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and w2 = ycvy — xwy2. The matrix of g (relative to the original basis) becomes:
g=<2 _Oa>®<)yc iﬁ).ltisnmeasytoseethatfg:gf. O

Exercises for Chapter 5

1. Suppose (o, T) < Sim(g) isan unsplittable (s, ¢)-family where o represents 1 and
dimg < 8. If (s, 1) # (2, 2) then ¢ must be similar to a Pfister form.

2. Complete Proposition 5.7 by listing al ¢ such that (o, ) < Sim(q), where (o, 1)
equals:

(i) (1, a), (x, y)) with (axy) =~ (1).
(i) (1), (x, y)).
(i) ((1), (x, y,2)).

3. (i) Give a simple direct proof that if ((1,a, b), (x)) < Sim(g) then (1, abx) <
Sim(g).

(ii) Find somea, b, x, g suchthat ((a, b)) | g andx € Gr(g) but ({1, a, b), (x)) is
not realizable in Sim(g).

4. Round forms. (1) Lemma. A quadratic space (V, ¢) is round iff the group
Sim*(V, ¢) actstransitively on the set V* of anisotropic vectors.

(2) Recall that any (regular) quadratic form g has aWtt decomposition g =~ g, L
qn Where g, is anisotropic and g, is hyperbolic. These components are unique up to
isometry. Anisotropic form ¢ isround iff ¢, isround and universal.

5. Level of afield. If d € F define lengthy(d) to be the smallest n such that d is
asum of n squaresin F. That is, n = lengthp(d) <= d € Dr(n) — Dp(n — 1).
If d isnot a sum of squares then length,-(d) = oo. The level (or Stufe) of F is:
s(F) = lengthp(—1).

(1) Proposition. If s(F) isfinitethen s(F) = 2™ for somem.

(2) Suppose K = F(+/—d). Then s(K) isfinite <= length,(d) isfinite. Itis
each to check that s(K) < length(d).

Proposition. Suppose K = F(v/—d) anddefinem by: 2" < length.(d) < 2"+,
Thens(K) = 2™,

(Hint. (1) Suppose —1 = a? + --- + a2 and suppose 2" < s < 2"*1. To prove:
—1e Dp"). Ifn=2"then—(1+aZ ,+ - +a?) = (af+---+a?). By (52
or Exercise 0.5, Dy (2™) isagroup.

(2) s(K) < lengthp(d) implies s(K) < 2™ by (1). If s(K) = n then -1 =
S @@ +biv/—d)?sothatd - Y ! 1 b? =1+ 3" ja?and Y a;b; = 0. Then
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d= (X b))+ (X0 a?) - (X0 b2) 7" and the first term of a sum of n
squares. Since n is a 2-power the second term is a sum of n — 1 squares, using
Exercise 0.5(4). Thereforen < lengthy(d) < 2n implyingn = 2™.)

6. M-indecomposables. Suppose M = M(¢1, ..., ¢k, (b1), ..., {b,)) for some
b; € F* and some round forms ¢;, following the notations used before (5.5).

(1) Every M-indecomposable which isisotropic must actually be hyperbolic.

(2) Thereisaunique hyperbolic M-indecomposable form mH.

(3) When can there exist an M-indecomposable with dimension < 2m?

7. (1) Lemma. If {(x)) isanisotropic and {(x)) ® g isisotropic thenthereexists 8 C ¢
suchthat dim g8 = 2 and {(x)) ® B ishyperbalic.

(2) Corollary. If (a)g ~ gtheng ~ g1 L --- L g, for subforms ¢g; with
dimg; = 2and (a)q; ~ q;.

(3) If {(x, y)) ® g isisotropic, does the analog of (1) hold?

(Hint. (1) Mimic the argument in (5.5).)

8. () If (1, a,b), 1) <Sim({a, b)), thent C (1, a,b).

(2) List al pairs (o, ) having an unsplittable module of dimension < 4.

Q) If ((1,a,b,c), 1) < SIMm({a, b, c))), thent C (1,a, b, c). Characterize the
forms t such that ((1,a, b, ¢}, 7) < SMm({{a, b, w))). Hereabc € Gr({{w))) asin
(5.3).

(Hint. (1) Show dimt < 3 and use (5.7) (7) if dmt = 1. By Expansion we may
assumedimt = 3. Then det t = (ab) since the Clifford algebrais not smple.)

9. When o doesnot represent 1. Recall Exercise 2.2(1).

QD Let M= M(a,b) ={qg:a,be Gr(g)}. Theng € M(a, b) iff ({a), (b)) <
Sim(q). If {a) 2 (1) thenthehyperbolic planeisa2-dimensional M-indecomposable.

(2) Over therationa field Q the forms H, (1)) and ({2, 5)) are M (2, 5)-indecom-
posables. Find an M (2, 5)-indecomposable which is not similar to a Pfister form.
(Note. These proofsinvolve the Hasse-Minkowski Theorem over QQ.)

(3) Open question. What are the possible dimensions of M (a, b)-indecompos-
ables?

10. Thefollowing are equivalent:
() (x,y) <Sm(g).

(i) (1), (x, y)) < Sim(g).

(i) (1, xy), (x)) < Sim(g).
(iv) ((xy) g andx € Gr(q).

11. (1) Thefollowing are equivalent:
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() (L a),(1x)) <Sm(g).
(i) {a)) |g and {(x)) | q.

(i) g ~ ((a)) ® B for someform B such that ax € G g(B).
(2) Find adirect proof of (ii) <= (iii), hot using results on similarities.

(Hint. (1) To see (i) « (iii) scale by a and use the Eigenspace Lemma 2.10.)

12. Proposition. ((1, a, b, (1, x)) < Sim(q) ifand onlyif ((a, b)) |g and ((ab, x)) |q.

The proof is outlined below, following the same steps as (5.7).

() ((1,a,b), (1, x)) < Sim(g) if and only if ({1, a, b), (1, ab, abx)) < Sim(g).
The*only if” part of the proposition follows.

(2) For the “if” we may assume {(a, b) does not represent x, so that {(a, b)) %
{(ab, x)).

(3) (8-dim case) Suppose ¢ =~ ((a,b,w)) and ((ab,x)) | g. Then (a,b) L
(w)((a, b)) represents x, so that x = ar? + bs® + u where u € Dr((w){(a, b))).
Theng >~ {{a, b, u)) and ({1, a, b), (1, x)) C ({1, a, b, u), (1, a, b, u)) < Sim(q).

@ If o = (a, b)) and ¥ = ((ab, x)), the M(p, ¥)-indecomposables are all 8-
dimensional. Moregeneraly suppose¢ = a® (b)) andy = a ® {(c1, ..., ck)) Where
« isan r-fold Pfister form and ¢ 1 ¢. Then the M (¢, ¥)-indecomposables all have
dimension 27 t4+1,

(5) If (1, a, b, —x, —y) isisotropic, for what ¢ is ({1, a, b), (x, y)) < Sim(g)?

(Hint. (1) Use the generators f2, f3, g1, g2.)

13. Thefollowing are equivalent:

(i) (a,b))|qand{ab,x)) |q.
(i) ¢ ~ ((a)) ® y for someform y where ((ab)) | y and ax € Gr(y).

(Hint. Use (5.7), Exercise 11 and the Eigenspace Lemma 2.10.)

Open question. |s there some generalization which includes the Pfister factor
results of Exercises 11, 12 and 13 ?

14. Suppose that the trace map ¢ used in (5.9) isreplaced by ¢/ : E — F where
/(1) =1land ¢/(Jaxy) = 0. If 6 = r + s, /axy determinetheform ¢’ ((0) ).

15. Suppose (K, J) isafield with non-trivial involution, where we write & for J («).
Suppose V isa K -vector spaceand f : V — Vis(K, J)-semilinear.

(1) Let {v1, ..., v,} bea K-basis of V and express f(vj) = >/ 4 a;jvi. Then
A = (a;j) isthe matrix associated to f. A vector v = Y 7_; x;v; is represented by
the columnvector X = (x1, ..., x,)" sothat f(v) = Y7, x/v; isrepresented by the
column vector X’ = AX.

(2) If fand g are (K, J)-semilinear mapson V represented by matrices A and B,
then f o g is K-linear and is represented by the matrix AB.
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(3) Suppose i1 : V x V — K isaregular hermitian form. Let M = (h(v;, v)))
be the matrix of i, sothat M = M. If v, w € V correspond to the column vectors
X, Y thenh(v, w) = X ' MY. To define the adjoint involution ~ appliedto a (K, J)-
semilinear map f the usual formula makes no sense: i(f(v), w) = h(v, f(w)).
(Why?) It isreplaced by the definition:

h(f @), w) = h(v, f(w)).

Then f isaso (K, J)-semilinear and ~ is a K -linear involution on the~space of al
(K, J)-semilinear mapsof V. (le. (af) =af,(f+g) = f+gand f = f when
fis(K, J)-semilinear and o € K.) y 3
(4 If A isthe matrix corresponding to f then A = M~ " AT M. Consequently,
f = fifand only if the matrix M " A is symmetric.

(5) Does any of this become easier if we use the other definition of “hermitian”,
where h(v, w) is (K, J)-semilinear in v and K -linear in w?

16. Suppose F, E, K are as described before (5.9) and the involution trace £ o tr :
K — F isgiven. Suppose V isa K-vector spaceand b, : V xV — Fisa
symmetric bilinear form which admits (K, J). Then there exists a unique hermitian
formh : V x V — K suchthat € o tr oh = b,. Find an explicit formulafor .

(Hint. Say b : V x V — E isthe corresponding form over E. For v, w € V show
that b(v, w) = by (/axy - v, w) + by (v, w) - Jaxy. Now build b upto &.)

17. Norm principle. Suppose K = F(+/d) isaquadratic extension of F and define
s: K — Fbys(x+yvd) =y. If a isaquadratic form over K let s, («) denote the
transfer to F. (See Lam (1973), p. 201 or Scharlau (1985), p. 50 for discussions of
thiss,.)

Lemma. s, () isisotropic iff o represents some element of F°.

We also need the following analog of “Frobenius reciprocity”:
If pisaformover F and @ isaform over K then s, (¢ ® o) >~ ¢ ® s. ().
(2) Norm Principle. Let ¢ beaformover F and x € K. Then
N(x) € Dp(p) - Dp(p) ifandonly if x € F* - Dx (¢k).
(2) Deduce Lemma5.12.

(Hint. (1) ¢ L (—Nx)g is F-isotropic iff s, ({x)¢) is F-isotropic.)

18. Examples. (1) Give an example of an unsplittable o < Sim(g) where g is
anisotropic but is not similar to a Pfister form.

(2) Give an example of an unsplittable o < Sim(8H L 16(1)) over Q where
dimo = 8.

19. Common slot. Suppose a >~ {{a, a’)) and B ~ ((b, b)) are 2-fold Pfister forms.
If « >~ B thenthereexistsx € F*® suchthat a >~ ((a, x)) and 8 >~ ((b, x)).
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20. Contradiction? Conjecture. Suppose (o, ) < Sim(g) isan (s, r)-family and ¢
representsa € F°. Then thereis adecompositiong = g1 L --- L g, such that for
every i, (o, ) < Sim(g;) isunsplittable, and such that ¢1 representsa.

(2) If g isaPfister form the Conjecture is true. Suppose there is a Pfister form ¢
such that: (o, 7) < Sim(q) iff ¢ | ¢. Then the Conjecture istrue.

(2) Consider the set-up of (C, J)-modulesand suppose V = U L U’ where U is
anirreducible submodule. If W C V isirreduciblewith W ¢ U’,then W = U[f] =
{u + f(u) : u € U} isthe graph of some C-homomorphism f : U — U’. Now
speciaizetothe casethat End¢ (U) = F and U’ = U. Then any value represented by
anirreduciblesubmodule W mustliein (14-12)- D (U) for somex € F. For aspecific
caselet (o, 7) = ({1, 1), (1)) and V =~ ({1, 1)). Then any irreducible submodule of V
represents only valuesin Dg({{1))), and the Conjecture isfalse.

(3) Resolve the apparent contradiction between parts (1) and (2).

(Hint. (1) For the first statement, choose any unsplittable decomposition and et
b € Dr(q1). Theng =~ (ab)q.)

21. Transfer ideals. Suppose (K, J) isafield with involution, F isasubfield fixed
by Jand:: K — Fisaninvolution trace (that is, ¢t is F-linear and ¢ (@) = t(a)). If
(V, h)isa(K, J)-hermitian spacethenthetransfer 7, (V, h) = (V, toh) isaquadratic
spaceover F. Let L((K, J)/F) bethe set of (isometry classes of) all such transferred
spaces. Then 4((K, J)/F) does not depend on the choice of ¢ and its image in the
Witt ring W(F) isanideal.

Suppose a, b € F* and K = F(./—a, v/—b) is an extension field of degree 4.
Let J be the involution on K which induces non-trivial involutions J, and J, on
the subfields A = F(v/—a) and B = F(y/—b respectively. Letr : K — F be
an involution trace which induces the (unique) involution tracest, : A — F and
t, . B— F.

Proposition. L((K, J)/F) = 4((A, J,)/F) N 4((B, Jp)/F).

(Hint. Thisis arestatement of Proposition 5.16. First check that 1((A, J,)/F) =
M({a))) and similarly for b.)

22. Forms of odd dimension. Assume the following result, due originally to Pfister
(1966).
Proposition. If dim§ isodd then § is not a zero-divisor in the Witt ring W (F).

(1) If « is not hyperbalic then « | mH if and only if dima | m. (Generaizing
(55(3).)

(2 Ifa € Gp(a ® §) wheredim§ isodd, thena € Gr(a).

(3) If p isaPfister formand ¢ | « ® § wheredim § isodd, then ¢ | «.

(4) If (o, t) has unsplittables of dimension < 4, the answer to the following
guestion is“yes’.

Odd Factor Question. If (o, 7) < Sim(x ® §) wheredim § isodd, doesit follow
that (o, 7) < Sim(a)?
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(Hint. (3) Thisseemsto requirethetheory of function fields described in the appendix
to Chapter 9. Expressa = ag L kH where «g is anisotropic. Apply (9.A.6) and

(5.5).)

23. Pfister factors. (1) If g isaPfister formand (1, b) C ¢ theng ~ {(b, c2, ..., )
for somec; e F*. Thiswasprovedin (5.2) (1).

Lemma. If ¢ isa 3-fold Pfister formand (1, a, b) C ¢ then ¢ >~ {(a, b, w)) for
some w.

2 If dma = dmpg = 4, da = dB and c(x) = ¢(B) = 1then o and 8 are
similar.

(Hint. (1) Given ¢ >~ {(a, x, y)) such that (x){{a)) L (y){{a, x)) represents b. We
may assume b = xu + yv for someu € Dr({{a))) and v € Dg({a, x))). Then
¢ ~ {a, xu, yv)).

(QLetda = (dyandletgp = a L (d)B. Thendime =8,dp = (1) andc(p) = 1
so that ¢ issimilar to a Pfister form, by (3.20) (2). We may assumew« = (1, a, b, abd)
and find ¢ >~ ((a, b, w)) for some w. Then d isrepresented by (1) L (w){{a, b)) sO
that d = 1% +u for somer, u € F® suchthat ¢ >~ ((a, b, u)). Theng =~ (1, a, b, ab) ®
{(u)) ~ a ® {(u)). Cancel « to finish the proof.)

Notes on Chapter 5

In the proof of Lemma 5.2 we assumed that x, y # 0, leaving the other cases to the
reader. Actually that non-zero caseissufficient if weinvokethe Transversality Lemma
of Exercise 1.15

Lemma 5.5 and Proposition 5.6 follow Wadsworth and Shapiro (1977b). Lemma
5.5isasotreated in Szymiczek (1977). Morerecent results on round forms appear in
Alpers (1991) and Hornix (1992).

Exercise 5. These results on the level s(F), due to Pfister, helped to motivate the
investigation of the multiplicative properties of quadratic forms. The second result
leads to examples of fields which have prescribed level 2. See Exercise 9.11 below.

Exercise 7. See EIman and Lam (1973b), pp. 288-289. Compare Exercise 2.9.

Exercise 9. The different dimensions possible for unsplittable ({a), (b))-modules
contrast with the Decomposition Theorem 4.1. Theimage of M (a, b) in W(F) isthe
ideal A = ann({(—a))) U ann({(—b))). It isknown that 4 is generated by 1-fold and
2-fold Pfister forms. See Elman, Lam and Wadsworth (1979). For the case of global
fields see Exercise 11.6.

Exercise 12 (4) follows Wadsworth and Shapiro (1977b).
Exercise 17. The Norm Principle appears in EIman and Lam (1976), 2.13.
Exercise 19. Compare Exercise 3.10.
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Exercise 21. If E = F(+/ab) with trivia involution then L(E/F) = M(ab) is
contained in M ({{a)), {(b))). Theanalog of this proposition for biquadratic extensions
with trivial involution is proved in Leep and Wadsworth (1990).

Exercise 22. Proofs of the proposition appear in Lam (1973) on pp. 250 and 310,
in Scharlau (1985), p. 54, and in D. W. Lewis (1989).

Exercise 23. Compare Exercise 3.12(4) and thereferencesgivenin Chapter 3. The
lemma hereis aspecia case of Exercise 9.15.



Chapter 6

| nvolutions

If (C, J)isanagebrawithinvolution, whendoesagiven C-module V possessai-form
admitting C? A regular A-form on V induces an adjoint involution on End(V), and
every involution on End(V) arisesfrom some A-form. Thissign A iscalled the “type”
of theinvolution. The question posed aboveisthen equivalent to asking whether there
is an involution on End(V) which is compatible with (C, J). If C iscentral simple
it splits off as atensor factor: End(V) = C ® A, for some central simple algebra A.
Theinvolutions on End(V) compatible with (C, J) are then exactly themaps J ® K,
where K isan involution on A. The focus of our work has then moved to an analysis
of thisalgebra A and itsinvolutions.

In this short chapter we describe the basic results about involutions on central
simple algebras, postponing the applications to later chapters. Those results on in-
volutions have appeared in various textbooks. In fact, most of the ideas we use go
back at least to the 1930s and are summarized in Albert’s book Sructure of Algebras
(1939). We assume the reader is familiar with the general theory of central simple
algebras, including the Wedderburn Theorems, the Double Centralizer Theorem, the
existence of splitting fields, and the Skolem—Noether Theorem. However it seems
waorthwhile to derive the tools we need concerning involutions. Further information
about algebras and involutions is available in the books by Rowen (1980), Scharlau
(1985), Knus (1988), and Knus et a. (1998).

If Aisaring we let A® denote the group of units, and if S € A we write S*
for the subset S N A®. However, following standard practice we write GL (V) rather
than End®*(V). If A isan F-agebra an involution J on A is defined to be an anti-
automorphism such that J2 is the identity map. When F is the center of A then J
preserves F and the restriction is an involution on the field F. The involution is said
to be of thefirst kind or second kind, depending on whether or not it fixes F.

Unlessexplicitly stated otherwise, involutionsin thisbook are F-linear. Thatis,
we assume they are of the “ first kind” , inducing the identity map on the ground
field.

6.1 Definition. Let A be an F-algebrawith involution J. If a € A® define the map
J9:A— Aby
Jix)=atI(x)a forx e A.
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6.2 Lemma. Let A, J and a be given as above and suppose A has center F. Then J¢
isan involution if and only if J(a) = +a. The element a is uniquely determined, up
to non-zero scalar multiple, by J and J¢.

Proof. If J¢ is an involution then x = J%J%(x) = a~1J(a)xJ(a Y)a for every
x € A. Thena=1J(a) iscentra so that J(a) = a for somee € F*. Applying J
again we find that €2 = 1. The converse follows from the same formula. If J? = J¢
for someb € A® thena—1biscentra and b € aF*. O

We now make a key observation: every involution on the split algebra End(V)
comes from aregular A-formon V.

6.3Lemma. Let V bean F-vector space.

(1) If Bisaregular A-formon V and f € GL(V), define the bilinear form
Bf iV xV — Fby

B (x,y) = B(f(x), )

for x,y € V. If Ig(f) = ef wheree = +1, then B/ isaregular ex-form and
Igr = I};. Every regular eA-formon V arisesfrom B in this way.

(2) If Jisaninvolution on End(V) then J = I for some regular A-form B on V.
Thisform B is uniquely determined, up to non-zero scalar multiple.

Proof. (1) It is easy to see that B/ is aregular x-form. To prove the formula for
theinvolutions notethat B/ (x, h(y)) = B(Iz(h) f (x), y) = Bf (f~YIg(h) f (x), y).
Recall that themap 65 : V — V isdefined by (x|65(y)) = B(x, y). If B’ isany
regular ex-formon V, let f = (8, 0051 ". Then B’ = B/ .

(2) Let Bo be aregular 1-form on V with adjoint involution 7o. By the Skolem—
Noether Theorem and (6.2) we have J = Ig for some f € GL(V) with Ip(f) = Af

forsome A = +1. Then B = Bg isai-formon V having Iy = J. If B’ isanother
regular form having Ip = J, then (1) impliesthat B’ = B for someg € GL(V) and
J = I§ = J&. Then g isin the center of End(V), and B’ isascalar multipleof B. O

Aninvolution J isthe adjoint involution of some A-form on V. We define the type
of J to bethissign A, and say that J isaA-involution. Some authors say that J has
orthogonal typeif itstypeis 1 and J has symplectic typeif itstypeis —1.

The notion of type can be generalized by considering the behavior of involutions
under extension of scalars. If L/F isafield extension and J is an involution of the
F-algebra A, then J ® 1 isaninvolution of the L-algebra A ® L. If A isacentra
simple F-algebrathen there are “splitting fields’ L suchthat A ® L = Endg (V), for
some L-vector space V. One well-known consegquence isthat dim A isasquare. The
agebra A issaid to have degreen if dim A = n? (and dim; V = n).
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6.4 Definition. Suppose (A, J) is acentral smple F-algebrawith involution and L
is a splitting field for A. Then the involution J ® 1;, on A ® L = End, (V) isthe
adjoint involution of some A-form B on V. Thetypeof J isthissign A, and J iscalled
aA-involution.

For agiven splitting field L Lemma 6.3 implies that this sign A is uniquely deter-
mined. Since any two splitting fields can be embedded in a larger field extension, it
follows that the type A is independent of the choice of L. Thisindependenceis aso
clear from the next lemma.

6.5 Lemma. Let A bea central simple F-algebra of degree n, so that dim A = n2.

(1) If JandJ’ areinvolutionson A then J' = J¢ for somea € A® with J(a) = +a.
Furthermore, J and J’ have the same typeif and only if J(a) = a.

(2) If Jisaninvolutionon A define 8(A, J) = {x € A : J(x) = ex}, the subspace

of elements which are e-symmetric for J. If J hastype A thendim 8¢(A, J) =
n(n+el)
—.

Proof. (1) Theexistence and uniqueness (up to scalar multiple) of the element a follow
asin (6.3) (2) and (6.2). We may extend scalars to assume A = End(V) for some
vector space V. If J(a) = ea then by (6.3) J = Ip for some A-form B on V and
J' = Ip where B’ = B? isaneA-formon V.

(2) We may assumethat A = End(V). The quadratic form n(1) on V has adjoint
involution I which isjust the transpose map on matrices. The dimensions are easily
found: dim4°(4, J) = " By (1) J = I for somea € A* with I(a) = ra.
The claim follows from the general observation that

S5(A, 1Y = 8 (A, D) - a. O

Weareworking hereinthecategory of “central simple F-algebraswithinvolution.”
If (A1, J1) and (A2, J2) arein that category we write ¢ : (A1, J1) — (A2, J2) tO
indicate an F-algebrahomomorphism¢ : A1 — A2 which preservesthe involutions:
J2 o @ = ¢ o J1. Similarity representations (as in Chapter 4) are examples of such
homomaorphisms. Let usanalyze some specia cases of isomorphismsin this category.

6.6 Proposition. Suppose (V;, B;) isaregular A;-spacefori = 1, 2. Let I; denotethe
involution 7, 0on End(V;). Then (End(V1), I1) = (End(V>), Io) ifand onlyif (V1, B1)
and (V>, By) are similar spaces.

