.10) applies. ��

We have been unable to prove SC(6) over an arbitrary field because we lack
information about 14-dimensional forms in I 3F . Rost (1994) proved that any such
form β is a transfer of the pure part of some 3-fold Pfister form over a quadratic
extension of F . Hoffmann and Tignol (1998) deduced from this that β must contain
an Albert subform. (Recall that an Albert form is a 6-dimensional form in I 2F .) This
information leads to a possible approach to SC(6).

9.12 Lemma. If the following hypothesis holds true overF , then SC(6) is true overF .
Hypothesis: Whenever β is an anisotropic 14-dimensional form in I 3F and γ ⊂ β is a
given 3-dimensional subform, then there exists an Albert form α such that γ ⊂ α ⊂ β.
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Proof. Suppose (σ, τ ) ∈ P ◦
6 is an (11, 3)-family. Then β = σ ⊥ −τ is a 14-

dimensional form in J3(F ). By Merkurjev’s Theorem, β ∈ I 3F . If β is isotropic
the conclusion of SC(6) is clear. If β is anisotropic the hypothesis provides an Albert
form α with −τ ⊂ α ⊂ β. Expressing α = α′ ⊥ −τ we have dim α′ = dim τ = 3,
α′ ⊂ σ and det α′ = det τ . Then (9.10) applies. ��

It is not at all clear whether the strong condition in (9.12) is always true. Finding
a counterexample to it would be interesting. But it might be much more interesting to
construct a non-Pfister form of dimension 64 admitting a (7, 7)-family!

If the field F satisfies some nice properties, then the conjecture SC(m) is true for
allm. Recall that the u-invariant u(F ) of a non-real field F is the maximal dimension
of an anisotropic quadratic form over F .

9.13 Corollary. If F satisfies one of the properties below then SC(m) is true over F
for all m.

(1) F is nonreal and u(F ) < 14.

(2) Every anisotropic form σ over F with dim σ ≥ 11 contains a 4-dimensional
subform of determinant 〈1〉.

Proof. We may assume m ≥ 6 and (σ, τ ) ∈ P ◦
m.

(1) By hypothesis, every quadratic form over F of dimension ≥ 14 is isotropic.
Since dim(σ ⊥ −τ) = 2m+ 2 ≥ 14, σ and τ must represent a common value.

(2) We can shift the given (σ, τ ) to assume dim σ ≥ 11. The claim then follows
from (9.10). ��

Every algebraic number field satisfies condition (2) above. More generally, every
“linked” field satisfies (2). Recall that two 2-fold Pfister forms ϕ and ψ are said to
be linked if they can be written with a “common slot”: ϕ � 〈〈a, x〉〉 and ψ � 〈〈a, y〉〉
for some a, x, y ∈ F •. The field F is said to be linked if every pair of 2-fold Pfister
forms is linked.

9.14 Lemma. The following conditions are equivalent for a field F .

(1) F is linked.

(2) The quaternion algebras form a subgroup of the Brauer group.

(3) For every form q over F , c(q) = quaternion.

(4) Every 6-dimensional form α over F with dα = 〈1〉 is isotropic.

(5) Every 5-dimensional form over F contains a 4-dimensional subform of determi-
nant 〈1〉.

We omit the details of the proof. Most of the work appears in Exercise 3.10.
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The standard examples of linked fields are finite fields, local fields, global fields,
fields of transcendence degree ≤ 2 over C, fields of transcendence degree 1 over R.
Of course by (9.13) we know that SC(m), and hence the Pfister Factor Conjecture, is
true over any linked field.

We digress for a moment to discuss the Pfister behavior of general unsplittable
modules over linked fields. If (σ, τ ) is an (s, t)-pair over a linked field, is every
unsplittable (σ, τ )-module necessarily similar to a Pfister form? The exceptions are
called “special” pairs.

9.15 Definition. A pair (σ, τ ) is special if s ≡ t (mod 8) and the form β = σ ⊥ −τ
satisfies: dβ �= 〈1〉 and c(β) is a quaternion algebra not split by F(

√
dβ).

In the notation of Theorem 7.8 the special pairs are exactly the ones having un-
splittables of dimension 2m+2. We are assuming throughout that σ represents 1.

9.16 Proposition. Suppose F is a linked field and (σ, τ ) is a pair which is not special.
Then every unsplittable (σ, τ )-module is similar to a Pfister form.

Proof. Theorem 7.8 applies here since F is linked so that c(β) must be quaternion.
Let m = δ(s, t) and suppose α is an unsplittable (σ, τ )-module. If dim α = 2m

then s + t ≥ 2m − 1 and the Expansion Proposition 7.6 implies that there is an
(m + 1,m + 1)-family in Sim(α). Then PC(m) implies that α is similar to a Pfister
form. Suppose dim α = 2m+1. If s + t ≥ 2m + 1 = 2(m + 1) − 1, we are done as
before using PC(m + 1). The remaining cases have s + t = 2m and s ≡ t ± 2 or
t + 4 (mod 8). Dropping one dimension from σ or from τ we can find an (s′, t ′)-pair
(σ ′, τ ′) ⊂ (σ, τ ) where s′ + t ′ = 2m− 1 and s′ ≡ t ′ ± 3 (mod 8). Again since F is
linked we may use Theorem 7.8 to get an unsplittable (σ ′, τ ′)-moduleψ of dimension
2m. Then PC(m− 1) implies ψ is similar to a Pfister form. Furthermore (σ ′, τ ′) is a
minimal pair and (7.18) implies that ψ is the unique (σ ′, τ ′)-unsplittable. Therefore
α � ψ ⊗ 〈a, b〉 for some a, b ∈ F • and α is also similar to a Pfister form. The last
case when dim α = 2m+2 occurs only when (σ, τ ) is special. ��

The special pairs really do behave differently. Using (5.11) we gave examples of
special (2, 2)-pairs over the rational field Q which have 8-dimensional unsplittable
modules which are not similar to Pfister forms.

The Pfister Factor Conjecture can be reformulated purely in terms of algebras with
involution. (Compare (6.12).) This version is interesting but seems harder to work
with than the original conjecture.

9.17 Conjecture. In the category of F -algebras with involution, suppose (A,K) ∼=
(Q1, J1)⊗· · ·⊗(Qm, Jm)where each (Qk, Jk) is a quaternion algebra with involution.
If the algebra A is split, then there is a decomposition

(A,K) ∼= (Q′
1, J

′
1)⊗ · · · ⊗ (Q′

1, J
′
m)
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where each (Q′
1, J

′
k) is a split quaternion algebra with involution.

Claim. (9.17) is equivalent to PC(m).

Proof. Assume (9.17) and suppose (σ, τ ) ∈ P ◦
m with associated Clifford algebra C.

By hypothesis,C ∼= C0 ×C0 andC0 ∼= End(V ) for a space V of dimension 2m. Since
s ≡ t (mod 8) the involution J = JS on C induces an involution J0 of type 1 on C0
as in (7.4). This provides the involution Iq on End(V ) corresponding to a quadratic
form q on V . The conjecture PC(m) says exactly that this q must be a Pfister form.
The algebra C0 can be decomposed as a tensor product of quaternion subalgebras,
each preserved by the involution J0 (compare Exercise 3.14). Therefore we may
apply (9.17) to conclude that (C0, J0) is a product of split quaternion algebras with
involution, (Q′

1, J
′
k). ExpressingQ′

k
∼= End(Uk)where dimUk = 2, the involution J ′

k

induces aλk-formBk onUk . It follows thatV ∼= U1⊗· · ·⊗Um and q � B1⊗· · ·⊗Bm.
If all the types λk are 1 then q is a product of binary quadratic forms, so it is similar to
a Pfister form. Otherwise some skew forms occur in the product (necessarily an even
number of them) and q is hyperbolic, so again it is Pfister.

Conversely, assume PC(m) and let (A,K) be a split algebra with a decomposition
as in (9.17). Then A ∼= End(V ) where dim V = 2m and the involution K induces a
regular λ-form B on V .

Claim. It suffices to decompose (V , B) � ⊗
(Uj , Bj ) for some λj -spaces

with dimUj = 2. For if such a factorization exists we can use (6.10) to see that
(A,K) ∼= ⊗

(End(Uj ), IBj ) as required.
SinceA is a product of quaternions we may reverse the procedure in (3.14) to view

A as some Clifford algebra: A ∼= C(W, q). SinceK preserves each quaternion algebra
it also preserves the generating space W . Then K is an (s, t)-involution on C(W, q),
for some (s, t) where s + t = 2m + 1. The isomorphism (A,K) ∼= (End(V ), IB)
then provides an (s, t)-family in Sim(V , B). If λ = 1, PC(m) implies that (V , B) is
similar to a Pfister form, so it has a decomposition into binary forms, as in the claim.

If λ = −1, then (V , B) �
(

0 1
−1 0

)
⊗ 2m−1〈1〉 (compare Exercise 1.7) and again a

(V , B) is a product of binary forms. ��

A direct proof of the Conjecture 9.17 does not seem obvious even for the cases
m ≤ 3.

One tiny bit of evidence for the truth of PC(m) is the observation that if dim q = 2m

and there is an (m + 1,m + 1)-family in Sim(q), then q ⊗ q is a Pfister form. This
follows from Exercise 7.14 (3). Of course this condition is far weaker that saying that
q itself is a Pfister form.
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Appendix to Chapter 9. Pfister forms and function fields

In this appendix we discuss, without proofs, the notion of the function field F(q) of
a quadratic form q over F . That theory yields another proof of PC(m) for m ≤ 5.
These “transcendental methods” in quadratic form theory were clarified in the Generic
Splitting papers of Knebusch (1976, 1977a). Expositions of this theory appear in
Lam’s lectures (1977), in Scharlau’s text (1985) and in the booklet by Knebusch and
Scharlau (1980).

As usual, all quadratic forms considered here are regular and F is a field of char-
acteristic not 2. If q is a form over F and K is an extension field of F we write qK
for q ⊗K . We use the notation q ∼ 0 to mean that q is hyperbolic. (This “ ∼” stands
for Witt equivalence.)

A quadratic form ϕ of dimension n over F can be considered from two viewpoints.
It can be viewed geometrically as an inner product space (V , ϕ) or it can be viewed
algebraically as a polynomial ϕ(X) = ϕ(x1, . . . , xn) homogeneous of degree 2 in n
variables. Over the field F(X) of rational functions it is clear that the form ϕ⊗F(X)

represents the value ϕ(X). For example the form 〈a, b〉 represents the value ax2
1 +bx2

2
over F(x1, x2). Furthermore if ϕ ⊂ q (i.e. ϕ is isometric to a subform of q) then
q ⊗ F(X) represents the value ϕ(X).

A.1 Subform Theorem. Let ϕ, q be quadratic forms overF such that q is anisotropic.
The following statements are equivalent.

(1) ϕ ⊂ q.

(2) For every field extension K of F , DK(ϕK) ⊆ DK(qK).

(3) q ⊗ F(X) represents ϕ(X), where X = (x1, . . . , xn) is a system of n = dim ϕ

indeterminates.

This theorem, due to Cassels and Pfister, has many corollaries. Among them is
the following characterization of Pfister forms as the forms which are “generically
multiplicative”.

A.2 Corollary. Let ϕ be an anisotropic form over F with dim ϕ = n. Let X, Y be
systems of n indeterminates. The following statements are equivalent.

(1) ϕ is a Pfister form.

(2) For every field extension K of F , DK(ϕK) is a group.

(3) ϕ ⊗ F(X, Y ) represents the value ϕ(X) · ϕ(Y ).
(4) ϕ(X) ∈ GF(X)(ϕF(X)).

Suppose ϕ is a quadratic form of dimension n over F and X is a system of n
indeterminates. If n ≥ 2 and ϕ �� H then ϕ(X) is an irreducible polynomial and we
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define the function field

F(ϕ) = the field of fractions of F [X]/(ϕ(X)).

Certainly ϕ becomes isotropic over F(ϕ), for if ξi ∈ F(ϕ) is the image of xi , then
ϕ(ξ1, . . . , ξn) = 0. In factF(ϕ) is a “generic zero field” for ϕ in the sense of Knebusch
(1976). Changing the variables in ϕ or multiplying ϕ by a non-zero scalar alters the
function field F(ϕ) only by an isomorphism.

If ϕ � 〈1〉 ⊥ ψ then ϕ(X) = x2
1 + ψ(X′) where X′ = (x2, . . . , xn) and we

calculate that
F(ϕ) ∼= F(X′)(

√
ψ(X′)).

For example if ϕ � 〈1, a〉 then F(ϕ) ∼= F(x)(
√−a), a purely transcendental exten-

sion of F(
√−a). If ϕ is isotropic then F(ϕ) is a purely transcendental extension of

F . (See Exercise 12.) To simplify later statements let us define F(H) = F(x), where
x is an indeterminate.

Using results about quadratic forms over valuation rings Knebusch proved the
following result about norms of similarities.

A.3 Norm Theorem. Let ϕ, q be quadratic forms over F such that ϕ represents 1
and dim ϕ = m ≥ 2. Let X be a system of m indeterminates. The following are
equivalent.

(1) q ⊗ F(ϕ) ∼ 0.

(2) ϕ(X) ∈ GF(X)(qF(X)).

The condition (2) here is equivalent to the existence of a “rational composition
formula”

ϕ(X) · q(Y ) = q(Z)

where X = (x1, . . . , xm) and Y = (y1, . . . , yn) are systems of independent indeter-
minates and each entry zk of Z is a linear form in Y with coefficients in F(X). If each
zk is actually bilinear in X, Y then we have ϕ < Sim(q), as in (1.9) (3).