Proof. Suppose & : (Vi, B1) — (Vo, B2) is a bijective similarity. Define the
map ¢ : End(Vi) — End(V2) by: o(f) = hfh~1. To show that I, 0 ¢ =
¢ o I1 we check that for x, y € V the expressions Ba(l2(¢(f))(h(x)), h(y)) and
Bo(e(I1(f))(h(x)), h(y)) both reduce to the same value w(h)B1(x, f(y)). Con-
versaly suppose ¢ : (End(V1), I1) — (End(V>), I2) is an isomorphism. Since the
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dimensions are equal there is some linear bijection g : V1 — V. By Skolem—
Noether, the map f +— g 1o(f)g is an inner automorphism of End(V4), so there
is alinear bijection 1 : Vi — Vo with o(f) = hfh~1. Define B’ on V by setting
B'(x,y) = B2(h(x),h(y)). Then h is an isometry (V1, B’) — (V2, B2) and the
calculation above showsthat Ip = go_l olpo0¢@ = I1. Therefore B’ = aB1 for some
a € F*,and (V, Bp) ~ (V1,aBy). O

When considering isomorphisms of two algebras with invol ution we often identify
the algebras and concentrate on the involutions.

6.7 Lemma. Let (A, J) be a central simple F-algebra with involution, and let
a,b e A®. Then (A, J%) = (A, Jb) ifand only if b = rJ (u)au for somer € F* and
ueA°.

Proof. If & : (A, J%) — (A, J?) is the given isomorphism then « is an F-algebra
isomorphism and J? = o o J% o 1. By Skolem-Noether there existsu € A® such
that o (x) = u~1xu and the claim follows. The converseis similar. O

For quaternion algebras we get a complete characterization of the involutions.

6.8 Lemma. Let A be a quaternion algebra with bar involution Jo. EXxpress
A = F + Ag where A isthe set of pure quaternions.

(1) Joistheonly (—1)-involution on A.

(2) If Jisal-involutionthen J = J§ for somee € Ag. For any e € Ag, the only
involutions sending e — —e are Jo and J§.

(3) For J asabove the value Ne is uniquely determined up to a square factor. De-
fine det(J) = (Ne) in F‘/F’z. Suppose J1, J2 are 1-involutions on A. Then
(A, J1) = (A, Jo) ifand only if det(J1) = det(J>).

Proof. (1) By (6.5) Jo hastype —1. Any involution J on A must equal J§ for some
e € A® with Jg(e) = *e. If J hastype —1then Jo(e) = e sothate € F* and J = Jp.

(2) If J hastype1thene € Af and J(e) = —e. The uniqueness follows since
dims$—(A,J) =1

(3) If J = J§, the element ¢ is determined up to a factor in F*. Hence the
norm Ne is determined up to a factor in F*2, and det(J) is well defined. Suppose
Ji=J§and Jz = Jé’ for somea, b € Ag. If J1 = J> use (6.7). Conversely suppose
det(J1) = det(J2). Altering b by a scalar we may assumethat Na = Nb. Standard
facts about quaternion algebras (see Exercise 2) imply that there existsu € A*® such
that b = u=tau = (Nu)~1J (u)au and (6.7) applies. O

Our next task isto show that the type behaves well under tensor products.
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6.9 Proposition. Let A; be a central simple F-algebra with A;-involution J;, for
i =1,2. Then J1 ® Joisaiiie-involutionon A1 ® Ao.

Proof. We may replace the field F by a splitting field to assume that A; = End(V;)
and that J; isthe adjoint involution of a A;-form B; on V;. Suppose v is the natura
isomorphism

¥ End(V1) ® End(V2) — End(Vy ® Vo).

To complete the proof we must verify that  carries I, ® Ip, t0 Ip,gp,. TO Se€
this recall that by definition, ¥ (f1 ® f2)(x1 ® x2) = fi(x1) ® f2(x2) whenever
fi € End(V;) and x; € V;. One can then check directly that ¢ (I, (f1) ® Ip,(f2))
does act asthe adjoint of ¥ (f1 ® f») relativeto theform B1 ® B>. O

6.10 Corollary. Suppose (V;, B;) isaregular );-spacefor i = 1, 2. Let I; denotethe
involution 75, on End(V;).

(1) (v, B)issimilarto (V1 ® Vo, B1 ® Bp) if and only if
(End(V), Ip) = (End(V1), I1) ® (End(V>), I2).

(2) Thereisahomomorphism (End(V1), I1) — (End(V>), I2) ifandonlyif (V1, B1)
“divides’ (V», B) in the sense that (V>, B2) >~ (V1, B1) ® (W, B) for some
A1Ao-space (W, B).

Proof. For (1) apply (6.6) and (6.9). We prove a sharper version of (2) in the next
corollary. ]

6.11Coroallary. Suppose(C, J)isacentral simplealgebrawithinvolutionand A C C
is a central simple subalgebra preserved by J. Then (C, J) = (A, J|a) ® (C', J')
for some central simple subalgebra C’ with involution J'.

Suppose further that A issplit sothat (A, J|4) = (End(U), Ip) for some A-form
BonU. If (V,q)isaquadratic (C, J)-module, one then obtains:

(V,q) ~ (U, B) ® (U', B") where (U’, B’) is some A-space admitting (C’, J).

Proof. ThealgebraC’ isthecentralizer of A in C and the Double Centralizer Theorem
implies that C’ is central simpleand A ® C’ = C. Since J preserves A it aso
preserves C’ and induces some involution J’ there. Since C is simple the given
homomorphism (C, J) — (End(V), 1,) isinjectiveand weview C asasubalgebraof
End(V). Then as above there is adecomposition (C, J) ® (C”, J”) = (End(V), I,).
Therefore A ® C’ ® C” = End(V) and since A is split Wedderburn's Theorem
impliesthat ' ® C” = End(U’) for some U’. Theinvolution J’ ® J” theninducesan
involution I for someform B’ on U’. Therefore (End(U), Ig) ® (End(U"), Ip) =
(A, Jp)®[C"®C",J ®J") = (End(V), I,) and (6.10) (1) impliesthat (V, g) is
similarto (U, B)® (U’, B"). Wemay alter B’ by ascalar to assumethisisanisometry.
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Since g is quadratic and B is A-symmetric, (6.9) impliesthat B’ is A-symmetric. By
congtruction (U’, B") admits (C’, J/). O

This corollary gives another proof of the Eigenspace Lemma 2.10. See Exer-
cise4(3) below. It aso provides an interpretation of “ Pfister factors” entirely in terms
of algebras, asfollows.

6.12 Corollary. Suppose (V, ¢) is a quadratic space and ay, ..., a, € F°®. Then
(a1, ...,an)) is a tensor factor of ¢g if and only if there is a homomorphism
(01, JD)®---®(Qm, Jm) — (End(V), I,) whereeach (Qy, Ji) isasplit quaternion
algebrzawithinvol utionof type 1 suchthat thereexists f;. € Qr suchthat Ji.(fx) = — fx
and ff = —ay.

Proof. Note that (Qy, Ji) = (End(F?), I,,) where g >~ ((ax)). The equivalence
follows from (6.11). ]

Suppose C is a central simple F-algebra with an e-involution J, and V is a
C-module. The relevant questioniis:

When isthere aregular A-form B on V admitting C?

The C-module structure provides a homomorphism = : C — End(V) which is
injective since C is simple. We may view  asan inclusion C € End(V) and let A
be the centralizer of C, that is, A = End¢ (V). By the Double Centralizer Theorem,
A isaso acentral simple F-algebra and

C® A= End(V).

In particular, the dimension of A can befound fromdimC anddimV.

If V possesses a regular A-form B admitting C then there is an involution I
on End(V) which is compatible with the involution J on C. That is, Iz extends J
and in particular it preserves the subspace C € End(V). Therefore Ip preserves the
centralizer A and induces an involution K on A. Then J ® K = I, and by (6.9) the
involution K hastype ei. Conversely if A possessesan sA-involution K then J ® K
on C ® A = End(V) provides an involution on End(V'). Then by (6.3) and (6.9) this
involution must be I for some regular A-form B on V. Thisform B does admit C
since Iz iscompatible with J. Therefore, the existence of aA-form B admitting C is
equivalent to the existence of an eA-involution on A.

We can use these methods to prove that A must possess an involution.

6.13 Proposition. Suppose A and C are central simple algebraswhich are equivalent
in the Brauer group. If C hasan involution then so does A.

Proof. By Wedderburn, C = D ® End(U) and A = D ® End(W) where D is some
F-central division algebra and U, W are F-vector spaces. Since End(W) aways
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has a 1-involution it suffices to prove that D possesses an involution. Since J isan
anti-automorphism, we know C is isomorphic to its opposite algebra C%, so that
CRC = CQCPissplit. Therefore C ® D isalso split, say C ® D = End(V). Since
D isadivisionalgebra, V isanirreducible C-module. Thedual V isalsoaC-module
(as defined in Chapter 4) and has the same dimension as V. Therefore V = V and
Lemma 4.11 implies that V has some regular A-form B admitting (C, J), for some
A = 1. Theadjoint involution Iz on End(V') preserves the subalgebra C, so it must
also preserve D, the centralizer of C. Therestriction of I to D isaninvolution. 0O

Actualy (6.13) is part of a famous theorem of Albert (1939). If A is a central
simple algebra admitting an involution then it certainly has an anti-automorphism. If
A has an anti-automorphism then there is an isomorphism A = A°P, and therefore
[A]? = 1inthe Brauer group Br(F). Albert proved the converse.

6.14 Theorem. If Aisacentral smplealgebrawith[A]? = 1then A hasaninvolution.

We refer the reader to the beautiful proof appearing as Theorem 8.8.4 in Scharlau
(1985). Severa proofs have appeared in the literature. For example see Knus et
al. (1998), §83. The original version, given as Theorem 10.19 of Albert (1939), was
proved using the theory of crossed products.

6.15 Corollary. Let A be a central ssimple algebra with involution. There exist
involutions of both typeson A unless A isa split algebra of odd degree.

Proof. Let D bethe “division algebra part” of A. Then A = D ® End(U) for some
vector space U. By (6.14) the algebra D has an involution and there is always a
l-involution on End(U). Therefore there is an involution J on A which preserves
the subalgebras D and End(U). If there existsc € A® with J(¢) = —c then J and
J¢ have opposite type. If D # F there existsd € D with J(d) # d, and we use
¢ = J(d) —d. If dmU iseven then there exists aregular (—1)-formon U so there
must exist ¢ € GL(U) with J(¢) = —c. The only exception iswhen D = F and
dimU isodd. |

We noted in Chapter 4 that unsplittable (C, J)-modules are usually irreducible.
For acentral smple algebra C the exceptions are now easy to describe.

6.16 Corollary. Let C be a central simple algebra with an e-involution J and let V
be a C-module. The hyperbolic module H; (V) is (C, J)-unsplittable if and only if
C ZEnd(V) and A # ¢. Inthiscaseall A-symmetric (C, J)-modules are hyperbolic.

Proof. By Theorem 4.10 we know that H, (V) is unsplittable if and only if V is
irreducible and possesses no regular A-form admitting C. The “if” part is clear.
Conversely, we know that C ® A = End(V) where A = End¢c (V). Then (6.9)
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implies that A has no eA-involution. Since V isirreducible Schur’s Lemma implies
Aisadivision algebraand (6.15) impliesthat A = F. O

The standard examples of central simple algebras with involution are quaternion
algebras and matrix algebras. So if A = M, (D) where D is a tensor product of
guaternion algebras, then A has an involution. In the 1930s Albert considered the
following converse question:

If Disan F-central division algebra with involution then must D be isomorphic
to atensor product of quaternions?

There has been considerable work on this question since then. The next theorem
summarizes some major resultsin this area.

6.17 Theorem. Suppose D isan F-central division algebra with involution.

(1) D hasdegree2™ for somem. If m = 1then D isaquaternionalgebra. Ifm = 2
then D isa tensor product of two quaternion algebras.

(2) Thereexistsadivision algebra D of degree 8 over its center F such that D has
an involution but has no quaternion subalgebras. For any such D the algebra
M (D) isisomorphic to a tensor product of 4 quaternion algebras.

(3) [D]isaproduct of quaternion algebrasin the Brauer group.

Here are references where the proofs of these statements can be found.

If deg(D) = n, Albert showed that [D]" = 1 in Br(F), and that deg(D) and
the order of [D] involve the same prime factors. (See Albert (1939), Theorem 5.17,
p. 76, or Draxl (1983), Theorem 11, p. 66.) Consequently if D has an involution then
[D]? = 1 and deg(D) must be a 2-power. The stronger result when m = 2 isdueto
Albert (1932), with variousdifferent proofs given by Racine (1974), JanCevskil (1974)
and Rowen (1978). Several proof are presented by Knus et a. (1998), §16. We prove
itin (10.21) below following Rowen’s method.

(2) Such examples were found by Amitsur, Rowen and Tignol (1979), where the
center is a purely transcendental extension of Q of degree 4. The criteria involved
in constructing this counterexample were generalized by Elman, Lam, Tignol and
Wadsworth (1982) and further counterexamples were found (all of characteristic 0).
The second statement was proved by Tignol (1978).

(3) Thisispart of an important theorem of Merkurjev (1981) which statesthat the
guaternion symbol map ko F — Bra(F) isan isomorphism. Thisimplies that some
matrix algebra over D isisomorphic to atensor product of quaternion algebras.
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Exercises for Chapter 6

1. Thetypeof Js. Let o = (1) L o1 beaquadratic form of dimension s = 2m + 1.
Then C = C(—o1) iscentral simple of degree 2 and has the involution Js.

Lemma. Js hastype lif and only if s = £1 (mod 8).

(1) Proof #1. Apply (6.5) directly by computing dim 8% (C, Js) to be the sum
of all ( ') where j = 0,3 (mod 4). Such sums can be evaluated using the binomial
theorern with appropriate roots of unity. (See Knuth (1968), 1.2.6, Exercise 38.)

(2) Proof #2. An explicit decomposition of C as aproduct of quaternionsis given
in (3.14). Notethat Jg preserves each quaternion algebra, compute the type and apply
(6.9).

A third proof appearsin (7.5) below.

2. Quaternion conjugates. Let A beaquaternion algebraover F and recall the usua
definitions of the norm and trace of an element a: Na = aa and Ta = a + a. If
a,b € Awewritea ~ b to meanthat « and b are conjugate, i.e. b = cac~1 for some
ce A’

Lemma. Ifa, b € Athena ~ bifandonlyif Na = Nband Ta = Tbh.

(Hint. See Exercise 4.10(2).)

3. Two Quaternions. Suppose (A, J) isacentral simple F-algebrawith involution
and with dim A = 16. Suppose J is “decomposable”’, in the sense that there exists
a J-invariant quaternion subalgebra Q1 € A. For every such subalgebra there is a
decomposition

(A, J) = (Q1, J1) ® (Q2, J2).

(D) If J1 and J> both havetype 1, then (A, J) = (A1, K1) ® (A2, K2) where each
A; isaquaternion algebra and each K; isthe “bar” involution, of type —1.

(2) Suppose J; and J> both have type —1. Then those quaternion subalgebras
01, 02 areuniqueinastrong sense: If B isany J-invariant quaternion subalgebraon
which the induced involution has type —1, then either B = Q1 or B = Q».

(Hint. (1) Re-arrange the generators iy ® iz, i1 ® j2, €tC.
(2) Compare Exercise 1.4.)

4. Explicit quaternions. Suppose (o, t) IS an (s, t)-pair where s + ¢t = 2m +
1. Let (C, J) be the associated Clifford algebra with involution. Let {es, ..., e2n}
be an orthogonal basis of the generating subspace such that J(ej) = £ej. Then
{e® T A € IFZ’“} forms the derived basis of C. If eI’ and ¢ anticommute then they
generate a quaternion subalgebra Q preserved by J and C = Q ® C’ where C’ isthe
centralizer of Q. Then J induces an involution J' on C’.

(1) (¢’, J')istheClifford algebrawith invol ution associated to some (s’, ¢)-family
(¢/, 1) wheres’ +t' = 2m — 1.
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(2) Suppose (0, 7) < Sim(q) and Q is split. If J|p has type —1 then ¢ is
hyperbolic (but not necessarily (C, J)-hyperbolic). If J|o hastypelthen (Q, J|g)is
the Clifford algebraassociated to some (2, 2)-family ((1, a), (1, a)) andg ~ (a)) ®q’
for some ¢’ such that (¢, ') < Sim(g’). Moreover in this case we may assume
s, th)=(@6-11-1.

(3) The Eigenspace Lemma 2.10 follows by these methods.

(4) Supposeo < Sim(g) whereo = (1, ay, ..., az,). Decompose the associated

(C, J) into quaternion subal gebras with invol ution:
(C,J)) = (01,J1) ® - ® (Qm, Jw) ain (3.14). Then [Qx] = [dak, —az—1a2]
whereay = (1, a1, ..., ax—_1) and J; hastype (—1)¥. Deduce some consequences
of (2). For instance: If « C 0 < Sim(g) wheredima = 2 (mod 4), @ # o and
da = (1), then ¢ is hyperbolic. (Compare Yuzvinsky (1985).) Many results of this
nature follow more easily from Exercise 2.5.

(5) Suppose C is split and J has type 1 so that (C, J) = (End(V), I,) where
(V, g) isaquadratic space of dimension 2. Further suppose C = 01 Q® --- ® O
where each Q; isasplit quaternion algebra preserved by the involution J. Then g is
similar to a Pfister form.

5. Traceformsoncemore. (1) Let A be acentra simple F-algebrawith involution.
Thereisan algebraisomorphisme : A® A => Endy(A) defined asfollows, using an
anti-autormophism ¢ of A: ¢(a ® b)(x) = axt(b) forevery a, b, x € A. Let J; and
Jo beinvolutions of the sametypeon A so that /1 ® J2 isal-involutionon A ® A,
inducing an involution 7z on Endr (A). Theisometry class of this symmetric bilinear
form B on A depends only on the isomorphism classes of the involutions J1, Jo, and
isindependent of the choice of «.

(2) Theform B : A x A — F can be chosen to satisfy:
B(axb, y) = B(x, J1(a)yJ2(b)) for every a, b, x € A. Express B asatraceform.

(3) Suppose A = C(—o1 L 1) istheClifford algebrafor an (s, ¢)-pair (o, t) such
that s + ¢ isodd. Let J1 = Jo be the corresponding (s, #)-involution. Then B isa
Pfister form.

(4) Let A = (%) >~ (#) be a quaternion algebra, so that ((a, —x)) ~
{{(b, —y)). Let J1 betheinvolution correspondingto ({1, a), (x)), and J> theinvolution
for ((1, b), (y)). Then J1 ® Jo yields Iy on Endr(A). Then (4, B) ~ ((a, xb)) ~

(b, ya)).

(Hint. (2) Let J; = J)’ forw € A®* with Ji(w) = w. Then B(x, y) = tr(wJ1(x)y) =
tr(wyJ2(x)).
(3) Use Exercise 3.14.)

6. ® of irreducibles. (1) Suppose A; and A, are central simple F-algebras with
irreducible modules V1, V>, respectively. Then V1 ® Vo becomesan A1 ® A>-module
where the action is defined “diagonaly”: (a1 ® a2)(v1 ® v2) = (a1v1) ® (azv2). Let
D; bethe“division algebrapart” of A;. Thatis A; = M, (D;).
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Lemma. V1 ® Vo isanirreducible A1 ® Ao-moduleif and only if D1 ® Do isa
division algebra.

(2) Hereisan analog to Corollary 6.11: Suppose (C, J) = (A1, J1) ® (A2, J2)in
the category of central simple algebras with involution. Suppose Vi isan A;-module
sothat V = V1 ® Vo isaC-module. If g isaquadratic formon V which admits (C, J)
doesit follow that (V, ¢) = (U1, g1) ® (Uz, g2) for some quadratic spaces (Uy, g)
admitting A ?

(Hint. (1) Count the dimensions. Suppose D; has degree d; over F. Then
dmyV; = nid,»z- If D1 ® D, = M, (D) for adivision algebra D of degree d over
F then did> = rd. Compute that an irreducible A1 ® Az-module has dimension
ninord?. Then Vi ® Vs isirreducibleif and only if dim Vi ® Vo = ninord?.)

7. Uniqueness of the forms. Suppose g and ¢’ are regular quadratic forms on the
vector space V wheredimV = n.

(1) Suppose S € End(V) is alinear subspace which is a (regular) subspace of
similarities for both forms ¢ and ¢’. Must the induced forms o, ¢’ on S coincide?

(2) Suppose S, T € End(V) arelinear subspacesandthat (S, T') isan (s, r)-family
relativeto both ¢ and ¢’. Thentheinduced forms (o, 7) and (¢”, t’) coincide. Express
n = 2"ng where ng is odd and suppose further that s +¢ > 2m + 1. ThenJ = J’
andq’ = ¢ - g forsomec € F*.

(Hint. (1) Let J, J’ be the involutions and express J' = J¢. For each f € S,
o'(f)=¢-o(f)forsome¢ € Fwith¢" = 1. This¢ isindependent of f. Arethere
exampleswhere ¢ # 1?

(2) Let C bethe associated Clifford algebraand note that the similarity representa-
tion C — End(V) issurjective. Infact this uniqueness holds true whenever the given
family is“minimal” as defined in the next chapter.)

Notes on Chapter 6

The analysis of central simple algebras with involution was covered in some depth by
Albert (1939), who used somewhat different terminology. Most of the resultsin this
chapter have appeared in other books. See especialy Knus et al. (1998), §3.

The invariant det(J) in (6.8) is generalized in (10.24) below.

Theideasfor (6.11), Exercise 4 and Exercise 6 follow Yuzvinsky (1985).

Exercise 1. The computation of the type of the standard involution of a central

simple Clifford algebra was done by Chevalley (1954) using a different technique.
The dimension counting method is mentioned in Jacobson (1964).



Chapter 7

Unsplittable (o, T)-M odules

Given (o, t), what is the dimension of an unsplittable (o, )-module? We present a
complete answer when the associated Clifford algebra C issplit or reducesto aquater-
nion algebra. We also characterize the (s, ¢)-pairs (o, t) which have unsplittables of
minimal dimension.

Notations. Let (o, t) be a pair of quadratic forms where dimo = s, dimt = t.
Assume o represents 1 and define o1 by 0 = (1) L 01. Defineg =0 L —7 and
B1 =01 L —1. Let C = C(—p1) bethe associated Clifford algebra with involution
J = Js. ThendimC = 271, Let 7 be an “element of highest degree” in C and
Z=F+Fz.

The Basic Sign Calculation (2.4) says. J(z) = z if and only if s = ¢ or
t + 1 (mod 4). A direct calculation shows that dB = d(—p1) and ¢(B) = c(—pB1).
As noted in (4.2) an unsplittable (o, 7)-module has dimension 2¢ for some k where
s+t < 2k + 2. When can equality hold?

7.1 Lemma. Supposes +t = 2m + 2. Then (o,7t) < Sim(V, B) for some
2" -dimensional A-space (V, B) (for somex = +1) ifandonlyifdg = (1),c(B) =1
ands =t (mod 4).

Proof. If such (V, B) existslet 7 : C — End(V) betherepresentation. By comparing
dimensions we must have C = Cg x Cp and w(Co) = End(V). Therefore dB = (1)
and ¢(B8) = [Co] = 1. Furthermore 7 (z) must be a scalar, so that J(z) = z since
the involutions are compatible. The Basic Sign Calculation (2.4) then implies that
s =t (mod 4).

Conversely since s + ¢t — 1lisodd and ¢(8) = 1 we find [Co] = 1 so that
Co = End(V) for some V withdimV = 2". Since dp = (1) the Structure The-
orem impliesthat C = Co x Cop and the restriction of J to Cp induces an involution
I on End(V), corresponding to a A-form B on V by (6.3). From s = ¢t (mod 4) we
find J(z) = z, so the composite map C — Co = End(V) is compatible with the
involutionsand (V, B) becomesa (C, J)-module. O

Note. The conditionsdimpB = even, dB8 = (1) and ¢(8) = 1 are equivalent to:
B € J3(F). (Recal that J3(F) istheidea of the Witt ring introduced at the end of
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Chapter 3, and that J3(F) = I3F by Merkurjev’s Theorem.) Since 8 = o L —rt,
those conditions say: o = t (mod J3(F)), or equivalently: dimo = dimt (mod 2),
do =dt andc(o) = (7).

7.2 Lemma. Let (V, B) be a A-symmetric (C, J)-module where dmV = 2" and
s+t =2m+ 1. Then Iz isthe uniqueinvolution on End(V) compatible with (C, J).
Consequently every (C, J)-module of dimension 2" is C-similar to (V, B).

Proof. Theuniquenessof theinvolutionisclear sincetherepresentation C — End(V)
is bijective. If (V/, B’) is another (C, J)-module of dimension 2" then V' = V as
C-modules. Leth : V — V' bea C-isomorphism and define the form By on V
by: Bi(x,y) = B'(h(x), h(y)). Then h isa C-isometry (V, B1) — (V’, B) and
the forms here admit (C, J). By the uniqueness of the involution, 7z, = Ip O that
B1 = aB for somea € F°*. Then h isan a-similarity (V, B) — (V’, B"). (Compare
the proof of (6.6).) O

Thisresultisalso trueif s + ¢t = 2m + 2, except that the C-module may have to
be “twisted” by the main automorphism of C to ensurethat V' = V. (There are two
irreducible C-modules as described in (4.12).)

Thenext stepisto separate the typesof theinvolutionsused above. Thisrefinement
of (7.1) is equivaent to computing the type of the involution Js.

7.3 Proposition. Supposes +t = 2m+2. Then (o, 1) < Sm(V, q) where(V, q) isa
guadratic space of dimension 2™ ifandonly if df = (1), c(8) = 1ands = ¢ (mod 8).
For the case of alternating forms the congruence changesto s = ¢ + 4 (mod 8).

Proof. Suppose that d = (1), ¢(8) = 1ands = ¢t (mod4). Then (o,7) <
Sim(V, B) for some 2" -dimensional A-space (V, B). If s = ¢ (mod 8) we will show
A = 1. By (2.8) wehave an exampleof an (m + 1, m + 1)-family («, «) < Sim(W, ¢)
wheredim W = 2", Sinces = ¢ (mod 8) the Shift Lemma (2.6) produces (¢/, /) <
Sim(W, ¢) where dimo’ = s and dimt’ = . Extending scalars to an algebraic
closure K of F weseethato ~ ¢’ and t >~ 7’/ over K, and Lemma 7.2 implies that
(V, B) and (W, ¢) are Similar over K and we conclude that A = 1. Analogoudly if
s =t+4(mod8) then A = —1.

Conversely, suppose (o, 1) < Sim(V, g) wheredimV = 2", Then dg = (1),
¢(B) =1ands =r (mod 4), by (7.1). If s = ¢ + 4 (mod 8) we obtain a contradiction
from the proof above. Therefores = ¢ (mod 8). A similar argument works when
A=-1 O

7.4 Corollary. (1) If s 4+ ¢ is odd then C is central simple, and Jg has type 1 iff
s =t =+1(mod8).

(2) If s +1 iseventhen Cg iscentral simple, and therestriction J* of Jg hastype 1
iff s =¢or¢+2(mod8).
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Proof. (1) Suppose s + ¢ = 2m + 1. Extending to a splitting field we may assume
C = End(V) wheredimV = 2", If Jg hastype A thereis an induced A-form B on V
so that (o, ) < Sim(V, B). By the Expansion Lemma 2.5, (o, t) expands to either
an (s + 1, r)-family or an (s, r + D)-family in Sim(V, B). Apply (7.3).

(2) Asin(3.9) Co becomesaClifford algebraand J* istheinvolution correspond-
ingtoan (s —1, ¢)-family. Now apply part (1) to computethetype. A similar argument
worksinthecaser > 1, viewing Co asthe algebrafor a (¢, s — 1)-family. O

Sofar inthischapter we have analyzed caseswherec(8) = 1. We push theseideas
one step further by allowing ¢(8) = quaternion. This meansthat ¢(B) is represented
by a (possibly split) quaternion algebrain the Brauer group.

7.5Corollary. (1) Suppose(o, 7) < Sim(V, B) wheredimV = 2", Ifs+r > 2m—1
then ¢(B) = quaternion.

(2) If ¢(B) = quaternion and s 4+ r < 2m — 1 then there are A-symmetric (o, 7)-
modules of dimension 2™, for both values of A.

Proof. (1) Generdly s + ¢ < 2m + 2. We have seenthat if s + 1 > 2m + 1 then
c(B) = 1. If s +t = 2m then Cq is central simple and we have Co ® A = End(V)
where A isthe centralizer of Co. Counting dimensionswe find dim A = 4 sothat A
isaquaternion algebraand c(8) = [Co] = [A] = quaternion. If s+t =2m —1a
similar argument works.

(2) Supposes +r isodd. It sufficestosettlethecases +1 = 2m — 1. If ¢(8) = [A]
where A is a quaternion algebra, then [C ® A] = 1sotha C ® A = End(V)
where dimV = 2™. Since involutions of both types exist on A there are regular
A-forms on V' which admit C, for both values of A. Suppose s + ¢ is even. Then
s+1t4+1<2m— 1andwe can apply the odd caseto (o, T L (1)) after noticing that
c(B L (—1)) = ¢(B) = quaternion. O

Next we consider expansions of a given (s, ¢)-family, generalizing the Expansion
Lemma2.5. Recall that when s + ¢ isodd we can “adjoin z” to (S, T) € Sim(V, gq)
to form a family (So, Tp) which is one dimension larger. This larger family has
so = to (mod4) and dBy = (1). Furthermore the module V is not a faithful
C0)-module, for the larger Clifford algebra C ). Thismeansthat C) — End(V) is
not injective, so that the element “z” for the larger family actsas ascalar. Conversely
every non-faithful family arises this way from a smaller family.

7.6 Expansion Proposition. Suppose (S, T) € Sim(V, g) isan (s, t)-family where
dmV =2"ands+r = 2m—1. Then (S, T) expandstoan (s’, ¢')-family ($', T") €
Sim(V, g) wheres’ +1 = 2m + 2. Moreover, any expansion of (S, T') either isinside
(8’, T" or isobtained from (S, T') by adjoining z.
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Proof. The Clifford algebra C is central simple of dimension 22"~2. The represen-
tation C — End(V) isthen injective and we view C as the subalgebra of End(V)
generated by S and T. By the Double Centralizer Theorem, C ® A = End(V) where
A = End¢ (V) isthecentralizer of C. Thendim A = 4 sothat A must be aquaternion
algebra, and 1, preserves C so it induces an involution K on A.

The element z € C anti-commutes with every element of S; U T and J(z) = *z.
If a € A and K(a) = =a then az can be adjoined to S or T, depending on
whether I,(za) = K(a)J(z) equals —za or za. When a = 1 we have the situa-
tion of the Expansion Lemma 2.5. To adjoin more than one dimension to (S, 7)) we
need anticommuting elements of A, so let us stick to the pure quaternions Ag. De-
fine the eigenspaces Ag = Ay & A_ where K(x) = Ax for x € A,. Then either
(S+zAL, T+zA_)or (S+zA_, T +zA4) formsan (s/, ¢')-family in Sim(V, q).
SincedmA; +dimA_ =3weseethats' +¢t' =s+7+3=2m+ 2.

For the uniqueness suppose (S", T") issome expansion of (S, T), say (§", T") =
(S L R.,T L Ry). Then R_ + Ry C zA since every element of R_ + R,
anticommuteswith S1 U T. If R_ + Ry = Fz thenthefamily (S", T") was abtained
just by adjoining z. Otherwise R_ + Ry C zAp. Furthermoreif f € R, then
K(f) = £f, and it followsthat R_ and R are containedin A, and A_, in some
order. Therefore (S", T") iscontained in (S’, T”). |

Of coursethe exact dimension of A, (either Oor 2 asin (6.8)), and whether zA  is
adjoinedto S or to T', depend on the values of s and ¢. We do not need to keep careful
track of thisin the proof above because we know from (7.3) that s’ = ¢/ (mod 8).

Exactly when does a given pair (o, t) possess a quadratic module of dimension
2" We can now refine Theorem 2.11 and answer this question, provided the Witt
invariant is quaternion.

7.7 Theorem. Suppose ¢(B) = quaternion. Then there isa quadratic (o, t)-module
of dimension 2™ if and only if one of the following holds:

Q) s+r<2m-1

(2) s+t =2mandeither: dB = (1) ands = ¢ (mod 4), or: c(B) issplitby F(./dB)
ands =t —2,t0rt+ 2 (mod8).

B s+r=2m+1c(B)=1lands=¢+1ort—1(mod8).

4 s+t=2m+2,dB=(1),c(B)=1ands = (mod 8).

Proof. Suppose (o, 1) < SIm(V, ¢) wheredimV = 2", Thenweknow that s + ¢ <
2m + 2. If s +1 < 2m — 1 then (7.5) appliesand if s + ¢ = 2m + 2 we use (7.3). If
s+t = 2m + 1, then by the Expansion Lemma 2.5 we can expand (o, t) to alarger
family (¢’, t/). By (7.3) we know that d8’ = (1), ¢(8’) = 1and s’ = ¢ (mod 8).
Since B/ = B L (d) for somed € F°*, it followsthat c(8) = c(B’ L (—=d)) =
c(BH[dB’,d] = 1landeithers =¢+1ors+ 1=t (mod8).



7. Ungsplittable (o, 7)-Modules 123

Now supposethat s +¢ = 2m. Chooseasubfamily (og, o) wheresg+1 = 2m —1.
If theoriginal family isnon-faithful thenit must be obtained from (o, 7o) by adjoining
z and we conclude from the Expansion Lemmathat dg = (1) and s = ¢ (mod 4).
Otherwiseby (7.6) thefamily (o, t) lieswithinafull expansion (¢’, ') wheres’'+¢ =
2m + 2. Then (s, t') mustequal (s +2,1), (s +1,¢ + 1) or (s, t + 2), and we know
thaas =r—2,rort+2(mod8). Also 8/ = B L (x,y) for somex,y € F°.
Thendp =d(p’ L (—x,—y)) = (—xy)and c(B) = c(B’ L (—x, —y)) =[x, =]
which is split by thefield F (\/=xy) = F(J/dpB).

For the converse suppose (o, t) is given satisfying one of those conditions. If
s+t =2m— 1lwearedoneby (7.5) andif s + r = 2m + 2 we apply (7.3). Suppose
s+t =2m+1 Lettingd = —dB wefindthat c(8 L (d)) = c¢(B)[dB,d] = 1
sincec(B) = 1. Let (o/, /) equal either (o L {d), 7) or (o, T L (—d)), according
ass=t—21ort+1(mod8). Thenby (7.3) we have (o, ) C (0/,7") < SIM(V, q)
wheredimV = 2™,

Suppose s + ¢t = 2m. Inthecasedf = (1) and s = r (mod 8) we can remove
one dimension from o or t to get a subfamily (o, 10) having sg + fo = 2m — 1 and
¢(Bo) = c(B) = quaternion. Then thereis a quadratic (o9, to)-module of dimension
2" and the Expansion Lemma makes it a (o, 7)-module. In the final case suppose
dB = (d) and c(B) = [d, x] for some x € F°*. Definep’ = B 1L (—x,xd) and
note that d8’ = (1) and c(B’) = ¢(B)[—x, xd][d, d] = 1. Define apair (¢/, /) by
enlarging (o, T) appropriately tomake 8’ ~ ¢’ L —7’ and s’ = ' (mod 8). Then
again by (7.2) weget (0, 7) C (0, 7") < SIM(V, ¢g) wheredimV = 2", O

The information in this theorem can be restated to provide the dimension of an
unsplittable (o, T)-module whenever ¢(8) = quaternion. We do this now, choosing
the notation so that in each case the smallest possible unsplittable dimension is 2.
That is, m = &(s, t) in the sense of (2.15).

7.8 Theorem. Let (o, t) be a pair of quadratic forms where o represents 1 and
dimo =sanddimt =¢. Define 8 = o L —t and suppose c(8) = quaternion. Let
Y be an unsplittable quadratic (o, t)-module.

If lets+t=2m+2 Thenm = — 1 (mod 4) and:
dimy = 2" iff df = (1) and c(8) = 1.
dimy = 27+ iff the first case fails and either dB = (1) or ¢(B) is split by
F(J/dp).
dimy = 2”12 otherwise.

If [s=r+1(mod8)]| lets+r=2m~+1 Thenm =rors—1(mod4) and:
dimy = 2 iff ¢(8) = 1.
dimy = 2"+ otherwise.

If [s=r+2(mod8)]| lets+r=2m. Thenm =1+ 1 (mod4) and:
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dimy = 2 iff ¢(B) is split by F(\/@B).
dimy = 2"+ otherwise.
If [s=1+4(mod8)]| lets+r=2m. Thenm =1+ 2 (mod 4) and:
dimy = 27 iff dB = (1).
dimy = 2"+ otherwise.
If [s=r+3(mod8)| lets+t=2m—1 Thenm =1+ 2or+ 3 (mod4) and:
dimy = 2",

Proof. These criteria can be read off directly from (7.7). O

The pairs (o, ) whose unsplittable quadratic modules are as small as possible
are the nicest kind. Recall from (2.15) that for given (s, ¢) the smallest unsplittable
module that an (s, r)-family can have is 2°¢-1). We define an (s, t) pair (o, 7) to
be a minimal pair if its unsplittable quadratic modules have this smallest possible
dimension 296+, Then (o, 7) isminimal if and only if ¢(8) = quaternion and (o, 7)
satisfies the conditions for dim ¢ = 2" givenin (7.8).

Remark. Thedimensionsof unsplittablesfor alternating (o, )-modules can befound
by altering in (7.8) each of the congruences for s and ¢ by 4 (mod 8). (See Exercise
2.6.) Wecan aso define (o, t) tobea(—1)-minimal pair if its unsplittable alternating
modules have the smallest possible dimension.

7.9 Proposition. Suppose (o, 7) isan (s, t)-pair wheres > 1, ¢+ > 0 and where the
dimension of a quadratic unsplittableis 2. Then (o, ) isminimal if and only if one
of the following equivalent conditions holds:

(1)) m=246(,1).
(2) Eachunsplittable quadratic (o, t)-module remains unsplittable after any scalar
extension.
() s> p (2",
2m +1 ifm=t
) 2m ifm=r+1
(@) s+r= 2m — lor 2m ifm=t+2 (mod 4).

2m —1,2m,2m+1or2m+2 ifm=1r+3

Proof. (1) < (2) follows from the definition of “minimal”.

(3) < (4): Usethe formulasin (2.13). The lower bounds in (4) come from
condition (3). For theupper boundsnotethat thereexistsa (o, )-moduleof dimension
2" sothat s < p;(2™).

(2) = (3): Suppose (o, t) isaminimal (s, ¢t)-pair with an unsplittable module
(V,q) of dimension 2”. If s < p,(2"1) then there is some (s, r)-pair (¢’, ')
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having amodule of dimension 2" ~1. Passing to an extension field K we may assume
(6/,7") ~ (0, ). Butthen (Vg, gk ) isnot unsplittable, contrary to hypothesis.

(3) = (2): If s > p; (2" 1) then (o, T) must be minimal since no (s, ¢)-pair can
have amodule of dimension 2”1, O

For example the possible sizes of minimal (s, ) pairs with s > ¢ and having
unsplittables of dimension 8 are: (4, 1), (4,2), (4,3), (4,4), (5,0), (5, 1), (6,0),
(7,0), (8,0). Every pair (s{(1),2(1)) is minimal (see Exercise 4). The minima
pairs are characterized by a strong uniqueness property for their unsplittable modules.
Compare Lemma 7.2.

7.10 Proposition. An (s, t)-pair (o, ) isminimal if and only if there exists a (o, 1)-
module (V, ¢) such that I, is the unique 1-involution on End(V) compatible with
c, Js).

Proof. Let (o,7) < Sm(V,q), view V as a C-module and recall that /, is a
1-involution on End(V) compatible with (C, Js). Let A = End¢(V) and K the
involution on A induced by 7,. Then the 1-involutions on End(V) compatible with
(C, Js) are exactly the involutions /7 wherea € A® and K(a) = a. The unique
involution property is equivalent to requiring that 8% (A, K) have dimension 1. Since
this condition is independent of scalar extension we may assume F is algebraically
closed.

If s < p;(2"~1) then there is a quadratic (C, Js)-module (W, ¢) of dimension
2"=1 Let V. = W @ W and consider theforms ¢ L (b)p on V for b € F*. For
different values of b theseforms provide unequal 1-involutionson End(V) compatible
with (C, Js).

Conversely suppose (o, 7) < Sim(V, g) wheredimV = 2" ands > p,;(2"°1).
We will show that 7, isunique. If s 4+t > 2m + 1 the uniqueness is clear since C
maps surjectively onto End(V). Supposes +¢ = 2m — 1 sothat A = End¢ (V)
is a quaternion algebrawith C ® A = End(V). Then I, is unique iff K is the bar
involution on A, which occursiff K hastype —1. By (6.7) thisis equivalent to saying
that Jg hastype —1and by (7.4) it occursiff s = r =3 (mod 8). Sinces +¢ = 2m — 1,
this congruenceisthesameasm =t + 2 or t + 3 (mod 4).

The remaining caseiswhenm =t + 1 (mod4) ands +¢t = 2m. Thens =
t + 2 (mod 8). As before we have Co ® A’ = End(V) for a quaternion algebra A’
having an induced involution K’. Then A = End¢ (V) isthe centralizer of 7/ = 7 (2)
in A’. (Here 7 isthe corresponding representation of C.) Sinces = ¢ + 2 (mod 8),
the sign computation says that Js(z) = —z sothat K(z') = —z’. Then 7’ isa pure
quaternionand A = F + Fz'. Therefore §7 (A, K) = F sothat I, isunique. O

The uniqueness of the involution 7, for a minimal pair (o, ) implies that all
(o, T)-unsplittables are C-similar (with the standard exception when C isnot simple).
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7.11 Corollary. Suppose (o, t) isaminimal (s, t)-pair with unsplittable quadratic
module (V, ). Then every unsplittable (o, 7)-moduleis C-similar to (V, ¥), (up to
a twist by the main automorphism when C is not simple). Consequently, (o, 7) <
Sim(«) ifand only if ¥ | c.

Proof. Suppose (V’, ¥') isanother (o, )-unsplittable. Then V and V' are C-modules,
dmV =dimV’' =2" ands > p; (2" 1).

Claim. We may assume V' = V as C-modules. For if C is simple the modules
are certainly isomorphic. Otherwises+tisevenandweknow s + ¢ > 2m — 1. If
s+t = 2m + 2 thetwo module structures differ only by the usual “twist” as described
in (4.12), so we can arrange V' = V. Suppose s +t = 2m. |f there exist two
different C-module structuresthen both casesin Theorem 7.7 (2) hold true. Therefore
s =1t (mod 8),ds = (1) and c¢(B) = 1. But thenthereexistsan (s, ¢)-family on some
quadratic space of dimension 2"~ contrary to the hypothesiss > p,(2"~1). This
proves the claim.

The argument is completed as in the proof of (7.2). O

Suppose (o, T) < Sim(g) isan (s, t)-family withs +¢ > 2m — 1. If dimg = 2"
then the Expansion Proposition 7.6 impliesthat there existsan (m + 1, m + 1)-family
in Sim(g). This statement can fail if we allow dimg = 2"ng, as seen in Exercise 10.
However the assertion does generalize in some cases.

7.12 Corollary. Suppose (o, ) < Sim(g) isan (s, t)-familyand dimg = n = 2"ng
where ng isodd. If s = p,(n) isthe maximal value, then (o, t) is minimal pair and
thereexistsan (m + 1, m + 1)-family in Sim(q).

Proof. Sinces = p,(2") > p; (2"~ 1) the pair isminimal. Let (o, 7) < Sim(y) be
the unique unsplittable, so that dimy = 2" and ¢ >~ v ® y where dimy is odd.
Sinces +t > 2m — 1 the Expansion Proposition 7.6 implies that Sim(y) admits an
(s', t")-family where s’ + ¢ = 2m + 2. Then s’ = ' (mod 8) and shifting produces
an (m + 1, m + 1)-family. O

From Theorem 7.8 we can read off thecriteriafor an (s, t)-pair (o, t) tobeminimal.
Itisinteresting to display this calculation explicitly in the case of asingleform o over
thereal field R.

7.13 Proposition. Let o = p(1) L r(—1) over R. Then o isnot minimal if and only
if thereis a dot (e) in the corresponding entry of the following table, indexed by the
values of p and r (mod 8).
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pr01234567
0

1 ° o | o
2 °

3 ° o | o
4

5 ° °
6 °

7 ° °

Proof. Using calculationsof do and c(o) in Exercises 3.5 and 3.6 we can trandlate the
criteriain (7.8) to congruence conditionson dimo and sgno. Theseyield thetable.o

Remark. The proof aso shows that ¢ is (—1)-minimal if and only if o L 2H is
minimal. Some of the symmetries in this table are explored in Exercise 4.

At this point we can complete the classification of (s, #)-pairs which have hyper-
bolic type, as defined in (4.14) and discussed in (6.16). Recall that these are the pairs
(o, T) such that the unsplittables are not irreducible. With our usual notations, this
saysthat an irreducible C-module does not have a symmetric bilinear form admitting
(C, J). Some of the details of the proof below are left to the reader.

7.14 Proposition. Let (o, 7) be an (s, )-pair such that o represents 1, and
B = o 1L —1. Then (o, 1) is of hyperbolic type if and only if one of the follow-
ing conditions holds:

s=t+3(mod8)andc(B) = 1.
s=t+2(mod8) anddp = (1).
s =t + 4 (mod 8) and c(B) is split by F(/dB).

Proof. Let C = C(—o1 L t) with involution J = Jg as usua, and let V be
an irreducible C-module. Then (o, 7) has hyperbolic type iff there is no symmet-
ric bilinear form on V which admits (C, J). Equivaently, there does not exist a
1-involution on End(V) compatible with (C, J).

Suppose s + ¢ isodd so that C is central simple. Then A = End¢ (V) isacentral
division algebraand C ® A = Endg(V). By (6.13) there exists an involution K
on A, and J ® K induces an involution I on End(V). If A # F then by (6.15) A
has involutions of both types and one of them yields a 1-involution 7. If A = F
then type(I) = type(J). Then by (7.4) we see that (o, 7) has hyperbolic type iff
c(B) =[A] =1lands = + 3 (mod 8).
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Supposes +tisevensothat C = Co@ ZwhereZ = FQ Fz. Let A = Endc, (V),
sothat A iscentral smpleand Co® A = Endg (V). Firstassumethat df = (d) # (1).
Then Z = F(J/d) isafield and we may view Z C A.

Claim. There exist involutions K, K_ on A such that K. (z) = ez.

Thisfollowsfroman extension theoremfor invol utionsdueto K neser, (see Scharlau
(1985), Theorem 8.10.1). The claim is also proved below in Exercise 10.13.

Let K = K. with ¢ chosen to make K(z) = J(z). Define B = Cents(Z) =
End¢ (V) so that B is adivision agebrawith center Z. If there exists x € B*® with
K(x) = —x then K and K* are involutions of both types on A and compatible with
(C, J). Thereforeif our 1-involution on End(V) fails to exist then no such x exists,
and we see that K(z) = z and B = Z. From the dimensions of centralizers we see
that A must be a quaternion algebra containing the subfield Z. Furthermore, J* ® K
must have type —1. Since K (z) = z weknow that s = r (mod 4) and K hastype 1.
Then J* must havetype —1 and s = ¢t + 4 (mod 8) by (7.4). Thusin this case when
s +tisevenand dp # (1), we seethat (o, 7) isof hyperbolic typeiff ¢(8) = [A] is
splitby F(v/d) ands = 1 + 4 (mod 8).

Finally supposedp = (1) sothat z? = 1and z actsas+1 on theirreducible module
V. Then V is an irreducible Co-module and A isadivision algebra. If J(z) = —z
therecanbeno compatibleinvolutionsat all. Thisisthecases = r+2 (mod 4) already
noted after (4.14). Otherwises = r (mod 4) so that J(z) = z and any involution K
on A is compatible with (C, J). Asbeforeif A # F there exist involutions of both
typeson A. Then (o, t) hashyperbolic typeiff A = F and theinduced involution J
on Co hastype —1. By (7.4) thisoccursiff ¢(8) = 1ands = ¢ + 4 (mod 8). ]

Remark. Thecriteriafor (o, t) to be of (—1)-hyperbolic type are obtained by cycling
the congruences above by 4 (mod 8).

7.15Corallary. Let 0 = p(1) L r(—1) over R. Then o is of hyperbolic type if and
only if thereisa dot (e) in the corresponding entry of the following table, indexed by
the values of p and r (mod 8).

pNloj1 2314|567
0

1 e (o | o [ ]

2 °

3 °
4

5 ° o | o | o
6 °

7 [ e (o | o

Proof. Apply the proposition and the calculations of do and ¢ (o). O
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Remark. From the symmetries of the tables we seethat o has hyperbolic typeif and
only if o L 4H doesaswell. Analysis of the proof showsthat o has (—1)-hyperbolic
typeif and only if o L 4(1) has hyperbolic type.

If (§,T) € SIm(V, q) is a pair of amicable subspaces, then so is (§', T') =
(fSg, fTg) forany f,g € SM*(V, q). Conversely if (S, T) and (S’, T') are pairs of
amicable subspacesin Sim(V, ¢), how can wetell whether they are equivalent in this
way? One obvious necessary condition is that the induced pairs of quadratic forms
(0, 7) and (o, t/) be similar. For minimal pairs that condition suffices.