A.4 Corollary. Let ϕ be an anisotropic form which represents 1 and dim ϕ ≥ 2 over
F . Then ϕ is a Pfister form if and only if ϕ ⊗ F(ϕ) ∼ 0.

Proof. If ϕ is a Pfister form then since ϕ ⊗ F(ϕ) is isotropic it must be hyperbolic by
(5.2) (2). The converse follows from (A.3) and (A.2). ��

A.5 Corollary. Suppose q is an anisotropic form and q⊗F(ϕ) ∼ 0. Then ϕ is similar
to a subform of q. In particular dim ϕ ≤ dim q.

Proof. Let b ∈ DF (ϕ) so that 〈b〉ϕ represents 1. The Norm Theorem then implies
that b · ϕ(X) ∈ GF(X)(qF(X)). For any a ∈ DF (q) it follows that qF(X) represents
ab · ϕ(X) and the Subform Theorem implies that 〈ab〉ϕ ⊂ q. ��
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A.6 Corollary. Let ϕ be a Pfister form and q and anisotropic form over F . Then
q ⊗ F(ϕ) ∼ 0 if and only if ϕ || q.

Proof. If ϕ || q apply (A.4). Conversely suppose q ⊗ F(ϕ) ∼ 0. Then (A.5) implies
q � 〈a1〉ϕ ⊥ q1 for some a1 ∈ F • and some form q1. But then q1 ⊗F(ϕ) ∼ 0, since
ϕ is a Pfister form, and we may proceed by induction. ��

This corollary is a direct generalization of Lemma 3.20(2) since if ϕ = 〈〈b〉〉 then
F(ϕ) is a purely transcendental extension of F(

√−b). Now let us apply these results
to our questions about spaces of similarities.

A.7 Lemma. If σ < Sim(q) where dim σ ≥ 2 then q ⊗ F(σ) ∼ 0.

Proof. For any field extension K of F , σK < Sim(qK). Since σ ⊗ F(σ) is isotropic
the claim follows from (1.4). Here is another proof: We may assume σ represents 1.
Let X be a system of s = dim σ indeterminates. Since σF(X) represents σ(X) and
σF(X) < Sim(qF(X)) we conclude that σ(X) ∈ GF(X)(qF(X)). The Norm Theorem
applies. ��

The anisotropic cases of (1.10) follow as corollaries. For example, suppose
〈1, a, b〉 < Sim(q) where q is anisotropic. Let ϕ = 〈〈a, b〉〉 and note that 〈1, a, b〉 ⊗
F(ϕ) is isotropic. Then the argument in (A.7) implies that q ⊗ F(ϕ) ∼ 0 and (A.6)
implies that ϕ || q.

By the Expansion Proposition 7.6 the following statement of the conjecture is
equivalent to “PC(m) over all fields”:

Pfister Factor Conjecture. If σ < Sim(q) where dim q = 2m and dim σ = ρ(2m)
then q is similar to a Pfister form.

A.8 Lemma. The following statement is equivalent to the Pfister Factor Conjecture.
Suppose σ < Sim(q) where dim q = 2m and dim σ = ρ(2m). If q is isotropic then q
is hyperbolic.

Proof. If q is similar to a Pfister form and is isotropic then it is hyperbolic by (5.2).
Conversely suppose the statement here is true and σ < Sim(q) over F where dim q =
2m and dim σ = ρ(2m). Then σ⊗F(q) < Sim(q⊗F(q)) and the assumed statement
implies that q ⊗ F(q) is hyperbolic. By (A.4) it follows that q is similar to a Pfister
form. ��

In trying to prove this conjecture we suppose that σ < Sim(q) as above. Assuming
that q is isotropic but not hyperbolic we try to derive a contradiction. Express q =
qa ⊥ kH where qa is anisotropic and non-zero. Then qa ⊗ F(σ) ∼ 0 by (A.7) and
therefore dim qa ≥ dim σ = ρ(2m), by (A.5). If m ≤ 3 this already provides a
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contradiction since ρ(2m) = 2m = dim q in those cases. The case m = 4 is settled
by the next lemma which we could have proved after (1.4).

A.9 Lemma. Suppose S ⊆ Sim(V , q) is a (regular) subspace where dim S = s.
Suppose q is isotropic but not hyperbolic and v ∈ V is an isotropic vector. Then S · v
is a totally isotropic subspace of V of dimension s.

Proof. If f ∈ S then q(f · v) = µ(f )q(v) = 0. Therefore S · v is totally isotropic.
Suppose f is in the kernel of the evaluation map ε : S → S · v. Then f (v) = 0 so
that f is not injective and it follows that µ(f ) = 0. However (1.4) implies that S is
anisotropic and consequently f = 0. Therefore ε is a bijection. ��

Now suppose m = 4, so that dim q = 16 and dim σ = 9. The lemma implies that
q has a totally isotropic subspace of dimension 9 which is certainly impossible since
9H cannot fit inside q. If m = 5 then dim q = 32 and dim σ = 10 and the lemma
shows that 10H ⊂ q. Therefore 10 ≤ dim qa ≤ 12, since the earlier argument implies
that dim qa ≥ dim σ = 10. The next idea is to observe that these inequalities hold
over any extension field K such that q ⊗K is not hyperbolic.

A.10 Proposition. Suppose q is a form of even dimension which is not hyperbolic
over F . Then there exists an extension field K such that q ⊗K � ψ ⊥ kH and ψ is
similar to an anisotropic (non-zero) Pfister form.

Proof. Suppose q � q0 ⊥ i0H where q0 is anisotropic. Let F1 = F(q0) be the
function field so that q0 ⊗ F1 � q1 ⊥ i1H for some anisotropic form q1 and some
i1 ≥ 1. If q1 �= 0 let F2 = F1(q1) and express q1 ⊗ F2 � q2 ⊥ i2H for some
anisotropic form q2 and some i2 ≥ 1. Repeat this process to get a tower of fields
F ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fh where q ⊗ Fh ∼ 0 but q ⊗ Fh−1 �∼ 0. Let K = Fh−1 and
express q ⊗ K � ψ ⊥ kH where ψ = qh−1 is anisotropic. By construction ψ �= 0
and ψ ⊗K(ψ) ∼ 0. Therefore ψ is similar to a Pfister form by (A.4). ��

A.11 Proposition. The Pfister Factor Conjecture is true if m ≤ 5.

Proof. We already settled the cases m ≤ 4 and showed that if m = 5 then 10 ≤
dim qa ≤ 12. Replacing F by the field K of (A.10) we get the extra information that
dim qa is a power of 2. This contradiction completes the proof. ��

Exercises for Chapter 9

1. u-invariants. For a nonreal field F , u(F ) is defined to be the maximal dimension
of an anisotropic quadratic form over F .

(1) Suppose u = u(F (
√
a)) is finite. Then every anisotropic form σ over F with

dim σ ≥ u+ 3 contains a 4-dimensional subform of determinant 〈1〉.
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(2) If u(F (
√
a)) ≤ 8 then for every m, SC(m) is true over F . For example this

condition holds if F is an extension of R of transcendence degree ≤ 3.

(Hint. (1) Use Lemma 3.20.
(2) The theory of Ci-fields shows that if K/C has transcendence degree ≤ 3 then

u(K) ≤ 8. See e.g. §2.15 of Scharlau (1985).)

2. If every form over F of dimension 12 contains a 4-dimensional subform of deter-
minant 〈1〉, then PC(m) is true for all m.

(Hint. If m = 6 suppose (σ, τ ) < Sim(q) is an (11, 3)-family where dim q = 64.
Find a related (12, 0)-family and apply (9.11) and (2.10) to find that q � 〈〈a〉〉 ⊗ q ′
where dim q ′ = 32 and q ′ admits a (7, 3)-family. From ρ3(32) = 7 use (7.12) to find
a (6, 6)-family in Sim(q ′).)

3. (1) Suppose (σ, τ ) is a pair such that dim σ ≥ 8 and σ contains an Albert subform.
Then (σ, τ )∼∼∼ (σ ′, τ ′) where τ ′ is isotropic. Consequently, if (σ, τ ) < Sim(q) then q
must be hyperbolic. Compare Exercise 6.4 (4).

(2) Extend the definition of the equivalence ∼∼∼ to include cases as mentioned in
Exercise 2.4 (1). Will this change the validity of results in Chapter 9?

(Hint. (1) Scale to assume σ � 〈a, b, ab〉 ⊥ 〈−x,−y,−xy〉 ⊥ 〈u, v, . . .〉. Shift
twice.)

4. Let F((t)) be the field of formal Laurent series over F . Then PC(m) over F((t))
implies PC(m) and PC(m− 1) over F .

(Hint. Use Springer’s Theorem about quadratic forms over valued fields.) Compare
Exercise 10.

5. Suppose q is a form of dimension 2m over F and there is an (m+ 1,m+ 1)-family
in Sim(q). Then q ∈ I 3F . What are the possible values of the signature sgnP (q)
when P is an ordering of F ?

6. PC(6). Suppose σ < Sim(V , q) over F where dim σ = 11 and dim q = 26 = 64.
As usual, let C = C(−σ1) and A = EndC(V ), so that C ⊗ A ∼= End(V ). Then A is
a quaternion algebra with induced involution “bar”. If there is a quadratic extension
L/F such that σ ⊗L is isotropic and c(σ ) = [A] is split by L, then q must be similar
to a Pfister form?

7. Pfister unsplittables. Suppose (C, J ) is the Clifford algebra with involution
associated to an (s, t)-pair (σ, τ ) where s + t = 2m+ 1. Then (C, J ) ∼= (Q1, J1)⊗
· · · ⊗ (Qm, Jm) where each (Qk, Jk) is a quaternion algebra with involution as in
Exercise 6.4. Suppose Qk

∼= (ak, bk) corresponding to generators ek , fk where
J (ek) = ±ek and J (fk) = ±fk .
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(1) Suppose allak belong to a two element set {1, d}. Then every (σ, τ )-unsplittable
is similar to a Pfister form.

(2) For what (s, t)-pairs does the condition in (1) apply? We can use Exercise 3.14
to get explicit quaternion algebras in C. For example (1) applies when σ = 〈1〉 ⊥
〈〈−c〉〉 ⊗ α and τ = 0. It also applies when (σ, τ ) = (〈1〉 ⊥ α, 〈1〉 ⊥ α).

(Hint. (1) Note that (d, u)⊗(d, v) ∼= (1, u)⊗(d, uv) and the involution preserves the
factors. Then (C, J ) ∼= (C′, J ′)⊗ (Q, J ′′) where Q is quaternion and C′ ∼= End(U)
is a tensor product of split quaternions. Suppose (V , q) is unsplittable for (C, J ) and
apply (6.11) to find that (V , q) � (U, ϕ) ⊗ (W,ω), where (W,ω) is an unsplittable
(Q, J ′′)-module. Show that ϕ and ω are Pfister.)

8. Definition. InF is linked if every pair ϕ, ψ of n-fold Pfister forms is linked. That
is, ϕ � 〈〈a〉〉 ⊗ α and ψ � 〈〈b〉〉 ⊗ α for some (n− 1)-fold Pfister form α. The linked
fields mentioned above are the ones where I 2F is linked.

Proposition. If I 3F is linked then for every m, SC(m) is true over F .

(Hint. If InF is linked then every anisotropic q ∈ InF has a “simple decomposition”:
q � ϕ1 ⊥ · · · ⊥ ϕk where each ϕj is similar to an n-fold Pfister form. (See Elman,
Lam and Wadsworth (1979), Corollary 3.6.) Given (σ, τ ) ∈ P ◦

m let β = σ ⊥ −τ .
By Merkurjev’s Theorem β ∈ I 3F . We may assume β is anisotropic. A simple
decomposition implies t ≡ 0 (mod 4). Shift to assume τ = 0, use the decomposition
and (9.10).)

9. Adjusting signatures. If P is an ordering of F then sgnP (σ ) denotes the signature
of the form σ relative to P .

(1) Suppose P is an ordering of F . If (σ, τ ) ∈ P ◦
m then

sgnP (σ ) ≡ sgnP (τ) (mod 8).

(2) Signature Shift Conjecture. If (σ, τ ) ∈ P ◦
m then (σ, τ ) ∼∼∼ (σ ′, τ ′) for some

pair (σ ′, τ ′) where dim σ ′ = dim τ ′ and sgnP (σ
′) = sgnP (τ

′) for all orderings P .

Definition. F has the property ED if for every b ∈ F • and every form q over
F such that q ⊥ 〈−b〉 is totally indefinite, q represents bt for some totally positive
t ∈ F •.

Lemma. If the field F satisfies ED then the Signature Shift Conjecture holds. This
applies, for example, if F is an algebraic extension of a uniquely ordered field.

Remark. It might be possible to find a counterexample to SC(m) by finding a
field for which the Signature Shift Conjecture fails.

(Hint. (1) If β ∈ I 3R then dim β ≡ 0 (mod 8).
(2) Mimic the idea in (9.10).)

10. Laurent series fields. LetF be a complete discrete valued field with valuation ring
O, maximal ideal m = πO, and non-dyadic residue field k = O/m (i.e. char k �= 2).
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A quadratic form q over F has “good reduction” if there exists an orthogonal basis
{e1, . . . , en} such that q(ei) ∈ O•. In this case let L = Oe1 + · · · + Oen, a free
O-module. There is a corresponding “reduced” form q̄ over k obtained from L/mL.
By Springer’s Theorem the isometry class of q̄ is independent of the choice of basis
and q̄ is isotropic iff q is isotropic. Any quadratic form q over F can be expressed as
q = q1 ⊥ 〈π〉q2 where q1 and q2 have good reduction. These reduced forms q̄1 and
q̄2 are uniquely determined up to Witt equivalence. (For more details see the texts of
Lam or Scharlau.)