7.16 Corollary. Suppose (S, T) and (S8, T’) are pairs of amicable subspaces of
Sim(V, g) which aresimilar asquadratic spaces. S’ ~ (c)Sand T’ ~ (c)T for some
ce Fe. lfdmV =2"ands > p,(2"1), then there exist f, g € SIm*(V, ¢) such
that (S', T') = (fSg, fTg).

Proof. Wemay assumely € S. Thenthereexists f € S’ with u(f) = c. Wecompose
with f~1toassume S’ ~ Sand 7’ ~ T. TheClifford algebraC = C(—o1 L 1) with
theinvolution J = Js then hastwo representations = and =’ on (V, ¢) corresponding
to thesetwo (s, ¢t)-families. Thatis, (V, ¢) becomesa (C, J)-modulein two ways. In
the notation used at the start of Chapter 4, the subspaces S, T C C satisfy: S = 7(S),
T =n(T),and S =='(S), T = =/(T).

Sinces > p,(2"~1) the (C, J)-module structures on V must be unsplittable. By
(7.11) thesetwo unsplittablesare C-similar (possibly after twisting z inthenon-simple
case). Leth : V — V beaC-similarity carrying the w-structure to the 7r’-structure.
Then h(r(c)x) = n/(c)h(x)foralc e Candx € V. Thatis, 7'(c) = hom(c)oh™L.
Therefore S’ = hSh~Yand T’ = hTh™1. O

In some cases we can eliminate the restriction on dimensions in (7.16). We are
given (C, J) and two quadratic (C, J)-modules (V, g) and (V’, ¢’) which are F-
similar, and hope to conclude that they are C-similar. First suppose C is simple, so
that V and V' areisomorphic as C-modules. They break into unsplittables

V=vil---1V ad V' =V{L--- LV,

Assuming (o, T) is minimal we see from (7.11) that all V; and V! are C-similar.
In order to glue these similarities we must find the unsplittables together with C-
similarities g; : V; — V! such that the norms (g;) are al equal. For example
suppose F = R and (V, ¢) is positive definite. Then any C-similarity between the
unsplittable components has positive norm so it can be scaled to yield a C-isometry,
and the “gluing” works. The same idea goes through in afew more cases over R (see
Exercise 8).

Suppose now that C is not smple, so that s + ¢ iseven and do = dt. In order
to ensure that the two C-module structures on V are isomorphic, we require that the
two (s, t)-families have the same “character”. Let z = z(S1 L T) be an element
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of highest degree with z2 = 1. As mentioned before (4.12) there are exactly two
irreducible C-modules V. and V_, chosen so that z acts as €1y, on V.. Any C-
module V isisomorphic to adirect sum of n of copiesof V; and n_ copiesof V_,
for someintegersny,n_ > 0. Then

dmV =y +n_)-2" and trace(z(z)) = (ny —n_)- 2",

where 2" = dimV, = dimV_. Therefore two C-modules are isomorphic iff they
have the same dimension and the same value for trace( (z)).

Since we are interested only in the spaces S, T and not in the representation 7,
we may “twist” w by replacing it by = o « where « is the canonical automorphism
of C. This operation leaves the subspaces S and T unchanged but it alters the sign
of trace( (z)). Therefore the non-negative integer | trace(r (z))| depends only on the
given family (S, T'), and not on the choice of the representation 7.

7.17 Définition. If (S, T) € Sim(V, ¢) is an (s, t)-family, let z be an element of
highest degreein the Clifford algebra C, chosen so that if C isnot simplethen z2 = 1.
Define x (S, T) = | trace(:t ()|, the character of the family.

7.18 Lemma. If x(S,T) #£ 0thens =t (mod 4), do = dt and (S, T) ismaximal.

Proof. If (S, T) can be expanded in Sim(V, ¢) then there exists f € SIm*(V, q)
which anticommutes with 7 (z), so that trace(m(z)) = 0. If s + ¢ isodd then (S, T)
can be expanded. If s = ¢t 4+ 2 (mod 4) then J(z) = —z so that trace(r(z)) = 0.
Finally suppose s = ¢t (mod4) but do # dt. Then Z = F + Fz = F(J/d) is
afield and the minimal polynomial for 7(z) is x> — d, which is irreducible. Then
trace(r(z)) = 0 since the characteristic polynomial must be apower of x2 —d. O

7.19 Proposition. Suppose (V, g) is positive definite over the real field R. Suppose
(§,T)and (§', T') are (s, t)-familiesin Sim(V, g) such that x (S, T) = x (S, T").
Then (8", T') = (hSh~L, hTh™Y) for someh € O(V, q).

Proof. Since the forms are positive definite over R we have S ~ §’ ~ s(1) and
T >~ T’ ~ r{1) as quadratic spaces. For C and J as usual, we see that (V, q)
becomes a quadratic (C, J)-module in two ways. We may twist the representation
7 by a, if necessary, to assume that trace( (z)) = trace(w’(z)). Then these two C-
module structures are isomorphic. The two (C, J)-modules can then be broken into
unsplittables

V=Vil---1V, ad V' =V/L...1V]

insuchaway that V; and v/ areisomorphic C-modules. Since(s(1), #(1)) isaminimal
pair we know asin (7.11) that V; and V/ are C-similar. The norm of such asimilarity
must be positive in R so we may scale it to find a C-isometry h; : V; — V/. Glue
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these h;’ stogether to obtain anisometry 2 : (V, ¢) — (V, ¢) carrying the -structure
to the 7/-structure. This completes the proof, asin (7.16). O

7.20 Corollary. (1) Suppose (S, T) € Sim(V, n(1)) over R. If x(§,T) = 0 then
(S, T) can beenlarged to a family of maximal size. That trace condition always holds
if s =t (mod 4).

(2) Every sumof squaresformulaof size[r, n, n] over R isequivalent to oneover Z.

Exercises for Chapter 7

1. Maximal families. Suppose (S, T) € Sim(V, B) isan (s, t)-family with associ-
ated representation 7 : C — End(V).

(2) If r isnon-faithful then (S, T) ismaximal. More generaly if x (S, T) # 0(as
defined in (7.17)) then (S, T) is maximal.

(2) Find examplesof faithful maximal families. If (S, T) € Sim(V, B) ismaximal
and faithful, what can be said about the algebra A = End¢,(V)?

(Hint. (1) If f € Sm®(V) anticommuteswith S1 + T then f must anticommute with
7(2).)

2. Why isc(B) split by F(/B)? Inthesituation of Theorem 7.7 suppose s +t = 2m
andthereisaquadratic module (V, ¢) of dimension 2. Let Z = F(,/B) bethecenter
of the Clifford algebra C and suppose Z isafield. Then C isacentral simple Z-algebra
and thereisan induced Z-actionon V. Thendim, C = 22"=2 dim, V = 2”1 and
C = Endz(V). Therefore 1 = [C]z = [Co ® Z] and ¢(B) = [Co] is split by
F(/B). If s =t (mod 4) then J(z) = z. Compute type(J) as a Z-involution to see
s =t (mod 8). Isthere asimilar argument when dg = (1)?

3. Thefollowing can be proved by methods of Chapter 2 or by applying (7.8).

(2) If the dimension of an unsplittable (o, t)-module is 2" then the dimension of
an unsplittable (0 L (a), T L (a))-moduleis 2"+,

(2) If (o, ) isaminimal pair and « is any quadratic form, then (o L o, 7 L «)
isaso minimal. If o represents 1 then (o, «) is minimal. If (o, 7) < Sim(p) is
unsplittable, what is the unsplittable quadratic modulefor (o L o, T L «)?

(3) Forany s > 1,7 > Othepair (s(1), t(1)) isminimal with (unique) unsplittable
module 2 (1), wherem = §(s, t).

4. (D) If (o, 7) isminimal and ¢ = {(a, b, c¢)) then (¢ L ¢, 7) isalso minimal.

(2) If (o, T) isminimal and a € D (o) then ({a)o, (a)t) isaso minimal.

(3) If o isminimal theno L 8(1), 0 L 8(—1) ando L H are minimal. If o is
also isotropic then (—1)o isminimal. Interpret these in terms of the symmetry of the
tablein (7.13).
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(4) Repeat the observations above using “hyperbolic type” rather than “minimal”.
Observe from (7.13) and (7.15) that the entry (p, r) ismarked in one chart iff (p, —r)
ismarked in the other. Isthere any deeper explanation of this coincidence?

(Hint. (1) Express¢ = o 1 (da)a wherea = (1, a, b, ¢) and shift.)

5. Suppose (o, 7) hasthe property that every unsplittable (o, )-moduleis similar to
aPfister form. Then (o L «, T L &) hasthe same property.

6. Suppose (o, T) is a pair where o represents 1 with unsplittables of dimension
2™ Then there exist subforms ¢’ C o and v’ C t such that ¢’ represents 1 and
(o', v)-unsplittables have dimension 271,

7. (1) Given an (s, t)-pair (o, 7) whereo = (1) L o1, let 8 = o L —1. For which
a € F*®isthe (s + 1, t)-pair (o L (a), ) minima? This occursif and only if one of
the following conditions holds:

s=tort—2(mod8) andc(B) =[dB, —a].
s=t+1lort—3(mod8) andc(B) issplitby F(/—a - dB).
s=t+2o0rt+4(mod8)andc(B)[dB, —a] = quaternion.
s =t+ 3(mod8) and dB = (—a) and c¢(B) = quaternion.
s=t—1(mod8) anddp = (—a) andc(B8) = 1.

(2) For what (s, t) isit possible that anon-minimal (s, t)-pair can be expanded to
aminima (s + 1, ¢)-pair?
(3) Similarly analyze the cases where (o, T L (b)) isminimal.

(Hint. (2)8(s +1,¢) =1+ 6(s,t)ifandonlyifs —¢t=0,1,2,4 (mod 8).)

8. Conjugatesubspaces. (1) Suppose{ly, fo, ..., f;}isanorthogonal basisof some
subspace of Sim(V, ¢). Define

S =span{ly, fo, f3, fa} and S =span{ly, f2, fa, f2/3}.

Then S’ cannot be expressed as fSg for any f, g € GL(V).

(2) Explain Exercise 1.16 using the more abstract notions of (7.16). The strong
conjugacy in that exercise seems to require a Clifford algebra C suchthat ¢ - ¢ € F
forevery ¢ € C.

(3) Supposeo, g areformsover R suchthat o isminimal and bothformsrepresent 1.
Suppose S, 8" € SIm(V,q) withly e SNS, S~ 8 ~0o,and x(S) = x(5).

Question. For which o, g doesit follow that §" = hSh~1for someh € O(V, q)?

From (7.19) we know it istruewhen o, ¢ are positive definite. The same argument
proves the statement when o is positive definite and dimo £ 0 (mod 4), (in those
cases the algebra C issimple). If o is of hyperbolic type the statement is certainly
true. It failsin all other cases.
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(Hint. If o isdefiniteand C isnot simplelet (V,, v.) bethe positive definiteirreducible
(C, J)-modules. Let V =g L (—D)yp Lyg L (=D qand V' =1 Ly L
(—L)_1 L (—1)y_1 to get acounterexample. If o isindefinite and regular type, an
irreducible (C, J)-module (W, v) admits no C-similarity of norm —1. Theny L
and ¢ L (—1)y are C-isomorphic and F'-isometric, but are not (C, J)-similar. (Use
the Cancellation Theorem mentioned after (4.10).)

9. Spaces not containing 1. Suppose S € Sim(V, ¢), choose g € S* and define the
character x (S) = x(g~1S) following (7.17) for spaces containing 1y .

(1) Thisvaueisindependent of the choice of g.

(2) Generalize the definition and (7.19) to amicable pairs (S, T) € Sim(V, q).

(Hint. Recall z(S) definedin Exercise2.8. Supposedim S = 0 (mod 4) andd S = (1).
If we choose z(S)? = 1 then x (S) = | trace(z(S))|.)

10. Non-minimal behavior. Thereexistsanexamplewhere((1, a), (x)) < Sim(V, g)
where dimg = 12 but such that Sim(g) does not admit any (3, 3)-family. Compare
thiswith the assertion in (7.12). Find an explicit example over R.

(Hint. Recall (5.7) (4) and find ¢ such that {(a)) | ¢, x € G(gq) but g does not have a
2-fold Pfister factor.)

11. Unique unsplittables. A pair (o, ) isdefined to have unique unsplittables if all
unsplittable quadratic (o, t)-modules are (C, J)-similar, possibly after twisting the
associated representation in the non-simple case.

(D If (o,7) < SM(p) is unsplittable and (o, t) has unique unsplittables, then:
(0,7) < Sim(g) ifand only if ¢ | .

(2) Suppose (o, 7) is an (s, t)-pair where s + ¢ is odd, and suppose (o, 1) <
Sim(V, ¢) is unsplittable. Let C be the associated Clifford algebra with centralizer
A, sothat C® A = End(V) and J ® K = I, asusua. Then (o, 7) has unique
unsplittablesiff every f € A with K(f) = f canbeexpressedas f =r - K(g)g for
somege Aandr € F.

12. Let (o, ) bean (s, ¢)-pair and suppose c(B) = [—x, —y] # L.
If s = t+3 (mod 8) then (o, t) hasunique unsplittables, asdefined in Exercise 11.
If s = ¢t &+ 1 (mod 8) then the (C, J)-similarity classes of unsplittables are in
one-to-one correspondence with D ((x, y, xy))/F*2.

(Hint. Let (V, g) be unsplittable so that C ® A = End(V) where A = (—x, —y/F)
with induced involution K. If s = r & 3 then K = bar. Otherwise every (C, J)-
unsplittable arises from a 1-involution on A. These are the involutions K§ where
Ko =barand e € Aj. Apply (6.8) (3).)

13. By Exercise3.15(3) weknow that ((a1)) ® (1, az, . .., an) < Sm({a1, ..., an))).
This module is unsplittable iff m is odd. That space of dimension 2m is minimal
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iff m £ 0 (mod4). From Corollary 7.11 we find that: If m # 0 (mod4) and
if the forms {(a1)) ® (1, a2, ..., ay) and {(b1)) ® (1, b2, ..., b,) are similar, then
{ay, ...,an)) = {by, ..., by)).

14. Moreon trace forms. (1) Lemma. Let C = C(—« L t) wheredima = a,
dmt =randa+t = 2miseven. Let J = J4 7 betheinvolution extending the map
(-1) L (@) on—a L z. Then J hastype liffa — ¢t = 0 or 6 (mod 8).

Recall the notation P («) from Exercise 3.14.

(2) Suppose @ and T areformsasaboveand c(—a L 7) = 1.

If a —t = 2 or 4 (mod 8), the Pfister form P(« L 7) ishyperbalic.
Ifa—t=00r6(mod8),then P(x L 1) >~ g ® g for someformg.

(3) If dimg = 2™ and thereisan (m + 1, m + 1)-family in Sim(g) theng ® g is
a Pfister form.
(4) Corollary. If dimo = 2m and o € I3F then

2@y ifm=0

hyperbolic ifm #0 (mod 4).

P(o) >~ {

(Hint. (2) For C and J asabovedefinethetraceform By onC by By (x, y) = £(J (x)y).
By Exercise 3.14, (C, By) >~ P(a 1 B) as quadratic spaces. Also C = End(V)
where dmV = 2" and J induces an involution Iz on End(V) for some A-form
B. Theinduced map ¢ : End(V) — F is the scalar multiple of the trace map
having £(1y) = 1. By Exercise 1.13 it follows that (C, By) ~ (V® V, B ® B). If
a —t = 2 (mod 8) then B is an aternating form by (1), and B ® B is hyperbalic.
Otherwise B corresponds to a quadratic form g.

(4) Let ¢ be a2m-fold Pfister form. Then ¢ ~ ¢ ® ¢ iff ¢ >~ 2™ (1) ® ¢ for some
m-fold Pfister form y». This can be proved using:

Lemma. If ¢ and y are Pfister formsand y C ¢ thengp ~ y ® § where§ isa
Pfister form.

See Exercise 9.15 or Lam (1973), Chapter 10, Exer. 8.)

Notes on Chapter 7

The idea of using achart asin (7.13) follows Gauchman and Toth (1994), §2.
The equivalence and expansion results in (7.18) and (7.19) were done over R by
Y. C. Wong (1961) using purely matrix methods.

Exercise 13. Wadsworth and Shapiro (1977b) used a different method to prove
that if ¢ isaround foomandif ¢ ® ({(1) L @) and ¢ ® ((1) L B) are similar then
¢ ® P(a) >~ ¢ ® P(a). Themaintool for this proof is Lemma5.5 above.



Chapter 8

The Space of All Compositions

Thetopological space Comp(s, n) of all composition formulasof type RS x R”" — R”
turns out to be a smooth compact real manifold. After deriving general properties of
Comp(s, n), we focus on the spaces of real composition algebras. For example the
space Comp(8, 8) has 8 connected components, each of dimension 56. Since these
algebras have such arich structure we compute the dimensions by another method, by
considering autotopies, monotopies and the associated Triality Theorem.

The spaces Comp(s, n) are accessible sincethey are orbits of certain group actions.
This analysis requires the reader to have some familiarity with basic results from the
theory of algebraic groups. For instance we use properties of orbits and stabilzers,
and we assume some facts about the the orthogonal group O(r) and the symplectic
group Sp(n) (e.g. their dimensions and number of components).

We begin with the general situation, specializing to the real case later. Let (S, o)
and (V, ¢) be quadratic spaces over thefield F, with dimensions s, n respectively. To
avoid trividities, assume s > 1 so that n is even. Define the sets

Bil(S,V)={m:S x V — V : mishilinear}
Comp(o, g) = {m € Bil(S, V) : g(m(x,y)) =o(x) -q(y) foreveryx € S,y € V}

Then Bil(S, V) is an F-vector space of dimension sn? and Comp(o, ¢) is an affine
algebraic set (sinceit isthe solution set of the Hurwitz Matrix Equations). If the base
field needs some emphasis we may write Comp (o, g), €tc.

The product of orthogonal groups O(c) x O(g) x O(g) acts on Comp(o, ¢) by:

(e, B,y) em)(x,y) = y(m(a 1(x), 71(y))) forxeSandyeV.

This definition can be recast using the notation of similarities. If m € Comp(o, ¢q)
define

m:S—SmWV,q) by mx)(y) =m,y).
Thenm isalinear isometry from (S, o) tothesubspace S,,, = image(im) € SIm(V, g).
Thism determinesthe composition m and wethink of  asan element of Comp(a, q).
The group action becomes:

(@, B,y) o) (x) =y om(a (x)) o g~ forx e s.
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The subspace S,, iscarriedto y o S,, o B~ 1 by this action.
8.1 Lemma. If (a)q ~ g then Comp(o, g) = Comp({a)a, q).

Proof. Given h € Sim®(q) with w(h) = a. If m € Comp(o, ¢) then sending m to
h o m provides the isomorphism. O

Weview (S, o) asaquadratic spacewith a given orthogonal basis{es, ez, ..., e;}.
In the applications it will be R* or C* with the standard orthonormal basis. We may
assumethat o represents 1. For if Comp(o, g) # @, choosea € Dr(0) € Gr(g) and
apply (8.1). Then we may assume that the given basis was chosen so that o (e1) = 1.

8.2 Definition. Compl(c, ¢) = {m € Comp(a, q) : m(e1) = 1y}.

We define Bil'(S, V) similarly and note that it is a coset of alinear subspace of
dimension (s — 1)n? in the vector space Bil(S, V).

8.3 Lemma. Comp(o, ¢) = O(g) x Comp'(c, ¢), an isomor phism of algebraic sets.

Proof. Define ¢ : O(g) x Compl(c, ¢) — Comp(a, ¢) by ¢(g, mg) = g o mg. The
inverse map is given by ¢~1(m) = (i (e1), ii(e1) L o m). Notethat ¢ and o1 are
polynomial maps since i (e1) 1 = I, (m(e1)). O

The action of O(g) x O(g) on Comp(o, ¢) becomes the following action on
O(g) x Compl(a, q):

(B.y) e (g,7h0) = (ygB ™", B o),
where B ¢ i denotes the conjugation action of O(¢) on Compl(a, ¢) given by:
(Bom)(x)=BomoB™t forxes.

To analyze this conjugation action we introduce the “ character” of m € Comp*(o, ¢),
as mentioned in the discussion before (7.17).

Themapm : § - Sm(V) sendse; — 1ly. The associated Clifford algebra
C = C(—o1) isgenerated by {eo, ..., e;}, and m induces a similarity representation
. C — End(V) wherem,, (¢;) = m(e;). Thismakes V into a C-module which we
denote by V,,. Definethe element z = e>...e; € C asusua. Whens = 0 (mod 4)
and do = (1) then C is not simple and admits an irreducible unsplittable module. In
that case we normalize our choice of basisto ensure that z2 = 1. That normalization
isautomatic if o >~ s(1) and an orthonormal basisis chosen.

8.4 Definition. If m € Compl(o, ¢) define the character x (m) = trace(m,, (2)).
Define
Comp(o, ¢; k) = {m € Comp(c, q) : x(m) = k).
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If s 22 0 (mod 4) orif do # (1) we know that x (m) = 0. Generaly, x (m) isan
even integer between —n and n. Aswe mentioned in the discussion before (7.17):

x(m) = x(m’) if and only if V,,, = V,,» as C-modules.

It easily follows that x (m) = x(8 ¢ m), so that the O(g)-orbit of m is inside
Comp'(a, g; x (m)).

This character can be extended to the whole set Comp(o, ¢) by using the isomor-
phism ¢ in (8.3). Thenthe O(g) x O(g)-orbit of m iscontained in Comp(o, ¢; x (m)).
See Exercise 1 for more details.

85 Lemma. Suppose o = s(1), ¢ = n(l) and F isR or C. Then O(q) acts
transitively on Comp(a, ¢; k), and O(g) x O(q) actstransitively on Comp(c, g; k).

Proof. If m, m’ € Compl(c, ¢; k) then V,,, = V,,» as C-modules. Asin (7.19), these
two structures are C-isometric, so there exists 8 € O(V, ¢g) such that 8 o w(c) =
7'(c) o B forevery c € C. Then B omi(x) = m'(x) o B for every x € F* and hence
B om = m'. The second transitivity follows using (8.3). |

To analyze the O(g)-orbit Comp? (s, ¢; k) we gather information about the stabi-
lizer subgroup. Let usreturn briefly to the more genera situation witho = (1) L o1
and g over F. For m € Compl(o, ¢), define an automorphism group

Aut(m) = {8 € O(q) : B om = m}
={B€O(q):Bofop ' =fforevery f €Sy}
Since the C-module structure V,,, is determined by the elements of S,,,,
Aut(m) = O(V, g) N End¢c (V).
8.6 Lemma. (1) Suppose s isodd and let A = End¢ (V). Then A is central simple,

C ® A = End(V), and 1, induces an involution “ ~" on A, which has type 1 if and
onlyif s = £1 (mod 8). Then

Autim)=Z=E{ae A.a-a=1}.

(2) Supposes isevenand let A = Endc, (V). Then A iscentral simple, Co® A =
End(V), and /, induces an involution “~" on A, which has type 1 if and only if
s =0,2(mod8). Lety = m,(z) € A, wherez = z(S) € C. Then y2 € F*,
y=(-1"?.yand

Aut(m) = {a € A:ay =yaanda-a = 1}.

Proof. The properties of A have been mentioned earlier, the type calculation follows
from (7.4) and (6.9), and the description of Aut(m) is arestatement of the definition.
a
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The group Aut(m) isan agebraic group (it is an algebraic set defined over F and
the multiplication and inverse maps are defined by polynomials). We can determine
the dimension of Aut(m) by extending scalars and computing that dimension in the
case F isalgebraically closed.

Since we are primarily concerned with the sums-of-squares forms over R and C,
let us simplify the notations a little and define:

Compl(s, n) = Compt(s(1), n(1)),

and similarly for Comp?(s, n; k), Bil(s, n), etc. We aso use the standard notation
O(n) inplaceof O(n(1)). Thestabilizer Aut(m) € O(n) changesonly by conjugation
in O(n) asm variesin the orbit Compl(s, n; k). Then as an abstract algebraic group,
Aut(m) dependsonly on s, n and k and we sometimes write it as Aut(s, n; k).

8.7 Proposition. Let m € Comp'(s, n; k).
(1) Ifsisoddlets = type(~) = (—1)C*~D/8, Then: dimAut(s, n; k) = & —

EN
2G+D/2 -

(2) Ifs =2 (mod4) then: dimAut(s, n; k) = % .
(3) If s = 0 (mod4) let ¢ = type(~) = (—1)/4. Then: dimAut(s, n; k) =

n?4k? _ &n
25 2572

Proof. We may assume F isalgebraically closed. Choose m € Comp(s, n; k).

(1) From (8.6) we know that A = M, (F) where: r - 26~D/2 = 5. If ¢ = 1 then
Aut(m) = O(r) has dimension 1 - r(r — 1). If ¢ = —1 then Aut(m) = Sp(r) has
dimension 3 - r(r + 1).

(2) We have A = M, (F) where: r - 2271 = p, and we may assume y € A
satisfies y2 = 1and y = —y. Let W be an irreducible A-module so that dim W = r,
A = End(W), and tilde induces an e-symmetric formb : W x W — F. The
(£1)-eigenspaces of y are then totally isotropic subspaces of W, each of dimension

r/2. Using dual bases for these eigenspaces the Gram matrix of b is (801 é)

. . ay daz ~ aI zsaér
Representing a € A as a block matrix 43 ag we have a = eal £ ).

ai

0

{(6 09T> ‘c € GLr/z(F)} and the dimension result follows.
(3) We have A and r asabove, and y € A satisfiesy2 = 1and y = y. Then V is

adirect sum of r (isomorphic) irreducible Cp-modules

If a € Aut(m) then ay = ya impliesthat a = < 621) Therefore Aut(m) =

V=Vi®---aV, Whel’edimVi:2%_1:E
;
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Therefore A = Endc, (V) = M, (F), sincethe only Co-linear mapsfrom V; to V; are
scalars. Each V; isanirreducible C-module, and these come in two non-isomorphic
versions. V. and V_, depending on the action of 7 (z). Suppose there are p. copies
of V., sothat p. + p— = r. We may replace z by —z if necessary (adjusting via
the automorphism « of C) to assume py > p_. Thenk = x(m) = trace(n(z)) =
(p+ — p-) - %. In the representation A = M, (F) the element y = n(z) € A
has matrix 16* _f If a € A commutes with y then a = (ag aO )
wherea, € M, (F). Ag before (A, ~) = (End(W), I;) for some e-symmetric space
(W, b). Since y = y the eigenspaces of y are orthogonal, and » induces regular
forms on them. If ¢ = 1then Aut(m) = O(py) x O(p-) whileif ¢ = —1 then
Aut(m) = Sp(p-) x Sp(p-). Thereforedim Aut(m) = 3 - (p+(p+ — &) + p—(p— —
£) = 3 - ((p4+ p— — )2+ (p+ — p—)?> — 1) and acalculation completes the proof.

|

Let us review some of the properties of group actions. If G is a group acting
onaset Wandx € W wewrite G -x = {gx : g € G} for the orbit of x and
G, = {g € G : gx = x} for the stabilizer (isotropy subgroup) of x. The map
G — G - x induces a bijection between the left cosets of G, and the orbit G - x:

G/Gy < G - x.

At this point we assume that the reader knows some of the basic theory of algebraic
groupsas presented, for example, in Humphreys(1975). Supposethat G isanalgebraic
group, W isa(nonempty) algebraic variety over C and G actsmorphically on W (i.e.
themap G x W — W isamorphism of varieties). In general an orbit G - x might be
embedded in W in some complicated way, but it can still be viewed as a variety.

8.8 Lemma. Suppose H isa closed subgroup of an algebraic group G. Then G/H is
anonsingular variety withdim(G/H) = dim(G) — dim(H), and with all irreducible
components of this dimension. If G acts morphically on a variety W, then G, isa
closed subgroup of G, the orbit G - x isanonsingular, locally closed subset of W, and
the boundary of G - x isa union of orbits of strictly lower dimension. Furthermore,

dmG -x =dmG —dmG,.

Proof. See Humphreys (1975), 88, 84.3, and §12. |

A set Y is*locally closed” if itistheintersection of an open set and aclosed set, in
the Zariski topology. Equivalently, ¥ isan open subset of itsclosure Y. The boundary
of Y istheclosed set Y — Y. Asone consequence, the closure G - x isasubvariety of
W with the same dimension as the orbit G - x.
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These ideas from algebraic geometry require the base field to be algebraicaly
closed. In some cases we can extract geometric information about the real part of a
complex variety.

8.9 Lemma. Suppose W isa nonsingular algebraic variety over C, which is defined
over R. If the set of real points W(RR) is nonempty then it is a smooth real manifold
and dim W (RR) as a manifold coincides with dim W as a variety.

Proof outline. These statements about W (R) are well-known to the experts, but |
found no convenient reference. Theideal of W is 4(W) = {f € C[X] : f () =
O forevery ¢ inW}. Here X = (x1,...,x,) is the set of indeterminates. Let
f1,..., f; be aset of generators for £(W) and consider the r x n Jacobian matrix

J = (%) Recall the classical Jacobian criterion for nonsingularity: W is nonsin-
gular if and only if for every ¢ € W, rank(J(¢)) = n — dim W. (See e.g. Hartshorne
(1977), p. 31)

Since W isdefined over R we can arrange f; € R[X], (see Exercise 2). Now view
f; asareal valued C*°-functionon R"” and W (R) asa“level surface” of { f1, ..., fi}.
By the Implicit Function Theorem the constant rank of the Jacobian matrix J at points
¢ € W(R) implies that W(R) is a smooth real manifold whose dimension equals

dmWw. o

8.10 Proposition. Suppose 1 < s < p(n). Then Comp(lc(s, n) is a nonempty, non-
singular algebraic variety. Each nonempty Comp([l:(s, n; k) is a variety with two
irreducible components both of dimension equal to

1 .
En(n — 1) —dimAut(s, n; k).

Moreover each nonempty Compﬂjé (s, n; k) isasmooth compact, real manifold with two
connected components. The dimension of each component equal s the val ue displayed
above. Smilar statements hold for Comp (s, n; k) and Compy (s, n; k).

Proof. The set is nonempty by the basic Hurwitz—Radon Theorem, and it is certainly
an affine algebraic set, hence a closed subvariety of Bil(s, n). Most of the remaining
statements follow using (8.3), (8.5), (8.8) and (8.9). Since O(n) has two components
given by the cosetsof O™ (), the statement that there are two componentsis equivalent
to:

If m € Compl(s, n; k) then Aut(m)is contained in O* (n).

Since Aut(m) = O(n) N End¢c(V), every f € Aut(m) centralizes the algebra C and
hence commuteswith every element of the subspace S,, € Sim(V, n(1)). Thisimplies
f € O (n), by theresult of Wonenburger (1962b) mentioned in Exercise 1.17(4). The
compactness follows since O(n, R) is a compact group acting transitively on the set
of real points, asin (8.5). O
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Here is alist of these dimensions in a few small cases. If s = 0 (mod 4) the
maximality of s forces the representation to be non-faithful so that x (m) = +n. In
those cases Comp? (s, n) = Comp(s, n; n) U Compl(s, n; —n).

(s,n) | dimAut(s,n) | dimCompl(s,n) | dimBill(s, n)
2,2 1 0 4

(4, 4) 3 3 48
(8,8) 0 28 448
(9, 16) 0 120 2048

The valuesin the first two columns follow from (8.7) and (8.10).
The dimension of Comp(s, n) can be determined using (8.3) (see Exercise 4). For
example

dmComp4,4) =9 and dimComp(8, 8) = 56.

The proposition also determines the number of connected components. For exam-
ple Compy(4,4) = O(4) x Compi(4,4) and Compt(4,4) = Compl(4,4;4) U
Compi (4, 4; —4). Since O(4) and Comp'(4, 4; +4) each have two components,
Compy (4, 4) has eight connected components, each of dimension 9. Similarly
Compy (8, 8) has eight components each of dimension 56.

Let us now consider the set of all subspaces of similarities, as a subset of the
Grassmann variety of al s-planes in n-space. Recall that the character x (S) was
definedin (7.17) andif ' = y - S- B~ L then x (S') = x(S). Someinformationislost
in passing from x (m) to x (S). Infact, if § = S,,,, then x (S) = |x (m)|.

8.11 Definition. Sub(s, n) isthe set of al linear subspaces S € Sim(n (1)) such that
dim S = s and the induced quadratic form on Sisregular.
Sub(s, n; k) = {S € Sub(s, n) : x(S) = k},
Subt(s, n) = {S € Sub(s, n) : 1y € S}
and Sub(s, n; k) is defined similarly.
Asusual, Sub(s, n) = Sub(s, n; 0) whens = 0 (mod 4). If F = R the regularity
condition on the induced quadratic form is automatic. We may view Sub(s, n; k)

and Sub'(s, n; k) asnonsingular algebraic varieties, since they are orbits of algebraic
group actions. Note that sending m to S,, = image(/n) provides a surjection

¢ . Comp(s, n; k) — Sub(s, n; |k|).

Theaction of O(n) x O(n) on Comp(s, n; k) descendstotheaction (8, y)eS = y Sg~1
on Sub(s, n; |k|).
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8.12 Lemma. Suppose & > 0 and Comp(s, n, k) is nonempty.

dim Sub(s, n; k) = dim Comp(s, n; k) — s(s2— 1)’
dim Sub(s, n; k) = dim Comp*(s, n; k) — LZ(S_Z)

Proof. Given S € Sub(s, n; k), the fiber ¢=1(S) = {m € Comp(s, n; k) : S, = S} =
{m : RS — § anisometry} = O(s), and the first dimension formulafollows. For the
second formula, restrict ¢ to g1 : Comp® — Sub! and compute the fiber @1 L§) =
{m : R* — S anisometry withm(e1) = 1y} = O(s — 1). O

For example, dim Sub'(4, 4) = 0. In fact we have already seen (in Exercise 1.4)
that Sub'(4, 4) contains exactly two elements.

8.13 Proposition. Subﬂlg(s,n;k) and Subg (s, n; k) are smooth real manifolds. If
Sub]}%(s, n; k) is nonempty, then it has two connected components and Subg (s, n; k)
has four connected components.

Proof. The fact that these spaces are manifolds follows from the general theory as
before. Since the components of O(n) are the cosets of O™ (), the O(n) x O(n) orbit
Subg (s, n; k) breaks into four O*(n) x O (n) orbits, each of which is connected.
Given S € Sule%(s, n; k), these four orbits are represented by:

S Bsp~t
BS SB

where 8 € O™ (n), i.e. det(8) = —1. We must show that these four orbitsare digjoint.
For if that is done certainly Subg (s, n; k) has those four components. Moreover the
two orbits of O™ (n) acting (by conjugation) on Subﬂﬁ(s, n; k) are contained in the
larger orbits represented by the first row above, and hence are also digoint.

Recall from Exercise 1.17 that if f € S orif f € pSp~1 then f is proper, and
henceif f € BS or f € SB then f isnot proper. Therefore the orbits in the top row
above are digoint from the orbits in the bottom row. To complete the argument we
invoke the following lemma, whose proof is surprisingly tricky. O

814 Lemma. Supposely € § € Sm(V,g) ands = dmS > 2. If 8,y €
Sim*(V, g) and y S~ = S then g and y are proper.

See Exercise 12 for an outline of the proof.
Finally we turn to a case of particular interest: real division algebras. Recall that

areal division algebraisdefined to be afinite dimensional R-vector space D together
with an R-bilinear mapping m : D x D — D such that: m(x, y) = 0 only when
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x = 0or y = 0. No associativity or commutativity is assumed; an identity element is
not assumed to exist. Each of the classical composition algebras R, C, H, O isareal
division algebra satisfying many algebraic properties. There are several classification
results, each assuming that the division algebra satisfies some a gebraic property and
then listing all the possibilities up to isomorphism. Here are some classical examples
when A isareal division algebrawith 1:

e |If Aisassociativethen A = R, C or H (Frobenius 1877).

e |If Aisacomposition algebrathen A = R, C, H or O (Hurwitz 1898).
e If Aisdternativethen A = R, C, H or O (Zorn 1933).

e If Aiscommutativethen A = R or C (Hopf 1940).

Actualy in 1898 Hurwitz proved that dmA = 1, 2, 4, 8 and only stated the
uniqueness of the solutions. This unigueness wasworked out by his student E. Robert
(1912). The classification results mentioned above are described further in Koecher
and Remmert (1991), §8.2, §88.3, 89.3. The Hopf theorem was proved using topol ogy,
asoutlined in Exercise 12.12.

More recent work in this direction has been done with quadratic division algebras,
with flexible ones (satisfying theflexiblelaw: xy - x = x - yx), with algebrashaving a
large derivation algebra, and with various other types. Flexible real division algebras
were classified by Benkart, Britten and Osborn (1982). A survey of such results
appearsin Benkart and Osborn (1981).

Can general real division algebras be classified is some reasonable way? Even
determining the possible dimensions for such algebras is a deep question. In 1940
Stiefel and Hopf used algebraic topology to prove that if D is an n-dimensional red
division algebrathen n = 2" for somem. (See (12.4) below.) Finally in 1958 Bott's
Periodicity Theorem was used to prove that n must be 1, 2, 4 or 8. Thistheorem later
became an corollary of topological K-theory. (See Exercise 0.8 and (12.20).)

Let Div(n) be the set of n-dimensional rea division algebras. Then Div(n) is
nonempty only whenn = 1, 2, 4 or 8. Itisfairly easy to describe Div(1) and Div(2)
explicitly. Thechallengeisto describethe setsDiv(4) and Div(8), and possibly to find
some general algebraic classifications. Useful resultsin thisdirection remain elusive.
Let usconsider four algebraic methodsfor constructing examples of division agebras.

(1) Isotopes. Two F-algebras D, D' areisotopicif there exist bijective linear maps
f. g, h: D — D' suchthat

f(xy) =g(x)-h(y) foreveryx,y e D.

If D isadivision algebrathen any isotopeof D isalsoadivisionalgebra. Thenisotopy
isan equivalencerelation on Div(n). Thisconcept wasintroduced in Steenrod’ swork
on homotopy groups and was formalized by Albert (1942b). Every division algebrais
isotopic to one with an identity element (see Exercise 0.8). Then Div(1) and Div(2)
each have only oneisotopy class, but Div(4) and Div(8) are much more complicated.
Theconcept of isotopy (or isotopism) arisesnaturally in several contexts. For example,
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two division rings are isotopic if and only if they coordinatize isomorphic projective
planes. See Hughes and Piper (1973), p. 177.

(2) Mutations. A mutation of an F-algebra D with parametersr, s € F isgiven
by altering the multiplication of D tom, s : D x D — D defined by

mps(x,y) =rxy+syx.

If D isacomposition division algebra over R then this mutation is also a division
algebra with identity, provided r # +s. The “bar” map is still an involution for the
mutation and if » 4+ s = 1 the elements of the mutation have the same inverses as they
doin D. (Compare Lex (1973).)

(3) Bilinear perturbations. Suppose D is a composition algebra over R and
B . D x D — Risabilinear form. Definemg : D x D — D by mg(x,y) =
xy + B(x,y) - 1. This furnishes a division algebra if and only if the quadratic
form Q(x) = x - ¥ + B(x, X) is anisotropic. For examplelet £ : D — R be the
trace map £(x) = % - (x + x). If D isadivision agebra, then B(x,y) = £(xy)
or £(x)£(y) yield division algebras. We also get division algebras from g(x, y) =
t1 - L(xy) + 12 - £(xy) + t3 - £(x)L(y) for certain values of the rea parameters 1, 1,
t3. The examplesin Hahl (1975) are of thistype.

(4) Twisted quaternions. Choosing b € C, define an dgebraH, = C & Cj, with
multiplication given asfollows. For r, s, u, v € C define

r+sj)-(u+vj)= @u+bsv)+ (rv+su)j.

ThenH, isa4-dimensional R-vector spacewithbasis{1, i, j,ij}, 1 € Cistheidentity
element, jx = xj foreveryx € Cand j2 = b. If b < Othen H, = H, the associative
guaternion algebra. If b ¢ R then H, isadivision agebra (use the formulato analyze
zero-divisors) and Hj, is not associative: in fact, j - j2 # j2- j. Even though every
non-zero element of Hj, hasaleft inverse and aright inverse, those inverses can differ.
For example, (b=1j) - j = 1but j - (b=1j) # 1. The twisted quaternion algebras
discussed by Bruck (1944) are of thistype. Such algebras are studied more generally
by Waterhouse (1987).

If the entries of the multiplication table of areal division algebra are altered by
small amounts then the result yields another division algebra. That is, the collection
Div(n) of n-dimensional real divisionalgebrasisan openset. Generaly, let Bil(r, s, n)
be the set of all bilinear maps f : R” x RY — R”. It isavector space of dimension
rsn. Such amap f is defined to be nonsingular if f(x,y) # 0 whenever x # 0
inR"and y # 0inR*. Let Nsing(r, s, n) be the set of al nonsingular elementsin
Bil(r, s, n). Then Div(n) = Nsing(n, n, n).

8.15 Lemma. Nsing(r, s, n) C Bil(r, s, n) isan open set.

Proof. If f € Bil(r, s, n) then £($"~1, $~1) € R" is a compact subset, since the
spheres S* are compact. Define w ( f) to be the distance between 0 and this compact
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subset. The map w : Bil(r, s,n) — [0, 00) is continuous and Nsing(r, s, n) is the
complement of w=1(0). O

Itisusualy difficult to determine whether Nsing(r, s, n) isnonempty. (See Chap-
ter 12.) Butif it isnonempty, then Nsing(r, s, n) isan open set of dimension rsn. For
the classical cases of Div(n) we obtain:

dimComp4,4) =9 dimDiv(4) = 64
dim Comp(8, 8) = 56 dimDiv(8) = 512.

Thereforetheal gebraic constructionsof divisionalgebras(e.g. by isotopy or mutation)
cannot produce all the possible division algebras of dimension 4 or 8. For example
the set of algebra multiplicationswhich areisotopic to afixed octonion algebraforms
one orbit of an action of GL(8) x GL(8) x GL(8). Thisorbit has dimension at most
3.82 = 192 inside Div(8). Compare Exercise 18.

Let us now consider real division algebras with a (2-sided) identity element. To
facilitate the discussion we simplify and extend some of the notations. As before let
e=e1=(1,0,...,0) bethefirst edlement of the standard basis of R". Define:

Bil(n) = {m : R" x R" — R" such that m isbilinear};
Bil'(n) = {m € Bil(n) : e isaleft identity element for m};
Bil*(n) = {m € Bil(n) : e isa2-sided identity element for ).

Then m € Bil(n) isamultiplication on R” (setting x * y = m(x, y)). Itisadivision
algebra if: m(x,y) = Oimpliesx = 0 or y = 0. It isacomposition algebra if it
satisfies the norm property: |m(x, y)| = |x| - |y| for every x, y € R". Let ususe
similar notations for the sets of division algebras and composition algebras:

Div(n) Divi(n) Div(n)
Comp(n) Comp'(n) Comp't(n).

Of course these are nonempty only whenn = 1, 2,4 or 8. Note that Bil(n) is a
vector space of dimension n3; Bil'(n) isacoset of alinear subspace with dimension
(n — Dn?; and Bil*(n) is acoset of alinear subspace of dimension (n — 1)2n. We
know that Div(n) is an open subset of Bil(z). Similarly, Divi(n) < Bil'(n) and
Divil(n) < Bil*(n) are open subsets.

What isthe dimension of Comp**(») and how many connected componentsdoesit
have? We present the answer to this question twice, using different methods. Thefirst
uses the direct group action ideas mentioned above. The second approach employs
the Triality Theorem.

8.16 Propositon. Comp*'(4) isa set of two points.
Comp'1(8) isa nonsingular algebraic variety with two components each isomor-
phic to 7-dimensional projective space.
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Proof. Let R bethe basefield (although more general fields F will work here aswell).
Suppose m € Comp't(4). Then xy = m(x, y) makes R* into a composition algebra
with identity element e = e1. The mapping m is determined by the values e;e; where
{e1, ..., e} isthe given orthonormal basis. We know that €3 = €3 = ¢2 = —1 and
eze3 = *tey4. The other values e;e; are determined by that choice of sign since m is
associative. Then either m is the standard quaternion multiplication, m(x, y) = xy,
or else m comes from the opposite algebra: m(x, y) = yx. These are the two points
in Comp'!(4). (Exercise 1.4 isrelevant here.)

If m € Comp'(8) € Comp(8, 8) we defined the character x (m) astrace(r (z)),
using the associated representation = : C — End(V) and the central element z
satisfying z2 = 1. Then 7(z) = +1 and x (m) = +8. Then Comp%(8) is a union
of two disjoint components Comp!'(8, +) < Comp'(8, 8; 8) and Comp'%(8, —) <
Comp'(8,8; —8). Any m € Comp'(8) has an associated operation m’ defined:
m'(x,y) = m(y, x). Since x (m") = —x (m), those two spaces are isomorphic.

Recall that O(8) acts transitively on the space Comp’(8, 8; 8) asin (85). Let
mo(x, y) = x - y = xy bethe standard octonion multiplication. If m(x, y) = x %y
liesin Comp1(8, 8; 8) thenm arisesfrommg by theactionof some 8 € O(8). Working
through the defnitions, we find:

Blxxy)=x-pB(y) foreveryux,y.

Certainly thisoperation x admitse asaleft-identity element. If m liesin Comp1(8, +)
then e isalso aright-identity: x % e = x. Thisoccursif and only if 8(x) = x - B(e)
for every x. Thus 8 = R, isaright multiplication map on the octonions, for some
b = B(e) with |b| = 1. This provides a surjective map from the sphere S’ of unit
octonions to the space Comp*(8, +), sending b to the operation x determined by:

(xxy)-b=x-(y-b).

To examinethefibersof thismap, supposeb, ¢ € S’ both go to the same operation.
Then

(x-yb)b™t = (x - yo)e™t  for every x, y.

Setting x = b and using the Moufang identity (as in (1.A.10)) we find: by =
(byb)b™1 = (b- yc)e L sothat by - ¢ = b- ye. Exercise 1.27 impliesthat 1, b, ¢ must
belinearly dependent. Interchanging » and ¢ if necessary we may writec = r +sb for
somer, s € R. Thealternativelaw thenimpliesthat (w-5~1)-¢c = w-(b~1-¢). Inpar-
ticular x - yc = (x - yb)(b~1c) and plugginginc = r +sbyidds: rxy = r(x-yb)b~ L.
Suppose ¢ is not a scalar multiple of b, so that b is not scalar and r # 0. Then
xy-b=x-ybforevery x, y and Exercise 1.27 implies b isa scalar, a contradiction.
Hence c = =£b.

Consequently Comp*'(8, +) is exactly the sphere S7 with antipodal points iden-
tified, so it is 7-dimensional projective space. O



8. The Space of All Compositions 147

We can also analyze the space Comp(8) by using the action of the full group
0O(8) x O(8) x O(8). Thisapproachyieldsanother proof of (8.16) but moreimportantly
it leads to a consideration of the interesting phenomenon of “triality”.

The group O(8) x O(8) x O(8) acts transitively on Comp(8). This fact follows
fromthe Clifford algebratheory (see(8.5)), but moredirect proofscanbegivenfor this
case. What isthe stabilizer of the standard octonion algebra D ? From the definition
of the action, this stahilizer is related to the group of autotopies defined below. The
next results are valid over genera fields F (where 2 #£ 0), provided D isadivision
algebra.

Theresultsherearewell known but the terminology followsideasof J. H. Conway.
As in the appendix of Chapter 1, we use [x] = Xx to denote the norm form in the
octonion algebra and we write O(D) for the orthogonal group of this norm form. For
the usual case over R this group becomes O(8).

8.17 Definition. Let D be an octonion division algebraover F. If «, 8,y € GL(D)
thetriple (o, 8, y) isan autotopy of D if y(xy) = a(x) - B(y) for every x,y € D.
If («, B, ) is an autotopy define v to be a monotopy. Let Autot(D) and Mon(D)
the groups of all autotopies and monotopies of D, respectively. Define Autot®(D)
and Mon®°(D) to be the corresponding groups of isometries (restricting to the case

a, B,y € O(D)).

It is easy to see that Autot(D) isagroup under componentwise composition and
Mon(D) is the image of the projection 7 : Autot(D) — GL(D) sending («, 8, y)
to y. Similarly Mon®(D) is the image of Autot®(D). If ¢ € Aut(D) is an algebra
automorphism then (¢, ¢, ¢) is an autotopy and ¢ is an isometry. Hence Aut(D) C
Mon®(D).