(1) Lemma. Suppose (V , q) is anisotropic with good reduction, and L ⊆ V as
above. If f ∈ Sim(V , q) with norm µ(f ) ∈ O then f (L) ⊆ L.

(2) Corollary. Suppose q, σ , τ are anisotropic forms with good reduction over F .
If (σ, τ ) < Sim(q) over F then (σ̄ , τ̄ ) < Sim(q̄) over k.

(3) Suppose F = k((t)) is a Laurent series field. If (V , q) is a quadratic space
over F then (V , q) = (V1, q1) ⊥ (V2, 〈t〉q2) where q1, q2 are forms with good
reduction. If q is anisotropic then the subspaces Vi are uniquely determined. E.g.
V1 = {v ∈ V : q(v) ∈ k}.

(4) Corollary. Suppose σ , τ , q1, q2 are anisotropic forms over k. If (σ, τ ) <
Sim(q1 ⊥ 〈t〉q2) over k((t)) then (σ, τ ) < Sim(q1) and (σ, τ ) < Sim(q2) over k.

(5) Corollary. Suppose σ , τ , q are anisotropic forms over k. Then (σ ⊥ 〈t〉, τ ⊥
〈t〉) < Sim(q ⊗ 〈〈t〉〉) over k((t)) iff (σ, τ ) < Sim(q) over k.

(Hint. (1) Suppose v ∈ L and let r be the smallest non-negative integer with
πr · f (v) ∈ L. If r > 0 then q(πr · f (v)) ∈ m and the anisotropy implies
πr · f (v) ∈ mL = πL, contrary to the minimality.)

11. History. (1) The following result of Cassels (1964) was a major motivation
for Pfister’s theory: 1 + x2

1 + · · · + x2
n is not expressible as a sum of n squares in

R(x1, . . . , xn).
(2) The level s(F )was defined in Exercise 5.5. Givenm there exists a field of level

2m. In fact letX = (x1, . . . , xn) be a system of indeterminates, let d = x2
1 + · · · + x2

n

and define Kn = R(X)(
√−d). If 2m ≤ n < 2m+1 Pfister proved: s(Kn) = 2m.

(3) The function field methods in quadratic form theory began with the “Hauptsatz”
of Arason and Pfister:

Theorem. If q is a non-zero anisotropic form in InF then dim q ≥ 2n.

(Hint. (1) Use q = n〈1〉 and ϕ(x) = x2
0 +· · ·+x2

n over R(x0, . . . , xn) in the Subform
Theorem (A.1).

(2) Apply Exercise 5.5. Alternatively, Kn is equivalent to the function field
R((n + 1)〈1〉). Certainly s(Kn) ≤ n hence s(Kn) ≤ 2m. If not equal then 2m〈1〉
is isotropic, hence hyperbolic, over Kn. Get a contradiction using (A.5).

(3) Given q ∼ 〈c1〉ϕ1 ⊥ · · · ⊥ 〈ck〉ϕk where each ϕj is an n-fold Pfister form.
Suppose k > 1 and assume the result for any such sum of fewer than k terms (over
any field). If q ⊗ F(ϕ1) ∼ 0 apply (A.5). Otherwise apply the induction hypothesis
to the anisotropic part of q ⊗ F(ϕ1).)
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12. (1) Suppose K = F(x1, . . . , xn) is a purely transcendental extension of F and q
is a form over F . If q ⊗K is isotropic then q must be isotropic over F .

(2) Let ϕ be a form over F with dim ϕ ≥ 2. Then F(ϕ)/F is purely transcendental
if and only if ϕ is isotropic.

(Hint. (2) Suppose ϕ is isotropic with dim ϕ > 2. Changing variables we may
assume that ϕ(X) = x1x2 + α where α = α(X′) is a non-zero quadratic form in
X′ = (x3, . . . , xn).)

13. More versions of PC(m). The following statements are equivalent to PC(m)
(over all fields):

(1) If dim ϕ = 2m, ϕ represents 1, and there is an (m + 1,m + 1)-family in
Sim(V , ϕ), then ϕ is round. That is: for every c ∈ DF (ϕ) there exists f ∈ Sim•(ϕ)
with µ(f ) = c.

(2) Suppose (A,K) is a tensor product of m quaternion algebras with involution,
as in (9.17). Suppose A is split and there exists 0 �= h ∈ A with J (h) · h = 0. Then
for every c ∈ F there exists f ∈ A such that J (f ) · f = c.

(Hint. (1) Use (A.2).
(2) LetA ∼= End(V )where dim V = 2mwithJ corresponding to Iϕ , for a quadratic

form ϕ on V . Equivalently Sim(V , ϕ) admits an (m+1,m+1)-family. The condition
Iϕ(h) · h = 0 implies ϕ is isotropic. The conclusion says that ϕ is round.)

14. Pfister neighbors. (1) If ϕ is a hyperbolic form and α ⊂ ϕ with dim α > 1
2 dim ϕ

then α must be isotropic.
(2) A form α is called a Pfister neighbor if there is a Pfister form ρ such that

α ⊂ 〈a〉ρ for some a ∈ F • and dim α > 1
2 dim ρ. In this case: α is isotropic iff ρ is

hyperbolic. Every form of dimension ≤ 3 is a Pfister neighbor.
(3) If α is a Pfister neighbor then the associated Pfister form is unique.
(4) Suppose α is Pfister neighbor associated to ρ. If α < Sim(q) and q is

anisotropic then ρ || q. In fact, if α < Sim(q) and q � q0 ⊥ mH where q0 is
anisotropic, then ρ || q0.

(Hint. (1) Viewed geometrically, the space (V , ϕ) of dimension 2m has a totally
isotropic subspace S with dim S = m. The subspace (A, α) has dimA > m. Then
A ∩ S �= {0}.

(3) If α is associated to ρ and to ψ then ψ ⊗F(ρ) is isotropic, hence hyperbolic.)

15. More on Pfister neighbors. If ϕ is anm-fold Pfister form and 〈1, a, b〉 ⊂ ϕ then
ϕ ∼= 〈〈a, b, c3, . . . , cm〉〉 for some cj ∈ F •. (Compare (5.2) (3) and Exercise 5.23.)
More generally:

Proposition. Supposeϕ is a Pfister form andα is a Pfister neighbor with associated
Pfister form ρ. If α ⊂ ϕ then ϕ ∼= ρ ⊗ δ for some Pfister form δ.

(Hint. Assume ϕ is anisotropic. Exercise 14 (1) and (A.6) imply that ρ || ϕ. Then
ϕ ∼= ρ ⊥ γ for some form γ . If dim γ > 0 choose c ∈ DF (γ ) and let ρ1 := ρ⊗〈〈c〉〉.
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Since ρ ⊥ 〈c〉 is a subform of ϕ and is a Pfister neighbor associated to ρ1 we have
ρ1 || ϕ. Iterate the argument.)

16. If there is a counterexample to the Pfister Factor Conjecture whenm = 6, then there
exists a field F and σ < Sim(q) where dim σ = 12, dim q = 64 and q � ψ ⊥ kH
where ψ is an anisotropic Pfister form of dimension 16 or 32.

Notes on Chapter 9

Several of the ideas used in the proof of SC(m) for m ≤ 5 are due to Wadsworth.
In particular he had the idea of examining 4-dimensional subforms of determinant
〈1〉. The approach to the Pfister Factor Conjecture given in the appendix follows
Wadsworth and Shapiro (1977a).

The property SC(m) was proved in (9.13) for certain classes of fields. How-
ever there exist fields not satisfying any of these properties. For example there is
a field F and a quadratic form β such that β ∈ I 3F , dim β = 14 and β contains
no 4-dimensional subform of determinant 〈1〉. If fact, if k is a field and
F = k((t1))((t2))((t3)) is the iterated Laurent series field then there are examples
of such β over F . This is proved in Hoffmann and Tignol (1998), where the stated
property is called D(14).

The class of linked fields as defined in Lemma 9.14 was first examined by Elman
and Lam (1973b). Some of their proofs were simplified by Elman (1977), Elman,
Lam and Wadsworth (1979) and Gentile (1985).

(A.10) is due to Knebusch (1976). The Pfister form ψ there is called the “leading
form” of q. For further information see Knebusch and Scharlau (1980) or Scharlau
(1985), p. 163–165.

Exercise 7. See Yuzvinsky (1985).

Exercise 9. This property ED (for “effective diagonalization”) was introduced by
Ware and studied by Prestel and Ware (1979).

Exercise 10 follows a communication from A. Wadsworth (1976).

Exercise 14–15. For Pfister neighbors see Knebusch (1977a) or Knebusch and
Scharlau (1980).



Chapter 10

Central Simple Algebras
and an Expansion Theorem

Our previous expansion result (7.6) followed from an explicit analysis of the pos-
sible involutions on a quaternion algebra. The Expansion Theorem in this chapter
depends on similar information about involutions on a central simple algebra of de-
gree 4. Albert (1932) proved that any such algebra A is a tensor product of two
quaternion algebras. However there can exist involutions J on A which do not arise
from quaternion subalgebras. It is the analysis of these “indecomposable involutions”
which provides the necessary information for the Expansion Theorem. The principal
ingredient is Rowen’s observation that a symplectic involution on a central simple
algebra of degree 4 must be decomposable.

The chapter begins with a discussion of maximal (s, t)-families and a characteri-
zation of those dimensions for which expansions are always possible. The Expansion
Theorem requires knowledge of involutions on algebras of degree 4. We derive the
needed results from a general theory of Pfaffians. This theory is first described for
matrix rings, then lifted to central simple algebras, and finally specialized to algebras
of degree 4. The exposition would be considerably shortened if we restrict attention
to the degree 4 case from the start. (Most of the results needed here appear in Knus et
al. (1998), Ch. IV.) Our long digression about general Pfaffians is included here since
it is a novel approach and it helps clarify some of the difficulties of generalizing the
theory to larger algebras.

Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family. If dim V = 2m and s+t = 2m−1
the Expansion Proposition (7.6) says that (S, T ) can be enlarged to some family of
maximal size. We will sharpen this result by showing families of certain smaller
sizes can also be enlarged. For example let us consider the case dim q = 16. If
S ⊆ Sim(V , q) where dim S = 5 then there exists T such that (S, T ) ⊆ Sim(V , q)
is a (5, 5)-family. On the other hand there exist quadratic forms q with dim q = 16
such that Sim(q) has (3, 3)-families but admits no (s, t)-families of larger size. See
Exercise 1.

The Expansion Lemma (2.5) provides examples of maximal families. For instance
if S0 ⊆ Sim(V , q) is a 3-dimensional subspace with orthogonal basis {1V , f, g} then
it can be expanded by adjoining fg. The expanded space S = span{1V , f, g, fg}
is maximal family because no non-zero map can anticommute with f , g and fg.
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If µ(f ) = a and µ(g) = b the quadratic form on S is σ = 〈1, a, b, ab〉 and the
associated Clifford algebra is C = C(−σ1) = C(〈−a,−b,−ab〉). If {e1, e2, e3} is
the set of generators of C then z = e1e2e3 is the element of highest degree, generating
the center of C. If π : C → End(V ) is the representation corresponding to S we see
thatπ(z) = (f )(g)(fg) = −ab·1V , a scalar. Thenπ is not faithful (i.e. not injective).
This sort of behavior always occurs when a family arises from the Expansion Lemma.
More generally recall the properties of the character χ(S, T ) defined in (7.17). The
next lemma is a repetition of (7.18).

10.1 Lemma. Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family with forms (σ, τ ). If
χ(S, T ) �= 0 then s ≡ t (mod 4), dσ = dτ and (S, T ) is maximal.

We call this sort of family “trivially maximal”. If s+ t is odd then no (s, t)-family
can be maximal since we can always expand by one dimension to get a non-faithful
(maximal) family. To avoid this sort of triviality we will investigate when (S, T ) can
be expanded by 2 (or more) dimensions.

We have already considered some expansion results. For example Proposition 7.6
states that if (S, T ) ⊆ Sim(V , q) is an (s, t)-family such that dim q = 2m and
s + t = 2m− 1, then (S, T ) can be expanded by 3 dimensions. As another example,
recall that 〈1, a〉 < Sim(q) if and only if (〈1, a〉, 〈1, a〉) < Sim(q), and similarly for
〈1, a, b〉 < Sim(q). These results are be generalized in the next proposition, which is
a mild refinement of (7.12).

10.2 Proposition. Let (σ, τ ) be a minimal pair with unsplittable (σ, τ )-modules of
dimension 2m. Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family with forms (σ, τ ).
Then there is an associated (s′, t ′)-family in Sim(V , q) with s′ + t ′ = 2m+ 2.

Proof. If (S, T ) is trivially maximal, this associated family cannot be an actual ex-
pansion of (S, T ). Let C = C(−σ1 ⊥ τ) with the usual involution J , and let (W,ψ)
be an unsplittable (C, J )-module. If C does not act faithfully on W , we replace
(S, T ) by a smaller family obtained by deleting one dimension. This smaller fam-
ily is still minimal. By (7.11) we know that every unsplittable module is (C, J )-
similar to (W,ψ). The Decomposition Theorem 4.1 then yields a (C, J ) isometry
(V , q) � (W,ψ) ⊗F 〈a1, . . . , ar 〉 for some ai ∈ F •. Now the Expansion Proposi-
tion 7.6 can be applied to (W,ψ) to produce the larger family as desired. ��

Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family with s + t odd. Let (σ, τ ) be the
corresponding forms and C = C(−σ1 ⊥ τ) the associated Clifford algebra. Then
C is a central simple F -algebra of dimension 2s+t−1 and the given representation
π : C → End(V ) induces an isomorphism

C ⊗ A ∼= End(V )
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where A = EndC(V ) is the centralizer of C in End(V ). Then A is also a central
simple F -algebra and since the involution J on C and Iq on End(V ) are compatible,
there is an induced involution K on A.

10.3 Lemma. (S, T ) can be expanded by 2 dimensions if and only if there is a
quaternion subalgebra Q ⊆ A which is preserved by the involution K .

Proof. SuchQ exists if and only if there exist a, b ∈ A such that a2 and b2 are in F •,
a, b anticommute,K(a) = ±a andK(b) = ±b. Let z be an element of highest degree
in C so that z anticommutes with S1 + T , z2 ∈ F • and J (z) = ±z. Let f = za and
g = zb. Then Q exists if and only if there exist f, g ∈ End(V ) which anticommute
with S1 + T , f 2 and g2 are in F •, Iq(f ) = ±f and Iq(g) = ±g. This occurs if and
only if (S, T ) can be expanded by 2 dimensions. ��

Of course this lemma is just a slight generalization of the Expansion Proposi-
tion 7.6. In order to go further we need information about quaternion subalgebras of
larger algebras with involution. Recall that if A is a central simple F -algebra then
dimF A = n2 is a perfect square (since over some splitting field E, A⊗E ∼= Mn(E)

for some n). Define the degree of the algebraA to be this integer n. Then a quaternion
algebra has degree 2.

The basic examples of central simple F -algebras with involution are tensor prod-
ucts of split algebras and quaternion algebras. For instance if A ∼= Q1 ⊗Q2 where
Q1 and Q2 are quaternion algebras, then A is a central simple algebra of degree 4.
Certainly this A has an involution, since we can use J = J1 ⊗ J2 where Ji is an
involution on Qi . We consider the converse.

10.4 Definition. Let A be a central simple F-algebra. Then A is decomposable if

A ∼= A1 ⊗ A2

for some central simple F -algebras Ai with degAi > 1.
If J is an involution on A then (A, J ) is decomposable if (A, J ) ∼= (A1, J1) ⊗

(A2, J2) for some central simple F -algebras Ai with involutions Ji and with
degAi > 1. When the algebra A is understood we say that the involution J is
decomposable.

Note that J is decomposable if and only if there exists a proper J -invariant central
simple subalgebra A1 of A. For A2 can be recovered as the centralizer of A1.

Every algebra of prime degree is certainly indecomposable. In particular, quater-
nion algebras are indecomposable. If A ∼= End(V ) is split and J is any involution of
symplectic type on A then J is decomposable if and only if degA > 2. Similarly if
J = Iq is the adjoint involution of a quadratic form q on V and if q � α⊗β for some
quadratic forms α, β of dimension > 1, then J is decomposable. (See (6.10).)
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Let us now concentrate on algebras of degree 4. Albert (1932) proved that if A
has degree 4 and possesses an involution then A is decomposable as a tensor product
of quaternion subalgebras. Rowen (1978) used Pfaffians to prove that symplectic
involutions on a division algebra of degree 4 are always decomposable. The next
theorem is a refinement of these results.

10.5 Theorem. LetA be a central simple F -algebra of degree 4 with involution. Then
A � Q1 ⊗Q2 for some quaternion algebras Qi .

(1) If J is an involution on A of symplectic type then J is decomposable. Further-
more if y ∈ A−F such that y2 ∈ F • and J (y) = ±y, then there exists a J -invariant
quaternion subalgebra Q with y ∈ Q.

(2) Suppose J is an involution on A of orthogonal type. Then J is decomposable
if and only if there exists y ∈ A such that y2 ∈ F • and J (y) = −y. Furthermore if
such y is given, then there exists a J -invariant quaternion subalgebraQ with y ∈ Q.

Certainly there exist indecomposable involutions on split algebras of degree 4,
provided F is not quadratically closed. (Just use Iq on End(V ) where (V , q) �
〈1, 1, 1, c〉 for some non-square c ∈ F .) Indecomposable involutions on division
algebras of degree 4 were first exhibited by Amitsur, Rowen, Tignol (1979). These
examples were clarified by work of Knus, Parimala, Sridharan on the “discriminant” of
an involution. We present an exposition of the theory of Pfaffians, the characterization
of indecomposable involutions on algebras of degree 4, and a proof of Theorem 10.5.

Before beginning those tasks, we mention an easy lemma and then apply that
theorem to deduce another expansion result for (s, t)-families.

10.6 Lemma. Suppose A is a central simple F -algebra of degree 4 with involution
J . Then (A, J ) is decomposable if and only if (A, J ) ∼= (C(U, α), J ′) for some
4-dimensional quadratic space (U, α) and some involution J ′ which preserves U .

Proof. SupposeA is a product of two invariant quaternion algebras. Choose generators
which are J -invariant (i.e. J (x) = ±x). Alter the two quaternion algebras to a Clifford
algebra as in (3.14), and note that the Clifford generators are still J -invariant. ��

Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family where dim q = 2m and s + t =
2m−3. Then dimC = 22m−4 and the centralizerAwill be central simple of degree 4.
If the induced involutionK onA has symplectic type then (10.3) and (10.5) imply that
(S, T ) can be expanded to a family of maximal size. This is the situation mentioned
at the start, when S ⊆ Sim(q) where dim q = 16 and dim S = 5.

For exactly which dimensions s, t and 2m are we guaranteed that a family will
expand to one of maximal size? One necessary condition is easily verified: if
s = ρt (2m−2) then there exists some (s, t)-family on 2m-space (over some field)
which cannot be expanded by 2 dimensions.
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In fact we can construct one over the real field R. For such s, t , m there is a
family (s〈1〉, t〈1〉) < Sim(2m−2〈1〉). Therefore (s〈1〉, t〈1〉) < Sim(q) where q =
2m−2〈1, 1, 1,−1〉. Then dim q = 2m but q is not a Pfister form. Then Sim(q) admits
no family of maximal size because PC(m) holds over R. We prove that this necessary
condition is also sufficient.

10.7 Expansion Theorem. Suppose (S, T ) ⊆ Sim(V , q) is an (s, t)-family and
dim q = 2m. If s > ρt (2m−2) then there is an associated (s′, t ′)-family (S′, T ′) ⊆
Sim(V , q) where s′ + t ′ = 2m+ 2.

Here the family (S′, T ′) might not be an expansion of (S, T ), since (S, T ) could
be trivially maximal. For such cases s+ t is even and the representation is not faithful.
Then we first pass to a subfamily of (S, T ) of codimension 1 and expand that to the
family (S′, T ′).

Note. That inequality is equivalent to:

s + t ≥


2m− 3 if m ≡ t

2m− 1 if m ≡ t + 1
2m− 2 if m ≡ t + 2
2m− 3 if m ≡ t + 3

(mod 4).

Of course this condition is related to the condition for minimal pairs given in (7.9).
In this situation an unsplittable (σ, τ )-module must have dimension 2m−1 or 2m. In
the former case we find that (σ, τ ) is a minimal pair and the unsplittable module
(S, T ) ⊆ Sim(W, ϕ) is unique by (7.11). Since (V , q) is a sum of unsplittable
components, it follows that (S, T ) ⊆ Sim(V , q) expands uniquely to a family of
maximal size. Therefore the new content of the theorem occurs when unsplittables
have dimension 2m.

Proof. If s + t = 2m − 1 then (7.6) implies that the family always expands by 3
dimensions. Suppose s + t = 2m − 3 and m ≡ t or t + 3 (mod 4). Then C ⊗ A ∼=
End(V ) with involutions J ⊗ K ∼= Iq , where (A,K) is an algebra of degree 4 with
involution. Since s = 2m−3− t ≡ t±3 (mod 8)we see from (7.4) that the involution
J on C has type −1. Then (6.9) implies that K has type −1 on A. Now (10.5) and
(10.6) imply that

(A,K) ∼= (C(U, α), J ′)

where dimU = 4 andJ ′ preservesU . Then there exists an orthogonal basish1, . . . , h4
of U such that J ′(hi) = ±hi . Then the elements zhi , along with zh1h2h3h4, can be
adjoined to (S, T ) to provide a family of maximal size (s′ + t ′ = 2m+ 2).

Finally suppose that s+t = 2m−2 andm ≡ t+2 (mod 4). Then s ≡ t+2 (mod 8),
the involutionK has type 1 and J (z) = −z. Then the representationπ : C → End(V )
cannot send z to a scalar, and therefore π must be faithful. We may identify C with its
image π(C) ⊆ End(V ). Since C0 is central simple of dimension 22m−4 its centralizer
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A is central simple of degree 4 and

C0 ⊗ A ∼= End(V ).

Since the involutions J and Iq are compatible, Iq restricts to an involution K on
A. Since z commutes with C0 we find that z ∈ A and K(z) = J (z) = −z. By
Theorem 10.5(2) the involution K is decomposable, so that (A,K) ∼= (C(U, α), J ′)
as above. Furthermore in this isomorphism the element z corresponds to an element
of U . We choose an orthogonal basis {z, h1, h2, h3} of U with Iq(hi) = ±hi and
expand the family (S, T ) by adjoining {h1, h2, h3, zh1h2h3}. ��

There is a fine point to be made here about “maximal” families. Suppose s+t is odd
and an (s, t)-family (S, T ) ⊆ Sim(V , q) is given. Let the corresponding forms be σ ,
τ and suppose that there exists (σ, τ ) ⊂ (σ ′, τ ′) < Sim(q) where s′ + t ′ = s + t + 2.
It does not necessarily follow that the original family (S, T ) can be expanded by
2 dimensions. The explanation is that a given (s, t)-pair (σ, τ ) can have different
realizations as an (s, t)-family in Sim(q). (See Exercise 2(2).)

We now begin our analysis of Pfaffians and central simple algebras, ultimately
leading to a proof of Theorem 10.5. Few of the results here are new, but the properties
of the set D(A) provide an interesting approach. As usual in this book we assume
that F is a field of characteristic not 2. This restriction simplifies the exposition. The
results have analogs in characteristic 2 and there exist treatments of the subject which
unify both cases.

If A is an F -algebra (always assumed finite dimensional, associative and with 1)
then A• denotes the group of invertible elements in A. If S ⊆ A is a subset we write
S• for the set S ∩ A•.

10.8 Classical Definition. Let S be a skew-symmetric n× n matrix over F such that
n is even. Then the Pfaffian Pf(S) ∈ F is defined with the following properties:

(1) Pf(S) is a form (homogeneous polynomial) of degree n/2 in the entries of S.
In particular Pf(cS) = cn/2 Pf(S) for any c ∈ F .

(2) Pf(S)2 = det S.

(3) Pf(P� · S · P) = Pf(S) · det P .

(4) Pf(Sn) = 1 where Sn =
(

0 1
−1 0

)
⊕ · · · ⊕

(
0 1

−1 0

)
, with n/2 summands.

There are several proofs that Pf(S) is well defined. One way is to use the theory
of alternating spaces to show that if S is skew-symmetric then S = P� · Sn · P for
some P . Then det S = (det P)2. We could define Pf(S) = det P and then prove
that this value is independent of the choice of P (using the lemma: Q ∈ Spn implies
detQ = 1).

Alternatively we could use a “generic” skew-symmetric S over Z[sij ], argue as
above that det S is a square in Q(sij ). Then it is also a square in Z[sij ]. Choose a
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square root, Pf(S), for this generic case, with the sign chosen so that the specialization
to Sn yields the value 1.

Another method avoids alternating spaces, using induction to prove directly that
the generic S has a square determinant (see Jacobson (1968)). One can also define
Pfaffians using exterior algebras and multilinear algebra. For example see Chevalley
(1954) or (1955), Bourbaki (1959), §5, no 2.

Remark. There exists a “Pfaffian adjoint” Pfadj(S)which is a n×n skew- symmetric
matrix satisfying

S · Pfadj(S) = Pfadj(S) · S = Pf(S) · In
The entries of Pfadj(S) are forms of degree n/2 − 1 in the entries of S. Consequently
there exists a “Pfaffian expansion by minors” as well. The existence of Pfadj can
be proved using the generic Pfaffian. Each cofactor Sij in the matrix S must be
a multiple of the (irreducible) polynomial Pf(S). Cancel Pf(S) from the equation
S ·adj(S) = (det S) ·In to obtain Pfadj(S). This approach appears in Jacobson (1968).

10.9 Corollary. (1) If A, B are skew symmetric then

Pf

(
A 0
0 B

)
= (Pf A) · (Pf B).

(2) If S is invertible and skew-symmetric n× n then Pf(S−1) = (−1)n/2(Pf S)−1.
(3) For any m×m matrix C and an m×m skew-symmetric matrix S,

Pf

(
S C

−C� 0

)
= (−1)

m(m−1)
2 · detC.