8.18 Lemma. ker(Autot®(D) — Mon°(D)) = {+1}.

Proof. An element of the kerndl is (a, 8, 1) wherea(x)8(y) = xy. Thena(x) = xa
and B(y) = by foreveryx, y (Wherea = B(1)"tandb = «(1)~1). Thenxa-by = xy
and consequently xa - z = x - az for every x, z. Thissaysthat a isin the nucleus
N (D) = F (asin Exercise 1.27). ]

If (o, B, y) isan autotopy then each of «, B, y isamonotopy. To seethis suppose

z = xy and consider the resulting “braiding sequence”: xy = z,x = zy 1,z 1x =

y Lz = yIx71 yz71 = x71 y = x~1z. Each of these six expressions leads
to another autotopy. For example from x = zy~! we find a(zy™!) = a(x) =

y(2)B(y) "L sothat (v, 1Bt, @) isalso an autotopy. (Here : denotes the inverse map:
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t(x) = x~1). The six associated autotopies are best displayed in a hexagon:

(@, B.v)
(tat, v, B) (v, 1B, @)
(B, tyt, tat) (tye, a, 1Br)
(B, taee, tyt)

Therefore «, 8, y are monotopies.
Recall from (1.A.10) that D satisfiesvariousweak formsof associativity, including:

a-ab=a’bandba-a =ba? (thealternative laws)
ax-a=ada-xa (flexible law)
a(xy)a = ax - ya (Moufang identity)

Setting L, (x) = ax, R,(x) = xa and B,(x) = axa, Moufang saysthat (L., R,, B;)
is an autotopy for every a € D*. Therefore each L,, R, and B, isamonotopy. It is
clear that these maps are similarities, relative to the norm form. Infact, L,, R,, B, €
Sim* (D) by Exercise 1.17.

The bi-multiplication map B, is closely related to the hyperplane reflection 7, on
D, relative to the norm form [x] = xx. Recal that 7,(x) = x — a[’;—]“l -a. Since
xa + ax = 2[x, a] wefind 7,(x) = —[a] - axa. Then r1(x) = —x and

B, =[a] - ty71.

Thisproves again that B, € F* OT(D) € Sim™ (D).
8.19 Triality Theorem. Mon(D) = Sim* (D) and Mon®(D) = O™ (D)

Consequently every y € OT(D) has associated maps «, 8 € O'(D) making
(, B, y) an autotopy, and these «, 8 are unique up to sign. Thisthree-fold symmetry
among «, B, y isaversion of the Triality Principlestudied in Lietheory and el sewhere.

For the usual cases over R we find that Mon(8) = Sim™(8) = R® - O™ (8) has
dimension 29, and using (8.18): dimAutot(8) = 30. Similarly dimMon°(8) =
dim Autot®(8) = 28.

Asastep toward the proof of thistheorem we show that monotopiesaresimilarities.

8.20 Lemma. Mon(D) € Sim*(D).

Proof. If (a, B8, y) isan autotopy, y (xy) = a(x) - B(y). Then y(x) = a(x) - B(D).
Since o, y € GL(D), B(1) must be invertible and we may set « = B(1)~1 and
conclude: a(x) = y(x) - a. Similarly B(y) = b - y(y) whereb = «(1)~ and

y(xy) =yx)a-by(y) foreveryx,ye D.

The elements a, b are called the “companions’ of y. Take normsto find [y (xy)] =
r-[y®)] - [y»)], where r = [ab]. Then the form g(x) = r - [y (x)] satisfies
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q(xy) = g(x)q(y) and D isacomposition algebrarelative to ¢. It follows (Exercise
13) that theforms ¢ (x) and [x] coincide, and y isasimilarity. O

Proof of the Triality Theorem. The “bar” map J(x) = X is an anti-monotopy and an
improper similarity. (Define («, 8, ) to be an anti-autotopy if y (xy) = a(y)B(x),
etc.) If g € Sm*(D) then g = Lg(1) o h whereh € O(D). Thish can be expressed
as a product of hyperplane reflections 7, (by aweak form of the Cartan—Dieudonné
Theorem). As mentioned before (8.19), each t, isascalar multipleof B, o J soitis
an anti-monotopy. Therefore g isin the group generated by maps L,,, B, and J so
that g is amonotopy or an anti-monotopy. Moreover, g isamonotopy if and only if
an even number of z,'sareinvolved, if and only if g isaproper similarity. Conversely
if g € Mon(D) then ¢ € Sim*(D) and the same parity argument shows that g is
proper. o

We can use thistheorem to analyze the spaces of composition algebrasover R or C.
These numbers, summarized in the next corollary, agree with the earlier computations.

8.21 Corollary. The table below lists the number of components and the dimensions
of the spaces under discussion.

# of components dimension

Comp(8) 8 56
Comp'(8) 4 28
Comp'%(8) 2 7

Proof. The group O(8)3 has 8 components and acts transitively on Comp(8). Since
Comp(8) = O(D)3/ Autot®(D) we find dim Comp(8) = 3- 28 — 28 = 56. Since
Autot®(D) € O1 (D)3, whichisonecomponent of O(D)3, therearestill 8 components
in Comp(8).

Using (8.5) we know that O(8) acting on Comp1(8) hastwo orbitsand Stab(D) =
(B € O®) : B(xy) = xB(y) foreveryx,y € D}. If B € Stab(D) then B = R,
whereb = B(1) and xy - b = x - yb (compare the proof of (8.16)). Then b is scalar
(asin Exercise 1.27) and Stab(D) = {+£1}, so that Comp1(8) = 0O(8)/{£1} has 4
components and dimension 28.

Finally if x isin Comp(8) define anew multiplicationo by: x vy = R;l(x) *y.
That is, v isdefined by theformula: (x xe) © y = x * y. Then e isa2-sided identity
element for o (see Exercise 0.8). The projection map 7 : Comp*(8) — Comp*(8),
defined by 7 (x) = o, acts as the identity map on Comp'%(8). O(8) acts on Comp(8)
by: (¢ e m)(x, y) = m(a(x), y), and the subgroup O(7) = {« € O(8) : a(e) = e}
acts on Comp1(8). The point is that every O(7)-orbit in Comp1(8) contains exactly
one element in Comp'%(8). The uniqueness is easy and the existence follows since
7(m) = R; L em. Then Comp*!(8) becomesthe orbit space Comp'(8)/ O(7). There-
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fore Comp'%(8) has half as many components as Comp'(8) and dim Comp'%(8) =
dim Comp%(8) — dimO(7) =28 — 21 = 7. O

For n = 4 or 8, the eight components of Comp(n, n) are represented by the eight
standard multiplications:

Xy yX
Xy yXx
Xy yXx
Xy yX

Sincee * y = y for every multiplication in Comp*(n), al the j terms are eliminated
and the four components of Comp!(n) are represented by the top four multiplications
in the list. Similarly the two components of Comp't(n) are represented by the first
two cases: xy and yx.

We compared the dimensions of Comp(r) and Div(rn) in thetable after (8.10). For
algebraswith identity we see that Comp*(8) isacompact 7-dimensional spaceinside
Div11(8) which isan open subset of theflat space Bil'(8) of dimension 392. Actually
the set of composition algebras inside Divi1(8) isalittle larger, because Comp11(8)
uses a fixed norm form on R8, See Exercise 20.

Exercises for Chapter 8

1. Defining y(m). Suppose m € Comp(c,q). Thenm : S — End(V) and the
space (S, o) hasagiven orthogonal basis{es, ..., es}. Inthecases = 0 (mod 4) and
do = (1) wedso assumethat o (e1) ...o(e5) = 1. We defined x (m) to equal x (mo)
where mg = ¢ ~1(m) asin (8.3).

(1) Setting f; = ri(e;) € S, wehave x (m) = trace(f1f2f3fa...).

(2) If s £ 0 (mod4) orif do # (1) then x(m) = 0. Inany case, x (m) isan even
integer between —n and n. (See (7.18).)

() If (o, B, y) € O(0) x O(q) x O(g) then x ((«, B, y) e m) = (deta) - x (m).

(Hint. (1) image(iiio) has orthogonal basis 1y, fif2. ..., fifs so the element * z”
equas (f1/2)(f1f3) ... (fafs). Thenz = fifofafa..., a least up to some scale
factor. If s = 0 (mod 4) and do = (1) thenZ = z and z2 = u(z) = 1, and the scale
factor needed was 1. Compare Exercise 2.8.

(3) See Exercise 2.8(3), (4).)

2. Generation of radical ideals. In (8.9) the variety W is defined over R. This
meansthat W = Z (g1, ..., gk), thezero set for alist of polynomialsg; € R[X]. The
Jacobian criterion might not work directly for these g;. (Provide an example where
it fails) In the proof of (8.9) we need to know that £ (W) is generated by elements
of R[X]. If A = (g1, ..., g)C[X] the Nullstellensatz says that £(W) = /4, the
radical of theideal 4. Our claim follows from amore general result:
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Lemma. Suppose K/ F isa separable algebraic extension of fields. If 8 € F[X]
isanideal, then V8@ K = VB ® K.

(Hint. Itisenough to show that thering K[ X]/(+/8 ® K) isreduced (i.e. has no non-
zero nilpotent elements). Since +/B is an intersection of primes, F[X]/+~/8 embeds
into some direct product of fields. It sufficesto show: if L/F isafield extension then
L ® K isreduced. We may assume here that K/ F isfinite and separable.)

3. Suppose W is an algebraic variety and G is an algebraic group which acts mor-
phicaly on W, al defined over C. If G(C) acts transitively on W (C) then W is a
nonsingular variety and all theirreducible components of W have the same dimension.
Moreover if G, W and the G-action are defined over R then W (R) is a smooth rea
manifold. Doesit follow that G (R) acts transitively on W (R)?

(Hint. Let G = W = C* (anaffinevariety embeddedinC?), withaction gew = g2w.)

4. Connected components. Compﬂjé(s, n) has 2c components and Compy (s, n) has
4¢ components, where ¢ is the number of k& for which Compﬂﬁ(s, n; k) £ 0. If
C = C((s — 1(—1)) then ¢ is the number of non-isomorphic n-dimensional

C-modules. Hence
C_{l if s # 0 (mod 4)

1+ zim otherwise.

The irreducible dimension 2" can be computed directly from the structure of C.

5. Characters. Let D be a quaternion or octonion algebra with left representation
L : D — Sim(D) and compute the character of £. Similarly compute the character
of the right representation. Arethe left and right characters equal ?

6. Moredivision algebras. Let D beareal compositionagebrawithn = dim D = 2,
4o0r8 Supposeb : D x D — D isan R-bilinear map with the property that
|b(x, ¥)| < Lwhenever |x| = |y| = 1. Define

mp:DxD— D by mpx,y)=xy+bx,y).

Then (D, mp) is adivision agebra. If we assume only |b(x, y)| < 1 what further
conditions are needed to ensure that m,, is a division algebra? This construction
provides a space of division algebras of dimension 3. Doesit equal the whole space
Div(n) = Nsing(n, n)?

7. Inverses. Suppose A isan F-algebra, where F isafield.

(1) If A isan alternative division algebraand dim A isfinite then A must have an
identity element.

(2) Suppose A has an identity element and every non-zero element of A has an
inverse (that is: if 0 # a € A, thereexistsb € A withab = ba = 1). Doesit follow
that A isadivision algebra? Find a counterexamplewhere F = R, dim A = 3.
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(3) A strong inversefora € Aisa ! € Asuchthata™-ax = x = xa-a~* for
every x € A. Suppose every non-zero element of A has a strong inverse. Check that
(a=1~1 = g and deduce that A isadivision algebra. In acomposition algebra every
a with [a] # 0 hasastrong inverse.

Theorem. Suppose A isaringwith 1. Then: every non-zero element of A hasa
strong inverse if and only if A isan alternative division ring.

(Hint. (1) If a # 0, find e with ae = a. Provee? = e.

(2) Let A = R3 with basis {1, i, j}, choose § € A and define i? = j% = —1
andij = —ji = 8. Then every non-zero element has an inverse. (Define “bar” and
computew - it = it -u.) Moreover, if § £ Othenuv = vu = Oimpliesu =0orv = 0.
Hence inverses are unique, but clearly A cannot be adivision algebra.

(3) The proof of the theorem is elementary but not easy. See Hughes and Piper
(1973), pp. 137-138 and p. 151, or see Mal’ cev (1973), pp. 91-94.)

8. Components. Div(n) is a nonempty open subset of Bil(n), provided n = 1,
2,4,8.

(1) Describe the topological spaces Div(2) and Div(2) explicitly. Check that
Divil(2) is the “interior” of a certain parabolain Bil'*}(2) = R2. Then Div(2) is
8-dimensional with 4 components. Everything in Div(2) is isotopic to C and
Autot(C) = C* x C* x {1, —1}.

(2) If m € Div(n) and 0 #£ x € R”, define A(m) = sgn(det(m,)), wherem, isthe
left multiplication map. This A(m) isindependent of x. Let p(m) bethe sign for the
right multiplications. For signse, n let Div®" = {m € Div(n) : A(m) = ¢ and p(m) =
n}. These four subsets are represented by xy, Xy, xy, Xy.

(3) If m € Divtt(n) thereisapath in DivT () from m to somem € Div(n).

(4) Buchanan (1979) used homotopy theory to prove:

Theorem. Ifn = 4 or 8then Div!(n) hastwo connected components, represented
by the multiplications xy and yx.

Corollary. Div(4) and Div(8) each have 8 connected components, represented by
the eight standard multiplications.

(Hint. (3) By Exercise 0.8, there exist f, g € GL*(n) with (£, g) * m € Div(n).
Choose pathsin GL ™ (n) from 1, to f and from 1,, to g.)

9. Sub(s, n; k). Defineg : O(n) x Sub*(s, n; k) — Sub(s, n; k) by: ¢(g, T) = gT.
Then ¢ is surjective with fiber ¢=1(S) = § N O(n), which is the unit sphere in S.
Hence dim Sub(s, n; k) = "D 4 dim SubY(s, n; k) — (s — 1). Isthis consistent
with (8.12)?

10. How does the O(s) action relate to the O(n) x O(n) action?
() Leta € O(s) andm € Compl(s, n). Then y (o« e m) = (deta) - x(m). Each
orbit of the group O(s) x O(n) equals Comp(s, n; k) U Comp’(s, n; —k) for somek.
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(2) Let S € Sub'(s, n; k). Define Aut® (S) = {(B, y) € O(n) x O(n) : ySp~1 =
S} and consider the induced group homomorphism Aut& (S) — O(S). Theimageis
Ot (n) if x(S) # 0, and itisO(n) if x(S) = 0.

(3) Thereis an exact sequence

1 - Autim) — Auté(s) — 1O iTx(S) = o} 1

ot (S) if x(S)#0

Compute dim Aut& ($) and use this to give another computation of dim Sub(s, n).
(4) Similarly analyze Aut(S) = {8 € O(n) : BSB~1 = S}.

(Hint. (2) If « € OT(S) then « is in the image, using C-isometries as in (8.5) or
(7.19). Conversely suppose « isin that image. If x (m) # 0 apply part (1).)

11. Automor phism groups. There are severa reasonable definitions for “the” auto-
morphism group of a composition m € Comp(s, n). For example,

Autim) ={€Om):pom=m}={Be€Om):(1,B,B)em=m},
as defined above.
Aut® (m) = {(B, y) € O(n) x O(n) : (1, B,y) e m = m}.
Aut%(m) = {(«, B) € O(s) x O(n) : (c, B, B) @ m = m}.
Autot(m) = {(a, B,y) : (a, B, y) em = m}.

These arerelated to the groups Aut(S) and Aut® (S) defined in Exercise 10. What are
the dimensions of these algebraic groups?

12. Proper similarities. Hereis a sketch of the proof of (8.14). Supposely € S C
Sm(V,g)ands =dimS > 2.

First Sep. If g € SIM*(V, ¢) and gSg~1 = S then g is proper.

(1) Find acounterexamplewhendim S =dimV = 2. IfdmS =2and4|dimV
then g is proper.

(2) Suppose C = C(W, ¢) is a Clifford algebra with center Z. If x € W is
anisotropicthenxWx—1 = W. (Infactthemap w — xwx 1 isthereflection through
theline Fx.)

Lemma. Ifu € C*anduWut = Wthenu =y -x1-x2...x; forsomey € Z
andx; € W.

(3) Proof of First Yepwhensisodd. C = C(—S83) iscentral smple,andC ® A =
End(V) where A = End¢ (V). Theinvolution I, = “~" preserves C and A. Then
gCg™l = C sothereexistsu € C* suchthata = u=1g € A. Since gg = u(g)
conclude that aa and iu are scalars. Since a commutes with elements of S it is
proper, by Exercise 1.17. Since uSiu~! = $; and Z = F, the lemma implies
u=ux1-x2...x; forsomex; € S1. Hence g = ua is proper.

(4) Proof of First Sepwhen siseven. Cgiscentral simple,and Co® A = End(V)
where A = Endc,(V). As before, there existsu € C§ suchthata = u=1g € A
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and aa and iiu = B are scalars. Then a is proper since it commutes with f> f3.
Since Z = F @ Fz is the center of C, gzg™* = &z for some e = +1. Then
aza™! = ulgzg7lu = ez and hence aS1a—1 = §1 since 1 € zCo. Therefore
uS1u~t = §; and the lemma applies as before to show that u and g = ua are proper.

(5) h € SimplieshSh C S.

(6) Suppose F isagebraicaly closed. If f € S thereexistsh € S withh2 = f.

(7) Suppose y SB~1 = S asin (8.14). Assume F is algebraicaly closed and use
(6)tofindh € S suchthat 2 = y 1. Let g = yh sothat g=1 = hp~1. By (5),
gSg~ 1= yhShp~1 = S and the First Step impliesthat g is proper. Sinceh is proper
conclude that both g8 and y are proper.

(Hint. (1) Exercise 1.17.
(2) The map w — uwu~t isin O(W), and hence is a product of hyperplane
reflections. Compare Cassels (1978), pp. 175177 or Scharlau (1985), pp. 334-336.
(5) Choosethe basis of S sothat & = a + bf, and compute i f;h.
®6)If f=r+sfaleth=x+ yfr andsolvefor x and y.)

13. Norm form uniqueness. Suppose D is a composition algebra (with identity)
relative to two quadratic forms ¢ (x) and ¢’(x). These forms must coincide.

(Hint. Thetheory in Chapter 1 provides associated involutionsx and x sothat ¢ (x) =
x -x and g’ (x) = x - . Show that these involutions coincide.)

14. Trilinear map. (1) For euclidean spaces U, V, W the following are equival ent:
(a) Thereisabilinear f : U x V — W withthenorm property | f (u, v)| = |u|-|v].
(b) Thereisatrilinearmapg : U xV xW — Rsuchthat |g(u, v, w)| < |u|-|v]-|w|

and moreover for every u, v there exists a non-zero w such that equality holds.
(2 If dmU = dimV = dim W then condition (b) issymmetricinU, V, W.

(Hint. (2) f, g arerelated by g(u, v, w) = (f(u, v)|w), where (x|y) is the dot
product.)

15. The Triality Theorem impliesthat for every y € O*(8), thereexista, 8 € O (8)
such that («, 8, v) is an autotopy, relative to the standard octonion multiplication.
Moreover «, 8 are uniquely determined up to sign.

(1) Every y € O"(8) equas B; By, Bz . .. Bz, a product of (at most) 7 bi-multi-
plication maps.

(2 Thena = LgLyL:...Lzand B = RaRy Rz ... Rz, uptosign.

(3) Every o € O1(8) can be expressed as a product of 7 of the maps L, and also
as aproduct of 7 of the maps R,,.

(@) If (a, B, y) € Autot(D) then: o« = B = y isan automorphism < «a(1) =
B(1) = 1. Compare Exercise 1.24.

(5) How much of this theory goes through for octonion algebras over a genera
field?
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(Hint. (1) The Cartan—Dieudonné Theorem (proved in Artin (1957) or Lam (1973))
impliesthat y = 11 - 7, ... 7, for some 7 unit vectorsa, ..., g € R8 = D. Then
Y = BaBpB: ... B;g.

(2) Use the explicit autotopies (L,,, R,, B,) and the uniqueness of «, 8.

(5) There are some difficulties with scalars over a general field F. For instance
the group B generated by the B,’s consists of all 6(o) - o where s € O (D) and
0 (o) denotes the spinor norm of . The group F* - 8 can be a proper subgroup of
Sim* (D). Does the group generated by the L,’sequal Sim™ (D)?)

16. Automorphism and autotopy. (1) If D isthe octonion division algebra over R
determine dim Aut(D).

(2) The “companion” map Autot®(8) — S’ x S’ sends («, B8, ¥) € Autot®(8) to
(a,b) = (B L, a(1)71). Thena = R, oy and B = Ly, o y. The nonempty fibers
of this companion map are the cosets («, B8, y) - Aut(D).

(3) Autot®(8) is a connected 2-fold covering group of Mon®(8) = O (8).

(4) The companion map is surjective.

How does compoasition of autotopies corresponding to an operation on the associ-
ated companion pairsin §7 x §7?

(Hint. (1) dimAut(D) = 14. For D is generated by unit vectors i, j, v such that
D = H 1 Hv where H isthe quaternion algebra generated by i, j. If ¢ € Aut(D)
then ¢ (i) can be any unit vector in {1}, achoicein $6. Given ¢ (i), then ¢(j) can be
any unit vector in {1, i}*, etc.

(3) # : Autot°(8) — Mon°(8) is a homomorphism with kernel {(1, 1, 1),
(=1, —1, 1)}. Find a path between those two pointsin Autot®(8) by using autotopies
(Laa Rav Ba)-

(4) Compute dimensions.)

17. Dimension 1, 2, 4. (1) Analyze the spaces Comp*!(1) and Comp™(2).

(2) Work out the parallels of (8.17) through (8.21) for quaternion algebras. Deduce
that dim Autot(4) = 11 and dim Autot®(4) = 9. What isthe analog of the companion
map of Exercise 16?

18. Isotopy and isomorphism. Let D be a quaternion or octonion division algebra
over R.

(1) If n = 4 or 8 let Isotop(n) be the set of al multiplications on R” which are
isotopic to the multiplication of D. (Why is this independent of the choice of D?)
Then Isotop(n) can be viewed as an algebraic variety. What isits dimension?

(2) Similarly analyze Isomor(n), the set of algebrasisomorphic to D.

(Hint. (1) Isotop(n) isan orbit of GL ()2 with stabilizer Autot(D).
(2) Isomor(n) is an orbit of GL (r) with stabilizer Aut(D).)
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19. Loops. Aninverse loop isaset G with a binary operation such that (i) there is
an identity element 1 € G; and (ii) for every x € G thereexistsx 1 € G satisfying:
x1.xy=y=yx.-x"1forevery y € G. Anautotopy on G isatriple (o, g, y) of
invertible mapson G such that: y (xy) = a(x)B8(y) for every x, y.
(D) If xy = zthenx = zy~1,z72x = y~1, ..., and we get the associated hexagon
of six autotopies of G. Define amonotopy and deduce that «, 8, y are monotopies.
(2) y is a monotopy if and only if there exist a,b € G such that y(xy) =
y(x)a - by (y) for every x, y. The elements a, b are the companions of y. Note that
o =R,oyandB = Loy providetheautotopy, anda = (1) tand b = o (1)~ L.
(3) For a asabove, B,(x) = axa isunambiguously definedand (L,, R,, B;) isan
autotopy. Similarly wefindautotopies (B, L; 1, La), (R;, B4, R,) etc. Theseimply
the Moufang identities: ax - ya = a(xy)a; axa-a~ty =a-xy;xa - aya = xy - a.
(4) If a € G thefollowing are equivalent:
(i) aistheimage of 1 under a monotopy;
(i) (Lg, Ry, B,) isan autotopy;
(iii) the Moufang identities hold for a.
A Moufang loop (or “Moup”) is an inverse loop in which every a, x, y satisfies
the Moufang identities. Then G isaMoufang loop if and only if the monotopies act
transitively on G.

(Hint. (3) (B, tyt, te)o(y, B, )t = (By L, tyB~1, wviae™) = (La, Ry, taie™ )
is an autotopy, so that i~ 1(xy) = ax - ya for every x, y. Then B,(x) = ax -a =
a-xaand (L., R,, B,) works. The six autotopies derived from this one provide other
examples.)

20. Other norm forms. Fix e # 0in R& and let Comp®(8) be the set of all multipli-
cations m € Bil(8) which make R into a composition division algebra with identity
element e. Here we do not assume that the standard inner product is the norm form.
Then Comp?(8) < Div(8). Is Comp?(8) a nice topological space? What is its
dimension?

(Hint. If PD(n) = {positive definite quadratic formson R"}, then dmPD(n) =
n(n + 1)/2 since PD(n) = GL(1)/ O(n). Then PDL(8) = {q € PD(®) : ¢(e) = 1)
has dimension 35. Isthere abijection: Comp?(8) <> Comp*'(8) x PD1(8)?)