These properties are easy to derive from the definition. In particular,

Pf

(
0 1m

−1m 0

)
= (−1)

m(m−1)
2 . In the 4 × 4 case let

S =


0 a12 a13 a14

0 a23 a24
0 a34

0


where we omit writing the lower half. Then

Pfadj(S) =


0 −a34 a24 −a23

0 −a14 a13
0 −a12

0

 ,
and Pf(S) = a12a34 − a13a24 + a14a23.
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It is convenient to introduce a new notation for the eigenspaces of an involution J .
If J has type λ on End(V ) define

Sym(J ) = {f ∈ End(V ) : J (f ) = λf },
Alt(J ) = {f ∈ End(V ) : J (f ) = −λf }.

Then for any J , if dim V = n then dim Alt(J ) = n(n−1)
2 . The classical Pfaffian

map on matrices is defined on Alt(�). Note also that Alt(J ) = image(1 − λJ ) =
{g − λJ (g) : g ∈ End(V )}.

When J has symplectic type, there is a natural notion of “Pfaffian” for elements of
Alt(J ), defined independently of the matrix Pfaffian mentioned above. If f ∈ Alt(J )
then J (f ) = f so the matrix B of f satisfies: M−1 · B� ·M = B. Then the matrix
T = MB is skew-symmetric. Such a matrix B can also be characterized by: B = ST

for some skew-symmetric matrices S, T such that S is nonsingular. It quickly follows
that the characteristic polynomial χf (x) is the square of another polynomial. (For
χf (x) = det(x1 − B) = detM−1 · det(xM − T ). Since M−1 and xM − T are
skew-symmetric over the field F(x), χf (x) is a square in F(x) and hence is a square
in F [x].) With a little more work we get a stronger result.

10.10 Lemma. For f as above, every elementary divisor of f has even multiplicity.

Proof of Theorem A.7. Here the elementary divisors are the polynomials which appear
as the characteristic polynomials of blocks in the Rational Canonical Form for f .
(Each of them is a power of an irreducible polynomial.) First assume that F contains
all the eigenvalues of f . If λ is an eigenvalue the elementary divisors (x − λ)m are
determined by the numbers dj = dim ker(λ1 − f )j for j = 1, 2, . . . Since MB is
skew symmetric and hence has even rank we know that rank f = rank(MB) = even.
Similarly since (λ1 − f )j ∈ Alt(J ) we conclude that dj = n − rank(λ1 − f )j =
even. It follows that (x − λ)m occurs with even multiplicity.

In general if K/F is a field extension, the elementary divisors of f ⊗ K over K
determine the elementary divisors of f over F . Passing to a fieldK containing all the
eigenvalues of f the result follows. ��

Proof #2, following Kaplansky (1983). We are given B = M−1T where M , T are
skew-symmetric and M is invertible. Then xI − B = M−1(xM − T ). The matrix
xM−T is skew-symmetric over the principal ideal domainF [x]. Applying the theory
of alternating spaces overF [x], (e.g. see Kaplansky (1949), p. 475 or Bourbaki (1959),
§5, no 1) there exists some invertible matrix R over F [x] such that

R · (aM − T ) · R� =
(

0 p1
−p1 0

)
⊕
(

0 p2
−p2 0

)
⊕ · · ·

where pi ∈ F [x] and each pi divides pi+1. Absorbing the factor M−1 and applying
some elementary column operations, we find that there exist invertible matrices P ,
Q over F [x] such that P · (xI − B) ·Q = diag(p1, p1, p2, p2, . . . ). Therefore the
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invariant factors of B are p1, p1, p2, p2, . . . This shows that the invariant factors, and
hence the elementary divisors, of B have even multiplicities. ��

Proof #3. There is a more geometric proof due to Tignol (1991). Suppose (V , b) is
a (regular) alternating space over F and f ∈ End(V ) is self-adjoint (i.e. Ib(f ) = f ).
Then there exists a decomposition V = U ⊕ U ′ such that U and U ′ are totally
isotropic and f -invariant. The action of f on U ′ is dual to the action of f on U so

that there exists a basis for which the matrix of f is

(
C 0
0 C�

)
. The proof uses the

“primary decomposition” of V relative to f but does not employ more complicated
linear algebra. ��

For a ring A and a, b ∈ A define the relation a ∼ b to mean that b = pap−1 for
some p ∈ A•. IfA ∼= Mn(F ) then a ∼ b if and only if a and b are “similar” matrices,
or equivalently, they have exactly the same elementary divisors.

10.11 Proposition. For f ∈ End(V ) with n × n matrix B over F , the following are
equivalent:

(1) J (f ) = f for some symplectic involution J on End(V ).

(2) B = ST for some skew-symmetric S, T such that S is nonsingular.

(2′) B = S′T ′ for some skew-symmetric S′, T ′ such that T ′ is nonsingular.

(3) All elementary divisors of f have even multiplicity.

(4) n is even and B ∼
(
C 0
0 C

)
for some n/2 × n/2 matrix C.

Proof. (1) ⇐⇒ (2) is clear using S = M−1. For (2) ⇐⇒ (2′) note that ST = (ST S) ·
S−1. The implication (1) �⇒ (3) is done in Lemma 10.10. (3) �⇒ (4) is standard

linear algebra. (4) �⇒ (2): Since C ∼ C� we find that B ∼
(
C 0
0 C�

)
= ST

where S =
(

0 I

−I 0

)
and T =

(
0 −C�
C 0

)
. Then there is an invertible matrix P

such that B = P · ST · P−1 = (PSP�) · (P−�T P−1), verifying statement (2). ��

We define D = D(End(V )) to be the set of all f ∈ End(V ) satisfying these
equivalent conditions. When we consider Mn(F ) rather than End(V ), we write Dn.
Here are some basic properties of this set D :

D is closed under polynomials. (p ∈ F [x] and f ∈ D imply p(f ) ∈ D .)

D is closed under inverses. (f ∈ D• implies f−1 ∈ D .)

D is closed under conjugation. (f ∈ D and g ∈ GL(V ) imply gfg−1 ∈ D .)

Let J be any involution on End(V ).
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If f, g ∈ Alt(J ) and f or g is invertible, then fg ∈ D .

If J has symplectic type then Alt(J ) ⊆ D , a linear subspace of dimension
n(n− 1)/2.

We can now define Pfaffians on D by using that matrix C.

10.12 Definitions. Suppose f ∈ D(End(V )) where n = dim V . Choose a basis of

V such that the matrix of f is

(
C 0
0 C

)
, as in Proposition 10.11.

Define pf(f ) = detC, the Pfaffian of f . Define

pfχf (x) = χC(x) = det(xIn/2 − C),

the Pfaffian characteristic polynomial.

Define π(f ) ∈ D(End(V )) to be the map with matrix

(
adjC 0

0 adjC

)
.

Here we have used a lower case “p” to distinguish this Pfaffian from the previous
“matrix Pfaffian” Pf(S). Of course we must verify that these definitions do not depend

on the choice of the basis. Suppose f has matrix

(
C 0
0 C

)
with respect to one basis

of V and has matrix

(
D 0
0 D

)
with respect to another basis. Then C and D have

the same elementary divisors, so that C ∼ D. Consequently pf(f ) and pfχf (x) are
well defined. One way to prove that this adjoint map is well defined is to recall the
following fact about the classical adjoint:

Let p(x) = xm+am−1x
m−1 +· · ·+a0 be the characteristic polynomial ofC (and

of D). If p∗(x) = (−1)m−1 · p(x)−p(0)
x

= (−1)m−1(xm−1 + am−1x
m−2 + · · · + a1),

then adjC = p∗(C). (See Exercise 7.) Since

(
C 0
0 C

)
= Q ·

(
D 0
0 D

)
·Q−1 for

some matrix Q, we find that Q ·
(

adjD 0
0 adjD

)
· Q−1 = Q · p∗

{(
D 0
0 D

)}
·

Q−1 = p∗
{(

C 0
0 C

)}
=
(

adjC 0
0 adjC

)
. Therefore π(f ) is well defined (and

π(f ) = p∗(f )).

10.13 Lemma. Suppose n = dim V is even and let D = D(End(V )).

(1) pf : D → F is a polynomial map of degree n/2. If f ∈ D = D(End(V )) then:

pf(f )2 = det f .

pf(g−1fg) = pf(f ) for any g ∈ GL(V ).

pf(f k) = pf(f )k . In particular, pf(1V ) = 1 and if f ∈ D• then pf(f−1) =
pf(f )−1.

If f ∈ D(End(V )) and g ∈ D(End(W)) then pf(f ⊕ g) = pf(f ) · pf(g).
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(2) pfχf (x) is a monic polynomial of degree n/2 and pfχf (f ) = 0.

(3) π : D → D is a polynomial map of degree n/2, satisfying

f · π(f ) = π(f ) · f = pf(f ) · 1V
π(g · f · g−1) = g · π(f ) · g−1

π(π(f )) = pf(f )
n
2 −2 · f and pf(π(f )) = pf(f )

n
2 −2.

Proof. (1) Clear from the definitions.
(2) Apply the Cayley–Hamilton Theorem.
(3) Use standard properties of the classical adjoint adjC. The second statement

follows from the fact that adj f is well defined, independent of the basis chosen. For
the final equations recall that adj(adjC)) = (detC)m−2 · C for any m × m matrix
C. (See Exercise 7.) Note that the situation needs some special interpretation when
n = 2 and f = 0V . ��

This version of the Pfaffian on D is related to the classical version for skew-
symmetric matrices.

10.14 Lemma. (1) Suppose M , T are skew-symmetric n × n matrices and M is
invertible. Then M−1 · T ∈ Dn and pf(M−1 · T ) = (Pf M)−1 · (Pf T ).

(2) Suppose J (f ) = f for a symplectic involution J . Then for any g ∈ GL(V ),
pf(J (g)fg) = pf(f ) · det g.

(3) Suppose J is a symplectic involution on End(V ). If f, g ∈ Alt(J ) and either
f or g is invertible then fg ∈ D . In this case

pf(fg) = pf(f ) · pf(g) and π(fg) = π(g) · π(f ).
In particular if f ∈ D then π(f k) = π(f )k .

Proof. (1) Choose independent generic skew-symmetric n × n matrices S0, T0 and
use determinants to see that pf(S0T0) = ε · Pf(S0) · Pf(T0) for some ε = ±1. This
formula specializes to all n × n skew-symmetric S, T over F , with the same sign ε.
Evaluate ε by computing one special case.

(2) Pick a basis and let B be the matrix of f and P the matrix of g. Represent
J as J (X) = M−1 · X� · M where M is nonsingular skew-symmetric. Then MB
is skew-symmetric and J (P )BP = M−1 · (P� · MB · P) so that pf(J (P )BP ) =
(Pf M)−1 · Pf(P� ·MB · P) = (Pf M)−1 · Pf(MB) · det P = pf(B) · det P .

(3) Let B, C be the matrices of f , g and M is given as in (2). Since J (f ) = f

we know that MB and BM−1 are skew-symmetric. Similarly MC and CM−1 are
skew-symmetric. Suppose f is invertible. Then pf(f ) · pf(g) = pf(B) · pf(C) =
pf(BM−1 · M) · pf(M−1 · MC) = Pf(MB−1)−1 · Pf(M) · Pf(M)−1 · Pf(MC) =
pf((MB−1)−1 ·MC) = pf(BC) = pf(fg), using several applications of part (1).

From (10.13) (3) we get π(fg) ·fg = pf(fg) = pf(f ) ·pf(g) = pf(f ) ·π(g)g =
π(g)(pf(f )1V )g = π(g)π(f ) · fg. Then if f, g ∈ Alt(J )• we have π(fg) = π(g) ·
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π(f ). Now for fixed f ∈ Alt(J )• we need to verify that formula for all g ∈ Alt(J ).
(The case when g is invertible is similar). If |F | is infinite this follows since Alt(J )• is
Zariski dense in Alt(J ). For the general case we use a generic argument. Let S = (sij )

be a generic skew-symmetric matrix and set Ĉ = M−1S. Then the given matrix B
and this Ĉ are in Alt(J )• over the field F(sij ) so that π(BĈ) = π(Ĉ)π(B). This
equation holds over the ring F [sij ] (since π(Ĉ) = ∑n

j=0 aj Ĉ
j for some aj ∈ F [sij ],

as in Exercise 10). Therefore it can be specialized to any C ∈ Alt(J ). ��

Suppose n = dim V = 4. We will analyze D = D4 = D(End(V )) in further
detail. The results above show that pf : D → F is a quadratic form and π : D → D
is a linear form. These maps have natural extensions to the whole space End(V ).
To describe these extensions we use the trace map tr(f ) = trace(f ). Note that
tr(1V ) = n.

10.15 Example. Suppose n = 4. Define Q : End(V ) → F by Q(f ) = 1
8 · tr(f )2 −

1
4 · tr(f 2). Define π ′ : End(V ) → End(V ) by π ′(f ) = 1

2 · tr(f ) · 1V − f .
(1) Then Q is a regular quadratic form extending pf : D → F and π ′ is a linear

form extending π : D → D . Also Q(f ) = 1
2 · tr(π ′(f ) · f ) and Q(fg) = Q(gf )

so that Q(s−1f s) = Q(f ). Furthermore

π ′(π ′(f )) = f and Q(π ′(f )) = Q(f ).

Any f ∈ End(V ) is expressed as f = α1V + f0 where α = 1
4 · tr(f ) is a scalar and

tr(f0) = 0. Then π ′(f ) = α1V − f0.
(2) If f ∈ D then f has minimal polynomialmf (x) of degree ≤ 2. The following

are equivalent for any f ∈ End(V ) which is not a scalar:
mf (x) = x2 − 1

2 · tr(f ) · x + β for some β ∈ F
f = α1V + f0 such that tr(f0) = 0 and f 2

0 ∈ F .
f · π ′(f ) ∈ F .

These conditions imply f ∈ D , except in the case f 2
0 = 0 and rank f0 = 1. In

particular if mf (x) is irreducible of degree 2 then f ∈ D .

Proof. (1) If f ∈ D then the matrix of f is

(
C 0
0 C

)
for some 2 × 2 matrix

C. The characteristic polynomial of C is p(x) = x2 − (trC)x + (detC) so that
p∗(x) = (trC)−x. Then π(f ) = p∗(f ) = 1

2 tr(f )−f . Also since pf(f ) is a scalar
we find that pf(f ) = 1

4 ·tr(pf(f )1V ) = 1
4 ·tr(π(f )·f ) = 1

4 ·tr(( 1
2 ·tr(f )·1V −f )·f ) =

1
8 · tr(f )2 − 1

4 · tr(f 2). Therefore π ′ extends π and Q extends pf. The remaining
properties are easily checked. (Compare Exercise 10.)

(2) If mf (x) = x2 − 1
2 · tr(f ) · x + β then f 2

0 = (f − 1
4 tr(f ))2 ∈ F . If f 2

0 ∈ F
then f ·π ′(f ) = (α1V + f0) · (α1V − f0) = α21V − f 2

0 is a scalar. If f ·π ′(f ) ∈ F
then (f − 1

4 · tr(f ))2 = f 2
0 is a scalar, so that f 2 − 1

2 · tr(f ) · f + β = 0V for some
β ∈ F . Then mf (x) = x2 − 1

2 · tr(f ) · x + β. Suppose these conditions hold but
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f �∈ D . Thenmf (x)must be reducible (why?) so the minimal polynomial of f0 must
be (x − α)(x + α) for some α ∈ F . If α �= 0 each elementary divisor must equal
x ± α, and f0 is similar to a diagonal matrix. But then tr f0 = 0 implies f ∈ D .
Therefore α = 0 and f 2

0 = 0V . Since f0 �∈ D the elementary divisors of f0 must be
{x, x, x2} so that f0 has rank 1. ��

Now let us turn to the main topic of this chapter: central simple algebras. We
assume the standard facts about central simpleF -algebras with involution, as presented
in Scharlau’s book, for example. We continue to assume all involutions here are of
the “first kind”, unless explicitly stated otherwise.

If J is a λ-involution on the central simple F -algebra A, we define

Alt(A, J ) = Alt(J ) = {a ∈ A : J (a) = −λa}.
If A is an algebra of degree n then dim Alt(A, J ) = n(n−1)

2 .

10.16 Proposition. Let A be a central simple F -algebra with involution. Suppose
n = degA is even. Define

D(A) = {a ∈ A : J (a) = a for some (−1)-involution J on A}.
For any involution J0 on A,

D(A) = {bc : b ∈ Alt(J0)
• and c ∈ Alt(J0)} = {a ∈ A : Alt(J0)

• ·a∩Alt(J0) �= ∅}.
This set D(A) is closed under polynomials, under inverses and under conjugation.

(1) There is a “reduced Pfaffian” map pfA : D(A) → F which is a polynomial
map of degree n/2 satisfying

pfA(a)
2 = nrd(a)

pfA(p
−1ap) = pfA(a)

pfA(a
k) = pfA(a)

k (In particular, pfA(1) = 1 and pfA(a
−1) = pfA(a)

−1 if
a ∈ D(A)•.)

IfJ (a) = a for a (−1)-involutionJ and ifb ∈ A• then pfA(J (b)ab) = pfA(a)·nrd(b).
(2) If a ∈ D(A) define the polynomial pa(x) = pfA(x)(x1 − a) ∈ F [x]. Then

pa(x) is monic of degree n/2 and pa(a) = 0.
(3) There is a polynomial map πA : D(A) → D(A) of degree n/2 − 1 satisfying
a · πA(a) = πA(a) · a = pfA(a) · 1
πA(bab

−1) = b · πA(a) · b−1 for any b ∈ A•
πA(πA(a)) = pfA(a)

n
2 −2 · a and pfA(πA(a)) = pfA(a)

n
2 −1.

If J is a (−1)-involution a, b ∈ Alt(J ) and either a or b is invertible then ab ∈ D(A)
and

pfA(ab) = pfA(a) · pfA(b) and πA(ab) = πA(b) · πA(a).

Proof. The equivalence of the two descriptions of D(A) and the various closure
properties follow as before. To define pfA we use “descent”, following the standard
definition of the reduced norm, nrd. Let K be a splitting field for A and choose an
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algebra isomorphismϕ : A⊗FK
∼=−→Mn(K). Given the (−1)-involutionJ onAdefine

the involution I onMn(K)by requiring it to beK-linear and I (ϕ(a⊗1)) = ϕ(J (a)⊗1)
for every a ∈ A. That is, the diagram

A⊗K

J⊗1
��

ϕ �� Mn(K)

I

��
A⊗K

ϕ �� Mn(K)

commutes. Then I has symplectic type on Mn(K) and it follows that if a ∈ D(A)
then ϕ(a ⊗ 1) ∈ Dn. Define pfA(a) = pf(ϕ(a ⊗ 1)) ∈ K .

First note that this value does not depend on the choice of K (for we may pass to
an algebraic closure of F and note that the matrix is unchanged). Furthermore it is
independent of the choice of the isomorphismϕ. (Another isomorphismψ differs from
ϕ by an inner automorphism: there exists p ∈ GLn(K) such that ψ(x) = p−1ϕ(x)p

for all x ∈ A⊗K . Recall that pf(p−1xp) = pf(x) for matrices.) Finally suppose that
K/F is a Galois extension (using the theorem that there exists a separable splitting
field). The standard “descent” argument (as in Scharlau (1985), pp. 296–297) used to
prove that the reduced norm has values inF also applies here to show that pfA(a) ∈ F .

The stated properties of pfA follow from the corresponding properties for the
matrix Pfaffian. The polynomial pa(x) is the analog of the Pfaffian characteristic
polynomial defined in (10.12) above.

The map πA arises from the Pfaffian adjoint map discussed in (10.12) and (10.13).
Defining πA(a) = ϕ−1(π(ϕ(a ⊗ 1))) ∈ D(A ⊗ K), the usual descent argument
shows that this value lies in D(A). The stated formulas follow from Lemmas 10.13
and 10.14. ��

A question about a central simple algebra can often be reduced to the split case
after an extension to a splitting field. In order to exploit this idea we need a technical
lemma.

10.17 Lemma. Let K/F be an extension of infinite fields.
(1) Suppose U is a K-vector space and p : U → K is a polynomial function. If

U = V ⊗F K for some F -vector space V and if p vanishes on V ⊗ 1, then p = 0.
(2) If A is a finite dimensional F -algebra and W ⊆ A is an F -linear subspace

such that (W ⊗K) ∩ (A⊗K)• �= ∅ then W ∩ A• �= ∅.

Proof. (1) Choosing an F -basis of V this statement becomes: ifX = (x1, . . . , xn)

is a system of indeterminates and p(X) ∈ K[X] vanishes on Fn then p(X) = 0. This
follows by induction on n and the fact that a non-zero polynomial in one variable has
finitely many roots.
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(2) Let L : A → EndF (A) be the representation defined by: L(a)(x) = ax.
Define N : A → F by N(c) = det(L(c)). Then p = N ⊗ 1 is a polynomial function
on A⊗K and c is a unit in A⊗K if and only if p(c) �= 0. Apply part (1). ��

Note that these assertions are false over finite fields (see Exercise 11). The next
result is related to (6.15) but is proved independently here.

10.18 Corollary. Let A be a central simple F -algebra with involution J . There
exists a ∈ A• such that J (a) = −a, except when A is (split) of odd degree and J
has orthogonal type. Consequently A admits a 1-involution, and it admits a (−1)-
involution provided degA is even.

Proof. That exception is necessary since a skew-symmetric matrix must have even
rank. Also recall that a division algebra with involution must have 2-power degree.
(This was mentioned earlier in (6.17).) Then an algebra of odd degree with involution
must be split.

Suppose A ∼= Mn(F ) is split and express J (X) = M−1 · X� · M for some λ-
symmetric matrixM . If J has symplectic type then J (M) = −M . If J has orthogonal
type choose a nonsingular skew-symmetric matrix S, which exists since we assume
that n is even. Then J (M−1S) = −(M−1S).

Now suppose A is not split. As mentioned above this implies that n = degA
is even. In addition, Wedderburn’s Theorem on finite division rings implies
that F is infinite. Let W = {a ∈ A : J (a) = −a}. Let K be a splitting field,
ϕ : A ⊗ K

∼=−→ Mn(K) and I the involution on Mn(K) corresponding to J . Since
W⊗K contains units, by the split case analyzed above, (10.17) implies thatW contains
a unit of A. ��

10.19 Corollary. Let A be a central simple F -algebra with involution and let K
be a splitting field with ϕ : A ⊗ K

∼=−→ Mn(K). Let a, b ∈ A and f = ϕ(a ⊗ 1),
g = ϕ(b ⊗ 1).

(1) a ∈ D(A) if and only if f ∈ Dn.

(2) a ∼ b in A if and only if f ∼ g in Mn(K).

(3) For any involution J on A, a ∼ J (a).

Proof. If A ∼= Mn(F ) is split, we may alter ϕ by an inner automorphism to assume
that ϕ induces the inclusion Mn(F ) ⊆ Mn(K). Since the elementary divisors of
a ∈ Mn(F ) are determined by its elementary divisors over K , the assertions (1) and
(2) follow. For (3) express J as J (a) = M−1 · a� ·M . Then a ∼ a� ∼ J (a) holds
for every a ∈ A.

Suppose A is not split so that F is infinite by Wedderburn.



10. Central Simple Algebras and an Expansion Theorem 191

(1) Let J be a 1-involution on A and let W = {c ∈ A : J (c) = −c and J (ca) =
−ca}. If c ∈ W ∩A• then a = c−1 · ca ∈ D(A). The statement follows by applying
Lemma 10.17 to this space W .

(2) Use W = {c ∈ A : ac = cb}.
(3) Use W = {c ∈ A : ac = cJ (a)}. ��

We begin our discussion of algebras of degree 4 with a preliminary lemma.

10.20 Lemma. LetA be a central simpleF -algebra of degree 4 with a (−1)-involution
J . Then the restriction of pf to the 6-dimensional space Alt(J ) is a regular quadratic
form.

Proof. We may extend scalars to assume A ∼= End(V ) is split. Then J = Ib is the
adjoint involution for some regular alternating form b on V . Choosing a symplectic

basis for (V , b) we get the matrix of the form is M =
(

0 1
−1 0

)
in 2 × 2 blocks.

Then B is the matrix of some f ∈ Alt(J ) if and only ifMB is skew-symmetric if and
only if

B =


x y 0 r

z w −r 0
0 −s x z

s 0 y w

 for some x, y, z, w, r, s ∈ F.

Then the formulas in Lemma 10.14(1) and after Corollary 10.9 show that pf(B) =
−rs + xw − yz. This is a regular quadratic form in 6 variables. ��

10.21 Proposition (Albert, Rowen). SupposeA is a central simpleF -algebra of degree
4 with involution. Then any (−1)-involution on A is decomposable. In particular A
is decomposable as an algebra.

Proof. By (10.16) there is a linear map π : Alt(J ) → Alt(J ) such that a · π(a) =
π(a) · a = pf(a) for every a ∈ Alt(J ). Furthermore π(π(a)) = a. In fact, as
in Example 10.15, π is the restriction of the linear map π ′ : A → A defined by
π ′(x) = 1

2 · trd(x)− x. Therefore Alt(J ) = F ⊕W whereW is the (−1)-eigenspace
of π and dimW = 5.

The quadratic form pfJ on Alt(J ) has associated bilinear form BJ given by
2BJ (x, y) = pfJ (x+y)−pfJ (x)−pfJ (y) = (x+y)·π(x+y)−x ·π(x)−y ·π(y) =
x ·π(y)+y ·π(x). If y ∈ W then 2BJ (1, y) = (−y)+y = 0. Hence Alt(J ) � F ⊥ W

relative to the quadratic form pfJ and consequently the induced form on W is regu-
lar (using Lemma 10.20). Choose x, y as part of an orthogonal basis of W relative
to pfJ . Then x2 = −x · π(x) = − pf(x) ∈ F • and similarly y2 ∈ F •. Also
xy + yx = −2BJ (x, y) = 0 and we conclude that {x, y} generates a quaternion
subalgebra Q of A. Since W ⊆ Alt(J ) this Q is J -invariant. ��
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Although we are interested mainly in the case A has degree 4, we will define the
Pfaffian associated to an orthogonal involution in the general case of a central simple
algebra of degree n. Suppose that J is an involution of orthogonal type on A. We
define a Pfaffian on Alt(J ) in analogy to the classical Pfaffian on skew symmetric
matrices. Since Alt(J )• · Alt(J ) ⊆ D(A), as mentioned in (10.16), we obtain a
“Pfaffian” map and a “Pfaffian adjoint” associated to a fixed s ∈ Alt(J )•:

Pfs : Alt(J ) → F is defined by Pfs(a) = pf(sa).

πs : Alt(J ) → Alt(J ) is defined by πs(a) = π(sa)s.

Some aspects of these maps are independent of the choice of s.

10.22 Lemma. Let J be a 1-involution on a central simple algebra A of even degree
n. Let s ∈ Alt(J )•.

(1) If a, b ∈ Alt(J )• then pf(a−1b) = Pfs(a)−1 · Pfs(b).
If s, t ∈ Alt(J )• let λ = pf(ts−1). Then for every a ∈ Alt(J )

Pf t (a) = λ · Pfs(a) and πt (a) = λ · πs(a).