21. For which «, 8, y € GL(8) does the action of («, 8, y) on Bil(8) preserve the
subset Div1(8)?

(Idea. Let m1(x,y) = xy be the octonion multiplication with identity e. If
¢ € GL(8) with g(e) = e then m, = (¢, ¢, 9) @ my isin Div}(8). Then
(ro, s, rsp) preserves Divii(8) when r,s € R®. Conversdly if («, 8, y) pre-
servesitthen oty ~1(x) = o ta 7 (x) T8 He) and oy T (y) = e (e) -
¢~ 187 1(y) for every x, y € D and every such ¢. Must «~1(e) and 8~1(¢) be scalar
multiples of ¢?)



8. The Space of All Compositions 157

22. Split octonion algebras. In (8.17) through (8.21) we assumed that the octonion
algebra D is a division algebra (so the norm form [x] is anisotropic). Are the same
results true when D isa*“split” octonion algebra, that is, when the norm form [x] on
D ishyperbolic?

(Note. If F isinfinitethe non-invertible elementsform the zero set of apolynomial
function. Therefore aimost al elements of D areinvertible.)

23. Robert’sThesis(1912). Let 4 betheset of al n x n matrices A whoseentriesare
C-linear formsin X = (x1, ..., x,) andwhichsatisfy AT - A = (x2 + .- - + x2) - I,..
(1) Each A € A corresponds to aunique m € Compg(s, n).
(2) O(n) x O(n) actson 4 by: (P, Q)* A = P -A-Q". This corresponds to
the action on Comp described above. Consequently +4 isan algebraic variety, and we
know the number of components and their dimensions.

(Hint. (1) Recall the original treatment by Hurwitz as described in Chapter 0.)

Notes on Chapter 8

The ideas presented in the first part of the Chapter are based on results of Petersson
(1971) and of Bier and Schwardmann (1982). The homology and stable homotopy
groups of the topological spaces Comp!(s, n) were computed by Bier and Schward-
mann.

Zorn characterized finite dimensional aternative division algebras over any base
field. One proof appears in Schafer (1966), p. 56. The result has a remarkable
generalization, due to Kleinfeld, Bruck and Skornyakov:

Theorem. Any simple alternative ring, which is not a nilring and which is not asso-
ciative, must be an octonion algebra over its center.

This theorem is proved in Kleinfeld (1953) and in Zhevlakov et al. (1982), §7.3.
An easier proof, assuming characteristic £ 2, isgivenin Kleinfeld (1963).

There are more constructions of real division algebras, usually done by “twisting”
the standard algebras in various ways. For example see Althoen, Hansen and Kugler
(1994). Further information on real division algebrasis contained in Myung (1986).
Certain “pseudo-octonion” agebras are 8-dimensional division agebras (without an
identitiy element) which are especially symmetric. See also Elduque and Myung
(1993).

The dimension argument after (8.15) showing that not al division algebra multi-
plications are isotopic to a composition algebrais due to Petersson.

Dimension counts show how hard it might be to get a useful classification of
real 1clzlivision algebras. However, there is a positive result about general elements of
Div—(n).
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Theorem. If D isareal divisionalgebrawithidentityanddim D > 1, then D contains
a subalgebra isomorphic to C. That is, there existsa € D witha? = —1.

Proofs appear in Yang (1981) and Petro (1987). Both proofs use topological
properties to prove that the map x — x2 is surjective on D.

Following (8.15), Div(n) = Nsing(n, n, n). Bier (1979) showedthat Nsing(r, s, n)
is a semi-algebraic set and hence has a finite number of connected components. He
also proved that if n > r + s — 1 then Nsing(r, s, n) is dense in Bil(r, s, n) and if
moreover n > (r#s)+r +s — 1thenNsing(r, s, n) isconnected. (Thisnotation r #s
is defined in Chapter 12.)

The viewpoint and terminology of autotopiesand monotopies, asdefinedin (8.17),
was explained to me in 1980 by J. H. Conway. Versions of Conway’s approach are
also seenin Exercises 16 and 20, as well asin the appendix to Chapter 1.

Our presentation of the Triality Principle 8.19 basically follows van der Blij and
Springer (1960), who prove it without restrictions on the characteristic of the ground
field. Some simplifications in the proof use Conway’s approach. Other authors use
the terms autotopi sm and isotopism. See Hughes and Piper (1973), Chapter VIII.

Over any field F (with characteristic # 2), every m € Comp(4, 4) isisotopicto a
guaternion algebra H. Letting xy be the multiplication in H, then the multiplication
m(x, y) is expressible as one of four types:

(D) axcyb (2) axbyc (3) cxayb (4) axcyb

where a, b,c € H and N(abc) = 1. For what choices of a, b, ¢ are two of these
algebras isomorphic? This question is analyzed by Stampfli-Rollier (1983).

Kuz'min (1967) discusses the topological space of al isomorphism classes of
n-dimensional real division algebras (with identity). He considers the subspaces of
power-associative algebras, quadratic algebras, etc., and determinestheir dimensions.

Exercise 4. Bier and Schwardmann (1982) discuss this number of components.

Exercise 7. (2) A similar remark is made in Althoen and Weidner (1978).

(3) Stronger theorem: If every non-zero element of A has a strong right inverse,
then A isalternative. Thisresult is related to the geometry of projective planes. See
Hughes and Piper (1973), pp. 140-149.

Exercise 8. Buchanan’s proof uses homotopy theory.

Define A(n) = {A € GL,(R) : A hasnoreal eigenvalues} and W(n) = {W ¢
O(n) : Wis skew-symmetric }. Buchanan proves W (n) isastrong deformation retract
of A(n). The space ‘W(n) has two connected components, separated by the Pfaffian
(see (10.8)). Any m € Divt'(n) induces i : R” — {0} — A(n) and this maps
to W(n). The standard composition algebras yield multiplications xy and yx with
unequal Pfaffians. Hence Div(n) has at least two components. A computation of
m,—2(A(n)) leads to a proof that there are only two components.

A somewhat simpler proof in the casen = 4 is given by Gluck, Warner and Yang
(1983), 88. The components are separated by their “handedness’.
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Exercise 11. Thegroup Aut”(m) was studied by Riehm (1982), awork motivated
by a question of A. Kaplan (1981). Those ideas were extended in Riehm (1984).

Exercise 15-16. This threefold symmetry for «, 8, y in O™ (8) is one aspect of
triality. The sign ambiguities can be removed if we work with the covering group
Spin(8) instead. From Exercise 16(3) it follows that Autot®(8) = Spin(8). Many
aspects of triality have appeared in the mathematical literature. For example see Knus
et al. (1998), 8§35, and Chapter 10.

Exercise 19. Thisapproach to Moufang loopsisdueto J. H. Conway. Connections
between Moufang loops and geometry are described in Bruck (1963).

Exercise 23. E. Robert, in his 1912 thesis, analyzed these matrices A in the cases
r = n = 4, 8. He showed essentialy that Compg(n, n) consists of two orbits of
O(n) x O(n), distinguished by the “character”.



Chapter 9

ThePfister Factor Conjecture

We focus now on the form ¢ rather than on (o, 7). Suppose F is afield (in which
2 # 0). Given n, which n- dimensional forms ¢ over F admit the largest possible
familiesin Sim(g)? We stated the following conjecture in (2.17).

9.1 Pfister Factor Conjecture. Let g be aquadratic form over F withdimg =n =
2"ng whereng isodd. If thereisan (m + 1, m + 1)-family in Sim(g) theng ~ ¢ Q w
where ¢ is an m-fold Pfister form and dim w is odd.

Oneattraction of thisconjectureisthat it relatesthe formsinvolved in the Hurwitz—
Radon type of “multiplication” of quadratic forms with the multiplicative quadratic
forms studied by Pfister. We will reduce the question to the casen = 2™ and to prove
it whenever m < 5. The difficultiesin extending our proof seem closely related to the
difficulties in extending Pfister’s result (3.21) for formsin I3F. For certain special
classes of fields we can prove the conjecture. For example, it istrue for every global
field. Inthe appendix we describe (without proofs) some results about function fields
of quadratic forms and use that theory to provide another proof of the casesm < 5.

This conjecture can be restated in terms of the original sort of composition defined
in Chapter 1. For as noted in the (7.12), if dimg = 2™ - (odd), then there exists
o < Sim(g) withdimo = p(n) if and only if there existsan (m + 1, m + 1)-family
inSim(g).

If either o or T isisotropic then (o, 7) < Sim(g) implies that g is hyperbalic,
by (1.9). In this case the conjecture is trivial so we may assume that o and T are
anisotropic.

9.2 Conjecture PC(m). Suppose ¢ isaquadratic form over F withdimg = 2™. If
thereexistsan (m + 1, m + 1)-family in Sim(g), then ¢ is similar to a Pfister form.

Proof that PC(m) is equivalent to the Pfister Factor Conjecture 9.1. Certainly (9.1)
implies PC(m). Conversely assume PC(mm) and suppose ¢ is given with dimg =
n = 2"ng and withan (m + 1, m + 1)-family (o, t) < Sim(g). The Decomposition
Theorem 4.1 implies that al the (o, 7)-unsplittables have the same dimension 2%,
Since ¢ is a sum of unsplittables, 2% | n so that k < m. If ¢ is an unsplittable then
s+t =2m+ 2impliesdimg = 2™. Then the uniqueness in (7.2) implies that
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al (o, v)-unsplittables are similar to ¢. Therefore g >~ ¢ ® w for some form w
of dimension ng, which is odd. The form ¢ is similar to a Pfister form by PC(m).
Absorbing the scale factor into w, we may assume ¢ is a Pfister form. O

9.3 Lemma. PC(m) istruefor m < 3.

Proof. Thecasesm = 1, 2 are vacuous. Supposem = 3and dimg = 8 and ¢ admits
a (4, 4)-family. By (1.10) a (3, 0)-family (1, a, b) < Sim(g) aready implies that
{(a, b)) | q, forcing ¢ to be similar to a Pfister form. 0

Suppose dimg = 2™ and (0, t) < Sim(g) isan (m + 1, m + 1)-family. As
mentioned after (7.1) wehavedo = dt, c(0) = ¢(t), sothat o = v (mod J3(F)). If
applicationsof the Shift Lemmacantransformthepair (o, t) into somepair (8, §), then
(2.16) implies the Conjecture PC(m). To state this idea more formally we introduce
theset £, of dl (s, 1)- pairsof quadratic formsover F wheres +¢ = 2m + 2. Define
therelation & on £, to be the equivalence relation generated by three “ elementary”
relations motivated by the ideas in Chapter 2:

Q) (o,7)™(1,0).
(2) (o,7t) =™ ({a)o, (a)t) Whenever a € Dp(o)DFp (7).

B) (0 Lot Ly)~(o L (dy, 1 L (d)e) whenever dmg = dimy (mod 4)
and (d) = (detp)(det /).

The motivation for this definition arises from the following basic observation:

If (0, 7) & (o, T/) then: (o, 7) < Sim(V, B) if andonly if (¢', 7') < SIm(V, B).

9.4 Definition. Let #,, bethe set of al (s, t)-pairs (o, ) suchthat s + ¢t = 2m + 2,
do = drt, c(c) = c(r) and s = ¢ (mod 8). Equivalently, », is the set of all
(o,7) € P, suchthat o = 7 (mod J3(F)) and s = ¢ (mod 8).

We first observe that 2, isasubset of £, preserved by the equivalence relation.

9.5 Lemma. Suppose (o, t) € Py
(1) (o,1) e P, ifandonlyif (o, ) < Sim(g) for some g withdimg = 2.
(2 (o, 1)~ (0/,7)and (o, 7) € P, then (o’, 1) € Py

Proof. (1) Apply (7.3).

(2) Thisfollows from (1) and ideas from Chapter 2. Hereis amore direct proof.
We may assume that the (s, ¢')-pair (¢, /) is obtained from the (s, ¢)-pair (o, t) by
applying one of the three elementary relations. Sinces = ¢ (mod 8) is easily follows
that s’ =+ (mod8). Let 8 = o0 — v and B’ = o’ — /. The elementary relations
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imply the following equationsin the Witt ring:

B =-p if type 1.
B = (a)B if type 2.
B =B+ {d)® (L —y) iftype3.

Now B € I°F sothat B = (x)B (modI3F) for every x € F°*. Also since
d(¢ L —y) = (de)(dy) = (d), Exercise 3.7 (4) implies (d) ® (¢ L —y) € I3F.
Thenineach case B/ = B (mod I3F). Since I3F C J3(F) we have 8 € J3(F) so
that (o’, ') € P, O

In trying to prove PC(m) by induction we are led to arelated question.

9.6 The Shift Conjecture SC(m). If (0, 1) € P, then (o, 7) & (0/, ') where o’
and 7’ represent a common value.

Of courseo’ and ¢’ represent acommonvalueif andonly if theform g’ = o’ L —1/
isisotropic. If SC(m’) istrue for every m’ < m then PC(m) follows. Hereis amore
formal statement of thisidea.

9.7 Lemma. If SC(m) and PC(m — 1) aretrue over F then PC(m) is also true over
F.

Proof. Suppose (o, 7) < Sim(g) isan (m+1, m+1)-family wheredimg = 2™. Then
(7.3) implies (0, 7) € 2,,. By SC(m) we may alter o, v to assumeo =~ o’ L (a)
and T >~ 7’ L {(a). The Eigenspace Lemma 2.10 impliesthat ¢ ~ ¢’ ® {{a)) and
(¢/, 7)) < Sim(g). By PC(m — 1) thisq’ issimilar to aPfister form and therefore so

isq. O

If SC(m) istrue over F for al m then the Pfister Factor Conjecture holds over F.
In nearly every case where PC(m) has been proved for afield F, the condition SC(m)
can be proved as well.

Before discussing small cases of this conjecture we notethat: if F satisfies SC(m)
forall mthen I3F = J3(F), whichisamajor part of Merkurjev’ s Theorem. Therefore
it seems unlikely that an easy proof of the Shift Conjecture will arise.

9.8 Proposition. Suppose SC(m’) istrueover F for all m’ < m. If 8 € J3(F) and
dimpg = 2m + 2then g € I3F.

Proof. Writep = o L —1 forsomeformso, t of dimensionm+1. Then (o, 7) € £,
and application of SC(m’) form’ =m,m — 1, m — 2, ... impliesthat (o, ) & (8, §)
for some form 8. By the proof of (9.5), =0 — 7 =8 — 8 = 0 (mod I3F). O

9.9 Proposition. SC(m) istruefor m < 4.
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Proof. Let (o, 7) € #,. If m < 2theequal invariantsimply that o ~ t (see Exercise
3.5). If m = 3then (o, 7) &~ (¢,0) wherep >~ o L (dt)r. Thendimy = 8 and
¢ € J3(F) sothat ¢ issimilar to a Pfister form by (3.21). If ¢ >~ {(a){{x, y, z)) then
(p, )~ (8, 8) whered ~ (a){1, x,y,z). Nowsupposem = 4. Then =0 L —7 €
J3(F) anddim g8 = 10. This 8 must beisotropic by Pfister's Theorem (3.21), and o
and T represent acommon value. O

It seemsdifficult to know whether ageneral pair (o, t) can be shifted to some better
(o/, ). In some cases knowledge of certain types of subforms yields the resullt.

9.10 Lemma. Suppose (o, t) isan (s, t)-pair. Then (o, t) & (¢’, t’) for some s’ and
7’ which represent a common value, provided there exist subformsg Cc c andy C
suchthat ¢ # 0, o; dimg = dim+ (mod 4) and det ¢ = det .

For example, this definition holds if s > 2 and o and t contain 2-dimensional
subforms of equal determinant. The condition also holds if s > 4 and ¢ contains a
4-dimensional subform of determinant (1).

Proof. Expresso =01 L pandt = 71 L ¢. Sincep # 0, o, we may express
o1=(x) Logandg = (a) L ¢1. Use(2.6) toshift (x) L ¢1and. Sincedet({x) L
¢1))(det ) = (ax) weobtain (o', t') = (02 L (a) L {ax)y, 71 L (ax)({x) L ¢1)).
Both o” and 7’ represent a. |

9.11 Proposition. SC(5) istrue.

Proof. Suppose (o, 1) € #5. We may shift (o, 7) to a (10, 2)-pair (oo, 70). Then
B = oo L —1p isal2-dimensional element of J3(F). If B isisotropic then og
and 1g represent a common value and we are done. Assume g is anisotropic and
write g >~ (—a)(1, —b), for somea,b € F*. Then B >~ (a){(—b)) L op. Pfister's
Theorem 3.21 impliesthat 8 >~ @1 L @2 L @3, Where (a){(—b)) C ¢1 and each ¢; is
4-dimensional of determinant (1). Then g2 C o and (9.10) applies. |

We have been unable to prove SC(6) over an arbitrary field because we lack
information about 14-dimensional formsin I3F. Rost (1994) proved that any such
form g is a transfer of the pure part of some 3-fold Pfister form over a quadratic
extension of F. Hoffmann and Tignol (1998) deduced from this that 8 must contain
an Albert subform. (Recall that an Albert formisa6-dimensional formin 72F.) This
information leads to a possible approach to SC(6).

9.12 Lemma. If thefollowing hypothesisholdstrueover F, then SC(6) istrueover F.
Hypothesis: Whenever g isan anisotropic 14-dimensional formin /3F andy c Bisa
given 3-dimensional subform, then thereexistsan Albert forma suchthaty c « C 8.
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Proof. Suppose (0, 7) € ¢ isan (11, 3)-family. Then g = o L —7 isa l4-
dimensional form in J3(F). By Merkurjev’'s Theorem, 8 € I°F. If B isisotropic
the conclusion of SC(6) isclear. If 8 isanisotropic the hypothesis provides an Albert
form o with —t C @ C 8. Expressinga = o’ 1. —7 wehavedima’ = dimt = 3,
o' C o anddeta’ = det t. Then (9.10) applies. i

Itisnot at all clear whether the strong condition in (9.12) is always true. Finding
acounterexampleto it would be interesting. But it might be much more interesting to
construct a non-Pfister form of dimension 64 admitting a (7, 7)-family!

If thefield F satisfies some nice properties, then the conjecture SC(m) istrue for
al m. Recall that the u-invariant u (F) of anon-real field F isthe maximal dimension
of an anisotropic quadratic form over F.

9.13 Coroallary. If F satisfies one of the properties below then SC(m) istrue over F
for all m.

(1) Fisnonreal and u(F) < 14.

(2) Every anisotropic form o over F with dimo > 11 contains a 4-dimensional
subform of determinant (1).

Proof. We may assumem > 6and (o, 7) € P;,.

(1) By hypothesis, every quadratic form over F of dimension > 14 is isotropic.
Sincedim(o L —1) = 2m + 2 > 14, o and t must represent a common value.

(2) We can shift the given (o, 7) to assumedimo > 11. The claim then follows
from (9.10). O

Every algebraic number field satisfies condition (2) above. More generally, every
“linked” field satisfies (2). Recall that two 2-fold Pfister forms ¢ and ¢ are said to
be linked if they can be written with a“common slot”: ¢ >~ ((a, x)) and ¥ >~ {(a, y))
for somea, x,y € F°®. Thefield F issaid to be linked if every pair of 2-fold Pfister
formsislinked.

9.14 Lemma. The following conditions are equivalent for a field F.
(1) Fislinked.

(2) The quaternion algebras form a subgroup of the Brauer group.
(3) For everyformg over F, c(g) = quaternion.

(4) Every 6-dimensional forma over F with da = (1) isisotropic.

(5) Every5-dimensional formover F contains a 4-dimensional subform of determi-
nant (1).

We omit the details of the proof. Most of the work appears in Exercise 3.10.
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The standard examples of linked fields are finite fields, local fields, global fields,
fields of transcendence degree < 2 over C, fields of transcendence degree 1 over R.
Of course by (9.13) we know that SC(m), and hence the Pfister Factor Conjecture, is
true over any linked field.

We digress for a moment to discuss the Pfister behavior of general unsplittable
modules over linked fields. If (o, T) is an (s, t)-pair over a linked field, is every
unsplittable (o, T)-module necessarily similar to a Pfister form? The exceptions are
called “special” pairs.

9.15 Definition. A pair (o, t) isspecial if s = ¢ (mod 8) andtheform g =0 1L —1
satisfies: dB # (1) and ¢(B) isaquaternion algebra not split by F(/dB).

In the notation of Theorem 7.8 the special pairs are exactly the ones having un-
splittables of dimension 2”12, We are assuming throughout that o represents 1.

9.16 Proposition. Suppose F isalinked field and (o, t) isapair whichisnot special.
Then every unsplittable (o, t)-moduleis similar to a Pfister form.

Proof. Theorem 7.8 applies here since F is linked so that ¢(8) must be quaternion.
Let m = §(s,t) and suppose « is an unsplittable (o, t)-module. If dimo = 2™
thens + ¢ > 2m — 1 and the Expansion Proposition 7.6 implies that there is an
(m + 1, m + 1)-family in Sim(«). Then PC(m) impliesthat « is similar to a Pfister
form. Supposedima = 2"+ If s+t > 2m +1 = 2(m + 1) — 1, we are done as
before using PC(m + 1). The remaining caseshaves +t = 2m ands =+ 2 or
t + 4 (mod 8). Dropping one dimension from o or from t we can find an (s/, t)-pair
(0/,7") C (o, 7) Wheres’ + ¢ =2m — lands’ = ' £ 3 (mod 8). Againsince F is
linked we may use Theorem 7.8 to get an unsplittable (67, ©’)-module v of dimension
2", Then PC(m — 1) implies v issimilar to a Pfister form. Furthermore (¢/, t/) isa
minimal pair and (7.18) implies that v is the unique (o', T’)-unsplittable. Therefore
a >~y Q {a,b) forsomea,b € F* and « isaso similar to a Pfister form. The last
case when dima = 22 occurs only when (o, 7) is special. ]

The specia pairsredly do behave differently. Using (5.11) we gave examples of
specid (2, 2)-pairs over the rational field Q which have 8-dimensiona unsplittable
modules which are not similar to Pfister forms.

The Pfister Factor Conjecture can be reformulated purely interms of algebraswith
involution. (Compare (6.12).) This version is interesting but seems harder to work
with than the original conjecture.

9.17 Conjecture. In the category of F-agebras with involution, suppose (4, K) =
(01, J1)®- - -®(OQm, Jm) Whereeach (Qy, Ji) isaquaternion algebrawithinvolution.
If the algebra A is split, then there is a decomposition
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where each (Q), J) isasplit quaternion algebrawith involution.
Claim. (9.17) isequivalent to PC(m).

Proof. Assume (9.17) and suppose (o, 7) € £, with associated Clifford algebra C.
By hypothesis, C = Cgo x Cgand Co = End(V) for aspace V of dimension 2. Since
s =t (mod 8) theinvolution J = Jg on C induces an involution Jg of type 1 on Cy
asin (7.4). This provides the involution I, on End(V') corresponding to a quadratic
form ¢ on V. The conjecture PC(m) says exactly that this ¢ must be a Pfister form.
The algebra Co can be decomposed as a tensor product of quaternion subalgebras,
each preserved by the involution Jy (compare Exercise 3.14). Therefore we may
apply (9.17) to conclude that (Co, Jo) is a product of split quaternion algebras with
involution, (Q}, J}). Expressing Q;, = End(Uy) wheredim Uy, = 2, theinvolution J;
inducesaii-form B, on Uy. Itfollowsthat V = U1®---QU,, andg >~ B1®- - -Q By,.
If all thetypes A, are 1then g isaproduct of binary quadratic forms, soitissimilar to
a Pfister form. Otherwise some skew forms occur in the product (necessarily an even
number of them) and ¢ is hyperbolic, so again it is Pfister.

Conversely, assume PC(m) and let (A, K) beasplit algebrawith adecomposition
asin (9.17). Then A = End(V) wheredim V = 2™ and the involution K induces a
regular A-form Bon V.

Claim. It suffices to decompose (V, B) ~ @(U;, B;) for some A;-spaces
with dimU; = 2. For if such a factorization exists we can use (6.10) to see that
(A, K) = QEnd(U)), Ip;) asrequired.

Since A isaproduct of quaternionswe may reversethe procedurein (3.14) to view
A assomeCliffordalgebra: A = C(W, q). Since K preserveseach quaternion algebra
it also preserves the generating space W. Then K isan (s, ¢)-involution on C(W, g),
for some (s, r) wheres + ¢t = 2m + 1. Theisomorphism (A, K) = (End(V), Ip)
then provides an (s, r)-family in Sim(V, B). If A = 1, PC(m) impliesthat (V, B) is
similar to a Pfister form, so it has a decomposition into binary forms, asin the claim.