(2) Pfs(a)2 = nrd(s) · nrd(a) for every a ∈ Alt(J ).
Pfs(J (b) · a · b) = Pfs(a) · nrd(b) for every a ∈ Alt(J ) and b ∈ A•.

(3) If a ∈ Alt(J ) then πs(a) · a = a · πs(a) = Pfs(a).

(4) If a ∈ Alt(J ) then πs(πs(a)) = (nrd s) · (−1)
n
2 · Pfs(a)

n
2 −2 · a.

Proof. (1) This generalizes Lemma 10.14(1). Define another involution J0, by set-
ting J0(x) = s · J (x) · s−1. Then J0 is a (−1)-involution (since J (s) = −s),
J0(s) = −s and Alt(J0) = s · Alt(J ) = Alt(J ) · s−1. Since sa and sb ∈ Alt(J0)

the last statement in (10.16) implies pf(a−1b) = pf((sa)−1 · sb) = pf(sa)−1 pf(sb),
as claimed. For the second statement, note that ts−1 ∈ Alt(J ) · s−1 = Alt(J0)

and sa ∈ s · Alt(J ) = Alt(J0). Then (10.16) (3) implies: Pf t (a) = pf(ta) =
pf(ts−1 · sa) = pf(ts−1) · pf(sa) = λ · Pfs(a). The second equality is proved later.

(2) The first statement is clear. The second follows from (10.16) (1) since
pf(sJ (b)ab) = pf(J0(b) · sa · b) = pf(sa) · nrd(b).

(3) Certainly πs(a) · a = π(sa) · sa = pf(sa) = Pfs(a). For the second equality
recall that sa ·π(sa) = Pfs(a) is a scalar so that Pfs(a) = s−1 ·saπ(sa)·s = a ·πs(a).
Now to finish the proof of (1): using (3) the equationπt (a) = λ·πs(a) holds whenever
a ∈ A•. The standard “generic” argument now applies.

(4) This follows from the definition in terms of π and the properties of π stated in
(10.16) (after noting that s2, sa ∈ Alt(J0) and pf(s2) = (−1)

n
2 ·(nrd s).) Alternatively

we note that if a ∈ Alt(J )• then πs(a) = Pfs(a) ·a−1. Then πs(πs(a)) = Pfs(a)
n
2 −1 ·

Pfs(a−1) · a. Since Pfs(a−1) = (−1)
n
2 · Pfs(a)−1 · nrd(s) the claim holds. Since this

claim is a polynomial equation valid for every a ∈ A• the standard generic argument
applies again. ��
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Let us now specialize again to the case of main interest: A has degree n = 4. Then
(Alt(J ),Pfs) is a quadratic space of dimension 6 whose similarity class is independent
of the choice of s, depending only on the algebra A.

10.23 Corollary. Let A be a central simple F -algebra with involution and degree 4.
If J is an involution on A define the form ϕJ : Alt(J ) → F as follows:

If J has type −1 let ϕJ (a) = pf(a).
If J has type 1 choose s ∈ Alt(J )• and define ϕJ (a) = Pfs(a).

Then (Alt(J ), ϕJ ) is a regular 6-dimensional quadratic space, and all these spaces
are similar.

Proof. First we prove the similarity. Let J be any 1-involution on A and choose
s ∈ Alt(J )•. Let J1 be any (−1)-involution on A. Then there exists t ∈ Alt(J )• such
that J1(x) = t · J (x) · t−1 so that Alt(J1) = t · Alt(J ). The left-multiplication map
Lt : Alt(J ) → Alt(J1) provides the desired similarity, since for any a ∈ Alt(J ) we
have ϕJ1(Lt (a)) = pf(ta) = Pf t (a) = λ · Pfs(a) = λ · ϕJ (a), where λ = pf(ts−1)

as in (10.22). The regularity of ϕJ now follows from (10.20). ��
Define the Albert form αA to be this 6-dimensional quadratic form associated to

A. To calculate αA note that A is decomposable (by (10.21)) so that A ∼= C(V, q)

for some 4-dimensional quadratic space (V , q). Use the involution J0 which is the
identity on V , so that J0 has type (−1) and Alt(J0) = F ⊕V ⊕Fz. Here z = z(V, q)

so that z2 = δ where dq = 〈δ〉. From Example 10.15 we know that π(α+ v+ βz) =
α − v − βz. Therefore pf(α + v + βz) = α2 − q(v) − β2δ and αA is similar to
(Alt(J0), pfJ0

) � 〈1,−dq〉 ⊥ −q.
It is this form for which Albert proved: A is a division algebra if and only if the

form αA is anisotropic. (See Exercises 3.10 (5) and 3.17.) This Albert form can also
be expressed nicely in terms of a decompositionA ∼= Q1 ⊗Q2 for quaternion algebras
Qi . Let ϕi be the norm form of Qi with pure parts ϕ′

i (so that ϕi � 〈1〉 ⊥ ϕ′
i ). Then

αA is similar to the form ϕ′
1 ⊥ −ϕ′

2. It is easy to recover the algebraA from the Albert
form αA since c(αA) = c(ϕ1 ⊥ −ϕ2) = c(ϕ1)c(ϕ2) = [Q1] · [Q2] = [A]. If these
formulas for the Albert form αA are taken as the definition, the uniqueness properties
do not seem clear. (See Exercise 3.17.)

10.24 Lemma. Suppose A is a central simple F -algebra with involution J of or-
thogonal type. If A has even degree then Alt(J )• �= ∅ and all values of nrd(b) for
b ∈ Alt(J )• lie in the same square class in F •/F •2.

Proof. We proved the first statement in Corollary 10.18. Now suppose b, c ∈ Alt(J )•.
Then bc ∈ D(A) and therefore nrd(b) · nrd(c) = nrd(bc) = pf(bc)2 ∈ F •2. ��

Define the determinant det(J ) ∈ F •/F •2 to be that common square class. That
is, if J is a 1-involution on the central simple algebra A and degA is even, then
det(J ) = 〈nrd(b)〉 ∈ F •/F •2 for any b ∈ Alt(J )•.
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10.25 Lemma. (1) Let (V , q) be a quadratic space of even dimension. Then
det(Iq) = det q in F •/F •2.

(2) Suppose (Ai, Ji) are central simple F -algebras with involutions of orthogonal
type and with even degrees. Then det(J1 ⊗ J2) = 〈1〉.

Proof. (1) Pick a basis and letM be the symmetric matrix of the form q. Let B be the
matrix of b ∈ End(V ). Then Iq(B) = M−1 ·B� ·M . If b ∈ Alt(Iq)we find thatMB
is skew- symmetric so that det(MB) is a square. Therefore det(Iq) = 〈det(B)〉 =
〈det(M)〉 = det q in F •/F •2.

(2) If deg(Ai) = ni and ai ∈ Ai recall that nrd(a1 ⊗ a2) = (nrd a1)
n2(nrd a2)

n1

where the reduced norms are computed in the appropriate algebras. Now simply
choose b ∈ Alt(J1)

•, which exists in A1 by Corollary 10.18, note that b ⊗ 1 ∈
Alt(J1 ⊗ J2)

• and compute nrd(b ⊗ 1) = nrd(b)n2 is a square. ��

Thus one necessary condition that a 1-involution J be decomposable (relative to
subalgebras of even degree) is that det(J ) = 〈1〉. In the case A has degree 4 this was
proved by Knus, Parimala and Sridharan to be a sufficient condition as well. The key
idea is the linear map πs discussed in (10.22).

10.26 Proposition. Let A be a central simple F -algebra of degree 4 with involution
J . Then J is indecomposable if and only if J has orthogonal type and det(J ) �= 〈1〉.

Proof. The “if” part is in (10.25). We proved in (10.21) that symplectic involutions
are decomposable. Therefore we assume that J is an involution of orthogonal type
with det(J ) = 〈1〉 and search for a J -invariant quaternion subalgebra. By definition
there exists b ∈ Alt(J )• such that nrd(b) = λ2 for some λ ∈ F •. Then by (10.22)
πs � πs = λ2 · 1Alt(J ) so the 6-dimensional space Alt(J ) breaks into ±λ-eigenspaces:
Alt(J ) = U+ ⊕U−. Let Bs be the bilinear form associated to the quadratic form Pfs .
Then 2Bs(x, y) = Pfs(x + y)− Pfs(x)− Pfs(y) = x · πs(y)+ y · πs(x). Similarly
we argue that this quantity equals πs(x) · y + πs(y) · x.

If x ∈ U+ and y ∈ U− then 2Bs(x, y) = x · (−λy)+ (λx) · y = −λ · (xy − yx)

and it also equals (λx) · y + (−λy) · x = λ · (xy − yx). Therefore xy − yx = 0
and we conclude that U+ centralizes U− and that Alt(J ) = U+ ⊥ U− relative to the
quadratic form Pfs . Consequently the restrictions of Pfs to the subspacesU+ andU−
are regular.

We may assume dimU+ ≥ 3 (otherwise interchange λ and −λ). If x, y ∈ U+
then 2Bs(x, y) = λ · (xy + yx) and in particular x2, y2 ∈ F . Choose x, y ∈ U+ to
be part of an orthogonal basis relative to Bs . Then x, y are units and xy + yx = 0, so
they generate a quaternion subalgebraQ ⊆ A. Since x, y ∈ Alt(J ) thisQ is certainly
J -invariant. (In fact, the induced involution on Q is the standard “bar”.) ��

Now we are in a position to prove Theorem 10.5.
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Proof of Theorem 10.5. There are three cases to be considered. If y is given with
y2 = d ∈ F •2, it suffices to find some a ∈ D(A)• which anti-commutes with y and
with J (a) = ±a. For with such a we know that a2 = αa+β for some α, β ∈ F , since
deg(a) ≤ 2, by (10.16) (2). Conjugating by y and subtracting, we find that α = 0 so
that a2 = β ∈ F •. Then y and a generate a J -invariant quaternion subalgebra Q.

Let K be a splitting field of A with
√
d ∈ K , let ϕ : A ⊗ K

∼=−→ EndK(V ) and
f = ϕ(y ⊗ 1). Then f 2 = d · 1V so that f provides an eigenspace decomposition
V = V +⊕V − with dimensions 4 = n++n−. The matrix of f relative to a compatible
basis is (√

d · In+ 0
0 −√

d · In−

)
.

(1) We know J is decomposable from (10.21). Suppose first that J (y) = y. Then
y ∈ D(A). Since f ∈ D the dimensions n+ and n− are even. Then n+ = n− = 2,
since y �∈ F . Following the notations in the proof of (10.21) we see that trd(y) = 0
so that y ∈ W . Extending {y} to an orthogonal basis {y, a, . . . } of W , we see that
a ∈ Alt(J )• ⊆ D(A)• and a, y anti-commute.

Suppose y is given with J (y) = −y. Then J (f ) = −f in End(V ) so that
f ∼ −f . Therefore n+ = n− = 2 and hence f ∈ D(End(V )). Then y ∈ D(A)
by (10.19) so there exists some (−1)-involution J1 on A with J1(y) = y. Express
J1 = J a so that J (a) = a and y = J a(y) = a−1 · J (y) · a = −a−1ya. Then
a ∈ D(A) and a, y anti-commute.

(2) IfJ is decomposable we can certainly find such an elementy inside aJ -invariant
quaternion subalgebra. Conversely suppose J is a 1-involution with J (y) = −y. As
before we find that f ∼ −f so that n+ = n− = 2. Then nrd(y) = det(f ) =
(
√
d)2(−√

d)2 = d2. Then det(J ) = 〈1〉 and (10.26) implies that J is decomposable.
As above y ∈ D(A) so there exists some (−1)-involution J1 with J1(y) = y. Express
J1 = J a and note that J (a) = −a and a, y anti-commute. Since ay ∈ D(A) and y,
ay anticommute, the claim follows. ��

The existence of an indecomposable involution on a degree 4 division algebra
was first proved by Amitsur, Rowen and Tignol (1979). The Knus, Parimala and
Sridharan Theorem (10.26) shows that the determinant det(J ) determines whether J
is indecomposable. This criterion is made clearer by the following result of Knus,
Lam, Shapiro, Tignol (1992).

Proposition. Let A be a central simple F -algebra of degree 4, with involution. The
following subsets of F • are equal.

{d : 〈d〉 = det(J ) for some 1-involution J on A}.
GF (αA), the group of similarity factors of an Albert form of A.

nrd(A•) · F •2, the group of square classes of reduced norms.
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Consequently the algebra A admits an indecomposable involution if and only if
the Albert form αA has a similarity factor which is not a square.

Analogous decomposition results fail for algebras of larger degree. Any tensor
product of three quaternion algebras is a central simple algebra of degree 8. However
Amitsur, Rowen and Tignol (1979) found an example of a division algebraD of degree
8 over its center and such that D has an involution but is indecomposable (i.e. D has
no quaternion subalgebras).

Several standard properties of quadratic forms have analogs for orthogonal invo-
lutions of central simple algebras. We end this chapter with some remarks about this
correspondence. An orthogonal involution on End(V ) must equal the adjoint involu-
tion Iq for some quadratic form q on V , unique up to scalar multiple. Any invariant of
q which remains unchanged if q is altered by a similarity should be definable entirely
in terms of the involution Iq . For example:

det q ∈ F •/F •2, in the case n = dim q is even.

| sgnP (q)|, the absolute value of the signature of q at an ordering P of F .

C0(q), the even Clifford algebra.

The Witt index of q.

GF (q), the group of similarity factors (or norms) of the form q.

Are there analogous invariants for orthogonal involutions on arbitrary central sim-
ple algebras, coinciding with the given invariants in the split case? Of course we hope
that the newly defined invariant will be useful in the theory of involutions.

We have already seen one example of this program: the determinant det(J ) is
the analog of det q. Lewis and Tignol (1993) have investigated the signature of an
involution. The analog of the even Clifford algebra was done long ago by Jacobson
(1964) and discussed further by Tits (1968). The determinant det(J ) also arises
naturally out of Jacobson’s theory. This even Clifford algebra of an algebra with
involution (A, J ) is investigated extensively in Knus et al. (1998).

The Pfister Factor Conjecture provides another example of this theme. A quadratic
space (V , q) is similar to a Pfister form when q is a tensor product of some binary
forms. Equivalently, the algebra (End(V ), Iq) is a tensor product of split quaternion
algebras with involution. Motivated by this, let (A, J ) be a central simple algebra
with 1-involution and define it to be a “Pfister algebra” if it is a tensor product of some
quaternion algebras with involution. The Pfister Factor Conjecture says: When A is
split then these two notions coincide. A precise statement appears in (9.17).

Exercises for Chapter 10

1. Maximal examples. (1) If dim q = 16 and (σ, τ ) < Sim(q) is an (s, t)- familiy
where s+ t ≥ 7, then q is similar to a Pfister form. Find an example of q over R such
that dim q = 16 and Sim(q) has a (3, 3)-family but admits no families of larger size.
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(2) There exists (〈1, a〉, 〈x〉) < Sim(V , q) where dim q = 12 but such that
(〈1, a〉, 〈x〉) does not admit any expansion by 2 dimensions. (See Exercise 7.10.)
Find similar examples (σ, τ ) < Sim(q) of an (s, t)-family where s+ t = 2m− 1 and
dim q = 2m · 3, but σ admits no expansion by 2 dimensions.

(3) Open question. Are there similar examples in other dimensions? For instance,
is there some σ < Sim(q) where dim σ = 5, dim q = 48, but the 5-plane does not
expand by 2 dimensions? That involves a degree 4 Clifford algebraD (which must be
a division algebra) and a (−1)-involution on M3(D) having no invariant quaternion
subalgebras. Does such an involution exist?

(4) When can 〈1, a〉 < Sim(q) be maximal as a subspace? Certainly if 〈〈a〉〉 ||q but
q has no 2-fold Pfister factor then this occurs. The converse is unknown.

Open question. If 〈〈a〉〉 || q and 〈〈x, y〉〉 || q then must there exist b ∈ F • with
〈〈a, b〉〉 || q?

(Hint. (1) If s + t ≥ 7 then (10.7) shows that there is a (5, 5)-family and q is Pfister
by PC(4). Find a proof that does not invoke Theorem 10.7.)

2. Non-uniqueness. (1) Suppose (σ, τ ) is an (s, t)-pair where s + t is odd, and
let (C, J ) be the corresponding Clifford algebra with involution. Then (σ, τ ) <
Sim(V , q) if and only if there is a central simple F -algebra with involution (A,K)
such that (C⊗A, J ⊗K) ∼= (End(V ), Iq). However this (A,K) need not be unique.

(2) The two representations πα and πβ of C → End(V ) arising from the two
choices above yield two (2, 1)-families on the 8-dimensional space (V , q). One of
them expands to a (4, 4)-family and the other does not admit any expansion of 2 or
more dimensions.

(Hint. (1) Let (σ, τ ) = (〈1, 1〉, 〈1〉) so that (C, J ) ∼= (M2(Q), I〈〈1〉〉). Let
q � 〈〈1, 1, 1〉〉, α = 〈1, 1, 1, 1〉 and β = 〈1, 1, 1, 2〉. Then 〈〈1〉〉 ⊗ α � 〈〈1〉〉 ⊗ β

but α, β are not similar.)

3. Matrix Pfaffians. (1) If S, T are skew-symmetric n× n matrices which anticom-
mute then ST is also skew-symmetric and Pf(ST ) = ± Pf(S) · Pf(T ). Is this sign
independent of S, T ?

(2) Suppose R commutes with some nonsingular skew-symmetric S. Then
R� · R ∈ D and pf(R� · R) = detR.

(3) IfS, T ∈ GLn are skew-symmetric thenST ∈ Dn and pf(ST ) = (−1)
n
2 Pf(S)·

Pf(T ). Consequently if S1S2S3S4 = In where each Si is skew-symmetric then
Pf(S1) · Pf(S2) · Pf(S3) · Pf(S4) = 1. Are there analogous results when In equals a
product of some k skew-symmetric matrices?

(4) If S is skew-symmetric n× n then Pfadj(Pfadj(S)) = (−1)
n
2 · (Pf S)

n
2 −2 · S.

4. Properties of π . (1) Let M , T be given as in 10.14. Then π(M−1 · T ) =
Pfadj(M)−1 · Pfadj(T ).

(2) If f ∈ Alt(J ) and g ∈ GL(V ) then π(J (g)fg) = (det g) ·g−1 ·π(f ) ·J (g)−1.
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5. Let A be a central simple F -algebra with involution. Suppose degA = n is even
and n > 2.

(1) Lemma. D(A) contains an F -basis of A.
(2) If J is an involution on A then Alt(J ) generates A as an F -algebra. Does

Sym(J ) generate A as well?

Corollary. (i) If J , J ′ are involutions on A then J = J ′ if and only if
Alt(J ) = Alt(J ′).

(ii) (A, J ) ∼= (A, J ′) if and only if Alt(J ′) = x · Alt(J ) · x−1 for some x ∈ A•.

(Note. This assertion is also true when A is quaternion.)
(3) Given the subspace S = Alt(J ) ⊆ A, express the subspace Sym(J ) somehow

directly in terms of S.

(Hint. (1) It suffices to settle the split case. An ad hoc proof can be given, but the claim
follows immediately from a theorem of Kasch (1953). Further references appear in
Leep, Shapiro, Wadsworth (1985), §4.

(3) Sym(J ) = (Alt(J ))⊥ relative to the trace form τ : A × A → F defined by
τ(x, y) = trd(xy).)

6. (1) Let J be a λ-involution on End(V ) and fix s0 ∈ Alt(J )•. Then f ∈ Alt(J ) iff
f = J (g) · s0 · g for some g ∈ End(V ).

(2) Does (1) remain valid for involutions on a central simple algebra A?

(Hint. Let B be the λ-form on V corresponding to J , and B0 the alternating form for
J s0 . Then (V , B0) has a symplectic basis and the regular part of Bf has a symplectic
basis. Choose a (not necessarily injective) isometry g : (V , Bf ) → (V , B0).)

7. Let C be an m×m matrix over F .
(1) Ifp(x) = det(xIm − C) is the characteristic polynomial, define p∗(x) =

(−1)m+1 · p(x)−p(0)
x

. Then adjC = p∗(C).
(2) adj(adjC)) = (detC)m−2 · C.
(3) If dim V = 2, then D(End(V )) = F · 1V . If f = α · 1V for α ∈ F , then

pf(f ) = α, pfχf (x) = x − α and π(f ) = 1V . Explain the difficulty in the definition
when f = 0V .

(Hint. (1) Verify first thatC ·p∗(C) = (detC) ·Im. The claim follows for nonsingular
C. Apply this case to a generic matrix C, or to the matrix C + x · Im in F(x), and
then specialize to deduce it for arbitrary C.

(2) Apply the equation X · adjX = (detX)Im to X = C and X = adjC and
deduce the claim when C is nonsingular. Complete the argument as before.)

8. Subspaces of D. Let A be a degree 4 algebra with involution. If S ⊆ D(A)
is a linear subspace with dim S = 6 and 1V ∈ S, then S = Alt(J ) for some (−1)-
involution J .
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(Hint. Let S0 be the subspace of trace 0 elements. Then (S, pf) � 〈1〉 ⊥ −ψ
as a quadratic space, where ψ(c) = c2 for c ∈ S0. There is an induced algebra
homomorphism π : C(ψ) → A. Ifψ is regular then π is surjective and the involution
J0 on C(ψ) induces the desired J on A. Otherwise, pass to the split case and find
T ⊆ S0 with dim T = 3 and t2 = 0 for every t ∈ T . Get a contradiction using Jordan
forms and the fact that every such t has even rank.)

9. Albert forms. Let A be a central simple algebra of degree 4, with involution.
Then the Albert form αA is uniquely defined up to a scale factor. If J is a (−1)-
involution on A let Alt0(J ) be the subspace of trace 0 elements of Alt(J ). Then
αA has a special presentation: (Alt(J ), pf) � 〈1〉 ⊥ −ψ where ψ(c) = c2 for
c ∈ Alt0(J ). Conversely, if there is a realization of αA which represents 1, then there
is a corresponding (−1)-involution J . Consequently, if α is one choice for the Albert
form, then there is a bijective correspondence:

{isomorphism classes of (−1)-involutions on A} ↔ DF (α)/GF (α).

10. If f ∈ D(End(V )) then π(f ) is a polynomial in f . For example, when n =
dim V :

if n = 4 then π(f ) = 1
2 · (tr f )1V − f ;

if n = 6 then π(f ) = f 2 − 1
2 · (tr f ) · f +

(
1
8 · (tr f )2 − 1

4 · (tr f 2)
)
1V .

(Hint. If n = 6 then χf (x) = x6 − c1x
5 + c2x

4 − · · · = p(x)2 where p(x) =
x3 + ax2 + bx + c. Then π(f ) = p∗(f ) where p∗(x) = x2 + ax + b. Then
a = − 1

2c1 and b = 1
2c2 − 1

8c
2
1. For the eigenvalues λi , c1 = ∑

λi = tr(f ) and
c2 = ∑

λiλj = 1
2 ((tr f )

2 − tr(f 2)).)

11. Finite field examples. (1) Suppose S ⊆ Mn(F ) is a linear subspace of singular
matrices, but that for some extension field K/F the space S ⊗K ⊆ Mn(K) contains
a nonsingular matrix. Then F must be finite and n > |F |.

(2) The set of all

(
x ∗ ∗
0 y ∗
0 0 x + y

)
provides a 5-dimensional example in M3(F2).

Find a similar example of S ⊆ M4(F3) with dim S = 9.

12. Suppose A is a central simple F -algebra.
(1) If J is an involution on A and a ∈ A then a ∼ J (a), by Corollary 10.19. In

fact J (a) = bab−1 for some b such that J (b) = λb, where λ = type(J ).
(2) If a ∈ A is nilpotent then a ∼ −a.

13. Linear algebra. (1) Lemma. If C ∈ Mn(F ) then there exists some symmetric
S ∈ GLn(F ) such that S · C · S−1 = C�.
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(2) Corollary. Let A be a central simple F -algebra with involution and a ∈ A.
Then there exists a 1-involution J on A such that J (a) = a.

(3) Proposition. Let A be as before and suppose ε = ±1 is given. If a ∈ A• with
a ∼ −a then there exists an ε-involution J such that J (a) = −a.

(Hint. (1) Use the rational canonical form to reduce to the case C is a companion
matrix. Now S can be exhibited explicitly. It can also be derived as the Gram matrix
of a trace form on the algebraF [x]/(p(x))wherep(x) is the characteristic polynomial
of A.

(2) Suppose A = End(V ) is split, choose a basis, apply (1) and define J (X) =
S−1 · X� · S. If A is not split then F is infinite. Fix a 1-involution J0, consider the
linear subspace W = {c ∈ A : J0(c) = c and J0(ca) = ca}, and apply (10.17).

(3) The same steps work, but the split case is harder. References appear in the
Notes below.)

14. Generalizing D. Define

D0
n = {B ∈ Mn(F ) : B = ST for some skew-symmetric S, T }.

(1) Dn ⊆ D0
n with strict containment if n ≥ 3.

(2) If B ∈ D0
n then every elementary divisor of B not of the form xk occurs with

even multiplicity.
(3) Find some B ∈ D0

3 with rank(B) = 1. What conditions on the elementary
divisors characterize elements of D0

n? (See the Notes for references.)

(Hint. (1) Find 4 × 4 skew-symmetric S, T such that ST has rank 1.
(2) Note that QBQ−1 = (QSQ�)(Q−�TQ−1) and choose Q so that QSQ� =(
H 0
0 0

)
for some nonsingular skew-symmetric H . Then B ∼

(
B0 B1
0 0

)
where

B0 ∈ D . The multiplicity of a non-zero eigenvalue of B equals that of B0 and (10.10)
applies.)

15. (1) Let f ∈ End(V ). Then f lies in D ⇐⇒ f ∼
(
C 0
0 C

)
. Here is a

“basis-free” version: f ∈ D ⇐⇒ f centralizes some split quaternion subalgebra of
End(V ).

(2) Proposition. LetA be a central simple F -algebra with involution and suppose
Q ⊆ A is a quaternion subalgebra. Then CA(Q) ⊆ D(A). The converse is true if A
is split of even degree or if A has degree 4.

(Hint: (1) If f ∈ D then V = U ⊕W with bases {u1, . . . } and {w1, . . . } such that

f (uj ) = ∑
i cij ui and f (wj ) = ∑

i cijwi . Define g, h ∈ End(V ) by g =
(

0 1
1 0

)
and h =

(
1 0
0 −1

)
. Then f centralizes the algebra generated by g and h.