If L =-1,then(V, B) ~ _01 é) ® 2"~1(1) (compare Exercise 1.7) and again a
(V, B) isaproduct of binary forms. ]

A direct proof of the Conjecture 9.17 does not seem obvious even for the cases
m <3.

Onetiny bit of evidencefor thetruth of PC(m) istheobservationthat if dimg = 2"
and thereisan (m + 1, m + 1)-family in Sim(gq), then ¢ ® ¢ is a Pfister form. This
follows from Exercise 7.14 (3). Of course this condition isfar weaker that saying that
q itself isaPfister form.
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Appendix to Chapter 9. Pfister forms and function fields

In this appendix we discuss, without proofs, the notion of the function field F(q) of
a quadratic form ¢ over F. That theory yields another proof of PC(m) for m < 5.
These“transcendental methods’ in quadratic form theory were clarified inthe Generic
Splitting papers of Knebusch (1976, 19778). Expositions of this theory appear in
Lam'’slectures (1977), in Scharlau’ s text (1985) and in the booklet by Knebusch and
Scharlau (1980).

Asusual, all quadratic forms considered here are regular and F isafield of char-
acteristic not 2. If gisaform over F and K is an extension field of F we write gg
for g ® K. We use the notation g ~ 0to mean that ¢ ishyperbolic. (This* ~" stands
for Witt equivalence.)

A quadratic form ¢ of dimensionn over F can be considered from two viewpoints.
It can be viewed geometrically as an inner product space (V, ¢) or it can be viewed
algebraically as a polynomia ¢(X) = ¢(x1, ..., x,) homogeneous of degree 2inn
variables. Over thefield F (X) of rational functionsit isclear that theform ¢ ® F(X)
representsthevalue ¢ (X). For exampletheform (a, b) representstheval ueaxf+bx§
over F(x1, x2). Furthermoreif ¢ C ¢ (i.e. ¢ isisometric to a subform of ¢) then
g ® F(X) representsthe value ¢ (X).

A.1Subform Theorem. Let ¢, ¢ bequadratic formsover F suchthat ¢ isanisotropic.
The following statements are equivalent.

(1D ¢cCq.
(2) For everyfield extension K of F, Dk (¢x) € Dk (gk).

(3) g ® F(X) represents o(X), where X = (x1,...,x,) isasystemof n = dimg
indeter minates.

This theorem, due to Cassels and Pfister, has many corollaries. Among them is
the following characterization of Pfister forms as the forms which are “generically
multiplicative’.

A.2 Corollary. Let ¢ be an anisotropic formover F withdimg = n. Let X, Y be
systems of n indeterminates. The following statements are equivalent.

(1) ¢ isaPfister form.

(2) For everyfield extension K of F, Dk (k) isagroup.
() ¢® F(X,Y) representsthe value p(X) - ¢(Y).

(4) o(X) € Grix)(9Frx))-

Suppose ¢ is a quadratic form of dimension n over F and X is a system of n
indeterminates. If n > 2 and ¢ 2 H then ¢(X) isan irreducible polynomia and we
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define the function field
F () = thefield of fractions of F[X]/(¢(X)).

Certainly ¢ becomes isotropic over F(¢), for if & € F(y) isthe image of x;, then
o1, ..., &) =0. Infact F(p) isa“generic zerofield” for ¢ inthe sense of Knebusch
(1976). Changing the variablesin ¢ or multiplying ¢ by a non-zero scalar alters the
function field F (¢) only by an isomorphism.
If o ~ (1) L ¢ then o(X) = x? + ¢ (X') where X' = (x2, ..., x,) and we
calculate that
F(p) = FX)W ¥ (X).

For exampleif ¢ ~ (1, a) then F(¢) = F(x)(s/—a), apurely transcendental exten-
sion of F(y/—a). If ¢ isisotropic then F(yp) isapurely transcendental extension of
F. (See Exercise 12.) To simplify later statementslet us define F (H) = F(x), where
x isan indeterminate.

Using results about quadratic forms over valuation rings Knebusch proved the
following result about norms of similarities.

A.3 Norm Theorem. Let ¢, g be quadratic forms over F such that ¢ represents 1
anddimgp = m > 2. Let X be a system of m indeterminates. The following are
equivalent.

() g® F(p) ~0.
(2 ¢(X) € Grx)(grx))-

The condition (2) here is equivalent to the existence of a “rational composition
formul@’

e(X)-q(Y) =q(2)

where X = (x1,...,xp) and Y = (y1,..., y,) ae systems of independent indeter-
minates and each entry z; of Z isalinear formin Y with coefficientsin F(X). If each
7y isactualy bilinear in X, Y then we have ¢ < Sim(g), asin (1.9) (3).

A.4 Coroallary. Let ¢ be an anisotropic formwhich represents 1 and dim ¢ > 2 over
F. Then ¢ isaPfister formif and only if ¢ ® F(¢) ~ 0.

Proof. If ¢ isaPfister formthen since ¢ ® F () isisotropic it must be hyperbolic by
(5.2) (2). The converse follows from (A.3) and (A.2). O

A.5Corollary. Supposeqisananisotropicformandg ® F(p) ~ 0. Theng issimilar
to a subformof ¢. In particular dimg < dimg.

Proof. Let b € Dr(p) so that (b)e represents 1. The Norm Theorem then implies
that b - 9(X) € Grx)(qr(x)). Forany a € Dr(q) it follows that g x) represents
ab - (X) and the Subform Theorem impliesthat (ab)e C g. O
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A.6 Corollary. Let ¢ be a Pfister form and ¢ and anisotropic form over F. Then
q® F(p) ~0ifandonlyif ¢ | g.

Proof. If ¢ | ¢ apply (A.4). Conversely suppose ¢ ® F(¢) ~ 0. Then (A.5) implies
g ~ {a1)p L g1 forsomea; € F* and someformg1. Butthengi1 ® F(¢) ~ 0, since
¢ isaPfister form, and we may proceed by induction. O

This corollary isadirect generalization of Lemma 3.20(2) sinceif ¢ = (b)) then
F(¢) isapurely transcendental extension of F(+/—b). Now let us apply these results
to our questions about spaces of similarities.

A.7Lemma. If o < Sim(g) wheredimo > 2theng ® F(o) ~ 0.

Proof. For any field extension K of F, ox < Sim(gk). Sinceo ® F (o) isisotropic
the claim follows from (1.4). Here is another proof: We may assume o represents 1.
Let X be asystem of s = dimo indeterminates. Since or(x) represents o (X) and
OFx) < Sim(qF(X)) we conclude that o(X) e GF(X) (QF(X))- The Norm Theorem
applies. O

The anisotropic cases of (1.10) follow as corollaries. For example, suppose
(1, a, by < Sim(g) where g isanisotropic. Let ¢ = ((a, b)) and notethat (1, a, b) ®
F(¢) isisotropic. Then the argument in (A.7) impliesthat ¢ ® F(¢) ~ 0 and (A.6)
impliesthat ¢ | g.

By the Expansion Proposition 7.6 the following statement of the conjecture is
equivalent to “PC(m) over al fields’:

Pfister Factor Conjecture. If o < Sim(g) wheredimg = 2" and dimo = p(2™)
then ¢ issimilar to a Pfister form.

A.8 Lemma. The following statement is equivalent to the Pfister Factor Conjecture.
Suppose o < Sim(g) wheredimg = 2™ anddimo = p(2™). If g isisotropic then ¢
is hyperboalic.

Proof. If ¢ is similar to a Pfister form and is isotropic then it is hyperbolic by (5.2).
Conversely suppose the statement hereistrueando < Sim(g) over F wheredimg =
2" anddimo = p(2™). Theno ® F(g) < Sim(g ® F (¢)) and the assumed statement
impliesthat ¢ ® F(q) is hyperbolic. By (A.4) it follows that ¢ is similar to a Pfister
form. O

Intryingto provethisconjecturewe supposethat o < Sim(g) asabove. Assuming
that ¢ isisotropic but not hyperbolic we try to derive a contradiction. Expressqg =
qa L KH where g, is anisotropic and non-zero. Then g, ® F(o) ~ 0 by (A.7) and
therefore dimg, > dimo = p(2"), by (A.5). If m < 3 this already provides a
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contradiction since p(2") = 2™ = dimgq in those cases. Thecasem = 4 is settled
by the next lemma which we could have proved after (1.4).

A9 Lemma. Suppose S € Sim(V, g) is a (regular) subspace where dimS = s.
Suppose ¢ isisotropic but not hyperbolic and v € V isan isotropic vector. Then S - v
isatotally isotropic subspace of V of dimension s.

Proof. If f € Stheng(f -v) = u(f)q(v) = 0. Therefore S - v istotaly isotropic.
Suppose f isin the kernel of the evaluation mape : S — S -v. Then f(v) = 0s0
that f isnot injective and it follows that u(f) = 0. However (1.4) impliesthat S is
anisotropic and consequently f = 0. Therefore ¢ isabijection. O

Now supposem = 4, sothat dimg = 16 and dimo = 9. Thelemmaimplies that
q has atotally isotropic subspace of dimension 9 which is certainly impossible since
9H cannot fit inside ¢. If m = 5then dimg = 32 and dimo = 10 and the lemma
showsthat 10H C ¢. Therefore10 < dimg, < 12, sincetheearlier argument implies
that dimg, > dimo = 10. The next ideais to observe that these inequalities hold
over any extension field K such that ¢ ® K isnot hyperbolic.

A.10 Proposition. Suppose ¢ is a form of even dimension which is not hyperbolic
over F. Then there exists an extension field K suchthatg ® K >~ L kH and v is
similar to an anisotropic (non-zero) Pfister form.

Proof. Suppose g =~ qo L igH where gg is anisotropic. Let F1 = F(qo) be the
function field so that go ® F1 ~ g1 L i1H for some anisotropic form g1 and some
i1 > 1 If g1 # Olet F, = Fi(q1) and express g1 ® F» >~ g» L ipH for some
anisotropic form g and some i > 1. Repeat this process to get a tower of fields
FCFLCF,C.--CF,whereq ® Fj, ~Obutg ® Fj,_1 # 0. Let K = F,_1 and
expressg ® K ~ v 1 kH where v = ¢;_1 is anisotropic. By construction ¢ # 0
and ¢y ® K () ~ 0. Therefore ¢ issimilar to a Pfister form by (A.4). O

A.11 Proposition. The Pfister Factor Conjectureistrueifm < 5.

Proof. We already settled the cases m < 4 and showed that if m = 5then 10 <
dimg, < 12. Replacing F by thefield K of (A.10) we get the extrainformation that
dim g, isapower of 2. This contradiction completes the proof. ]

Exercises for Chapter 9

1. u-invariants. For anonred field F, u(F) is defined to be the maximal dimension
of an anisotropic quadratic form over F.

(1) Suppose u = u(F (4/a)) isfinite. Then every anisotropic form o over F with
dimo > u + 3 contains a 4-dimensional subform of determinant (1).
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(2) If u(F(y/a)) < 8then for every m, SC(m) istrue over F. For example this
condition holdsif F isan extension of R of transcendence degree < 3.

(Hint. (1) Use Lemma 3.20.
(2) Thetheory of C;-fields showsthat if K/C has transcendence degree < 3 then
u(K) < 8. Seee.g. 82.15 of Scharlau (1985).)

2. If every form over F of dimension 12 contains a 4-dimensional subform of deter-
minant (1), then PC(m) istruefor all m.

(Hint. If m = 6 suppose (o, ) < Sim(g) isan (11, 3)-family where dimg = 64.
Find arelated (12, 0)-family and apply (9.11) and (2.10) to find that ¢ ~ ((a)) ® ¢’
wheredimg’ = 32 and ¢’ admitsa (7, 3)-family. From p3(32) = 7 use (7.12) to find
a (6, 6)-family in Sim(g’).)

3. (1) Suppose (o, t) isapair suchthat dimo > 8 and o contains an Albert subform.
Then (o, t) & (¢/, ') where t’ isisotropic. Consequently, if (o, ) < Sim(g) theng
must be hyperbolic. Compare Exercise 6.4 (4).

(2) Extend the definition of the equivalence & to include cases as mentioned in
Exercise 2.4 (1). Will this change the validity of resultsin Chapter 9?

(Hint. (1) Scaleto assume o =~ (a,b,ab) L (—x,—y,—xy) L (u,v,...). Shift
twice.)

4. Let F((¢)) bethefield of forma Laurent seriesover F. Then PC(m) over F((¢))
implies PC(m) and PC(m — 1) over F.

(Hint. Use Springer’s Theorem about quadratic forms over valued fields.) Compare
Exercise 10.

5. Suppose g isaform of dimension 2" over F and thereisan (m + 1, m + 1)-family
in Sim(g). Theng € I3F. What are the possible values of the signature sgn»(q)
when P isan ordering of F?

6. PC(6). Supposeo < Sim(V, ¢) over F wheredimo = 11anddimg = 26 = 64.
Asusud, let C = C(—op) and A = End¢(V), sothat C ® A = End(V). Then A is
a quaternion algebra with induced involution “bar”. If there is a quadratic extension
L/F suchthat o ® L isisotropicand c(o) = [A] issplit by L, then ¢ must be similar
to a Pfister form?

7. Pfister unsplittables. Suppose (C, J) is the Clifford algebra with involution
associated to an (s, ¢)-pair (o, ) wheres +t =2m + 1. Then (C, J) = (01, J1) ®
<+ ® (Qm, Jm) Where each (Q, Ji) is a quaternion algebra with involution as in
Exercise 6.4. Suppose Qr = (ax, br) corresponding to generators ex, fr where
J(ex) = xer and J (fi) = £ fx.
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(1) Supposeall a; belongtoatwoelement set {1, d}. Thenevery (o, t)-unsplittable
issimilar to a Pfister form.

(2) For what (s, r)-pairs doesthe condition in (1) apply? We can use Exercise 3.14
to get explicit quaternion algebrasin C. For example (1) applieswhen o = (1) L
{(—c) @ xand t = 0. It also applieswhen (o, 7) = ((1) L o, (1) L «).

(Hint. (1) Notethat (d, u) ® (d, v) = (1, u) ® (d, uv) and theinvolution preservesthe
factors. Then (C, J) = (C’, J) ® (Q, J") where Q isquaternion and C’ = End(U)
isatensor product of split quaternions. Suppose (V, ¢) isunsplittable for (C, J) and
apply (6.11) to find that (V, ¢) ~ (U, ¢) ® (W, w), where (W, w) is an unsplittable
(Q, J")-module. Show that ¢ and w are Pfister.)

8. Definition. 1" F islinked if every pair ¢, ¥ of n-fold Pfister formsislinked. That
is, ¢ ~ (@) ® a and ¥ >~ (b)) ® o for some (n — 1)-fold Pfister form «. Thelinked
fields mentioned above are the ones where 72F is linked.

Proposition. If I3F islinked then for every m, SC(m) istrue over F.

(Hint. If 1" F islinked then every anisotropicq € I" F hasa*simple decomposition”:
g ~¢1 L --- L ¢ where each ¢; issimilar to an n-fold Pfister form. (See Elman,
Lam and Wadsworth (1979), Corollary 3.6.) Given (o,7) € #, let § =0 L —1.
By Merkurjev’'s Theorem g € I3F. We may assume f is anisotropic. A simple
decompositionimpliest = 0 (mod 4). Shift to assume T = 0, use the decomposition
and (9.10).)

9. Adjusting signatures. If P isanordering of F then sgnp (o) denotesthe signature
of theform o relativeto P.

(1) Suppose P isan ordering of F. If (o, ) € &, then

sgnp (o) = sgnp () (mod 8).

(2) Signature Shift Conjecture. If (o, 7) € £, then (0, 7) & (¢’, ') for some
pair (o/, 7’) wheredimo’ = dim ¢’ and sgnp (¢’) = sgnp (7’) for al orderings P.

Definition. F has the property ED if for every b € F*® and every form ¢ over
F suchthat ¢ L (—b) istotally indefinite, ¢ represents br for some totally positive
teFe°.

Lemma. If thefield F satisfies ED then the Sgnature Shift Conjecture holds. This
applies, for example, if F isan algebraic extension of a uniquely ordered field.

Remark. It might be possible to find a counterexample to SC(m) by finding a
field for which the Signature Shift Conjecture fails.
(Hint. (1) If 8 € I®R thendim g = 0 (mod 8).

(2) Mimic theideain (9.10).)

10. Laurent seriesfields. Let F beacompletediscretevalued field with valuationring
O, maximal ideal m = 7, and non-dyadic residue field k = @ /m (i.e. char k # 2).
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A quadratic form ¢ over F has “good reduction” if there exists an orthogonal basis
{e1,...,e,} such that g(e;) € O°. Inthiscaselet L = Qe1 + --- + Oe¢,, afree
©-module. Thereis acorresponding “reduced” form g over k obtained from L/mL.
By Springer’s Theorem the isometry class of g is independent of the choice of basis
and g isisotropic iff g isisotropic. Any quadratic form ¢ over F can be expressed as
q = q1 L (m)q2 where g1 and ¢ have good reduction. These reduced forms g; and
g2 are uniquely determined up to Witt equivalence. (For more details see the texts of
Lam or Scharlau.)

(1) Lemma. Suppose (V, ¢) is anisotropic with good reduction, and L € V as
above. If f € SIm(V, g) withnorm u(f) € @ then f(L) C L.

(2) Corallary. Supposeq, o, T are anisotropic formswith good reduction over F.
If (o, ) < Sim(g) over F then (6, T) < Sim(g) over k.

(3) Suppose F = k((r)) isaLaurent series field. If (V, ¢) is a quadratic space
over F then (V,q) = (V1,q1) L (Va, (t)g2) where ¢1, g2 are forms with good
reduction. If ¢ is anisotropic then the subspaces V; are uniquely determined. E.g.
Vi={veV:qg) ek}

(4) Corollary. Suppose o, 7, g1, g2 are anisotropic forms over k. If (0, 7) <
Sim(g1 L (t)g2) over k((t)) then (o, T) < Sim(g1) and (o, T) < Sim(g2) over k.

(5) Corallary. Suppose o, 1, g are anisotropic formsover k. Then (o L (t), T L
(t)) < Sim(g ® (1)) over k((1)) iff (o, T) < Sim(q) over k.

(Hint. (1) Suppose v € L and let r be the smallest non-negative integer with
7" - f(v) € L. If r > Othen g(@” - f(v)) € m and the anisotropy implies
7" - f(v) € mL = w L, contrary to the minimality.)

11. History. (1) The following result of Cassels (1964) was a maor motivation
for Pfister’s theory: 1+ x% + --- 4+ x2 is not expressible as a sum of n squares in
R(xq, ..., x,).

(2) Thelevel s(F) wasdefinedin Exercise5.5. Givenm thereexistsafield of level
2" Infactlet X = (x1, ..., x,) beasystem of indeterminates, let d = x2 4 - - - 4 x2
and define K, = R(X)(v/—d). If 2" < n < 2™+ Pfister proved: s(K,) = 2.

(3) Thefunction field methodsin quadratic form theory began with the* Hauptsatz’
of Arason and Pfister:

Theorem. If ¢ isa non-zero anisotropic formin " F thendimg > 2".

(Hint. (1) Useq = n(1) and ¢ (x) = x5+ - - +x2 over R(xp, ..., x,) inthe Subform
Theorem (A.1).

(2) Apply Exercise 5.5. Alternatively, K, is equivalent to the function field
R((n + 1)(1)). Certainly s(K,) < n hence s(K,) < 2™. If not equa then 2 (1)
isisotropic, hence hyperbolic, over K,,. Get a contradiction using (A.5).

(3) Giveng ~ (c1)e1 L --- L (cx)er Where each ¢; is an n-fold Pfister form.
Suppose k > 1 and assume the result for any such sum of fewer than k terms (over
any field). If ¢ ® F(p1) ~ 0 apply (A.5). Otherwise apply the induction hypothesis
to the anisotropic part of ¢ ® F(¢1).)
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12. (1) Suppose K = F(x1, ..., x,) isapurely transcendental extension of F and ¢
isaformover F. If ¢ ® K isisotropic then ¢ must beisotropic over F.

(2) Let ¢ beaformover F withdimg > 2. Then F(¢)/F ispurely transcendental
if and only if ¢ isisotropic.

(Hint. (2) Suppose ¢ is isotropic with dimg > 2. Changing variables we may
assume that ¢(X) = x1x2 + o« where a = a(X’) is a non-zero quadratic form in
X' =(x3,...,xn).)

13. Moreversions of PC(m). The following statements are equivalent to PC(m)
(over dl fields):

() If dime = 2™, ¢ represents 1, and there isan (m + 1, m + 1)-family in
Sim(V, ¢), then ¢ isround. That is: for every ¢ € Dr(¢) there exists f € Sim®(y)
with u(f) = c.

(2) Suppose (A, K) isatensor product of m quaternion algebras with involution,
asin (9.17). Suppose A is split and there exists0 # h € A with J(h) - h = 0. Then
for every ¢ € F thereexists f € A suchthat J(f) - f = c.

(Hint. (1) Use (A.2).

(2 Let A = End(V)wheredim vV = 2" with J correspondingto I, for aquadratic
formg on V. Equivalently Sim(V, ¢) admitsan (m + 1, m + 1)-family. The condition
I,(h) - h = 0implies ¢ isisotropic. The conclusion saysthat ¢ is round.)

14. Pfister neighbors. (1) If ¢ isahyperbolicformanda C ¢ withdima > %dimgo
then o must be isotropic.

(2) A form « is caled a Pfister neighbor if there is a Pfister form p such that
a C (a)p forsomea € F* anddima > %dimp. Inthiscase: « isisotropiciff p is
hyperbolic. Every form of dimension < 3 isaPfister neighbor.

(3) If o isaPfister neighbor then the associated Pfister form is unique.

(4) Suppose « is Pfister neighbor associated to p. If « < Sim(g) and ¢ is
anisotropic then p | g. Infact, if « < Sim(¢g) and ¢ ~ go L mH where o is
anisotropic, then p | go.

(Hint. (1) Viewed geometrically, the space (V, ¢) of dimension 2m has a totaly
isotropic subspace S with dim S = m. The subspace (A, «) hasdim A > m. Then
ANS {0}

(3) If w isassociated to p and to v then ¢ ® F(p) isisotropic, hence hyperbalic.)

15. Moreon Pfister neighbors. If ¢ isan m-fold Pfister form and (1, @, b) C ¢ then
¢ = (a,b,c3,...,cp) for somec; € F*. (Compare (5.2) (3) and Exercise 5.23.)
More generally:

Proposition. Supposeg isa Pfister formand « isa Pfister neighbor with associated
Pfister form p. If @ C ¢ then ¢ = p ® § for some Pfister form s.

(Hint. Assume ¢ is anisotropic. Exercise 14 (1) and (A.6) imply that p | . Then
¢ = p L yforsomeformy. Ifdimy > 0choosec € Dr(y) andlet p1 := p ® {{c)).
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Since p L {c) isasubform of ¢ and is a Pfister neighbor associated to p; we have
01| ¢. Iterate the argument.)

16. If thereisacounterexampl eto the Pfister Factor Conjecturewhenm = 6, thenthere
existsafield F and 0 < Sim(g) wheredimo = 12, dimg = 64andg ~ v 1 kH
where v is an anisotropic Pfister form of dimension 16 or 32.

Notes on Chapter 9

Several of the ideas used in the proof of SC(m) for m < 5 are due to Wadsworth.
In particular he had the idea of examining 4-dimensional subforms of determinant
(1). The approach to the Pfister Factor Conjecture given in the appendix follows
Wadsworth and Shapiro (1977a).

The property SC(m) was proved in (9.13) for certain classes of fields. How-
ever there exist fields not satisfying any of these properties. For example there is
afield F and a quadratic form g such that 8 € I3F, dimpB = 14 and B contains
no 4-dimensional subform of determinant (1). If fact, if k£ is a field and
F = k((t1))((£2))((3)) is the iterated Laurent series field then there are examples
of such g over F. Thisis proved in Hoffmann and Tignol (1998), where the stated
property is called D(14).

The class of linked fields as defined in Lemma 9.14 was first examined by Elman
and Lam (1973b). Some of their proofs were simplified by Elman (1977), Elman,
Lam and Wadsworth (1979) and Gentile (1985).

(A.10) isdueto Knebusch (1976). The Pfister form y thereis called the “leading
form” of ¢g. For further information see Knebusch and Scharlau (1980) or Scharlau
(1985), p. 163-165.

Exercise 7. See Yuzvinsky (1985).

Exercise 9. This property ED (for “effective diagonalization”) was introduced by
Ware and studied by Prestel and Ware (1979).

Exercise 10 follows a communication from A. Wadsworth (1976).

Exercise 14-15. For Pfister neighbors see Knebusch (1977a) or Knebusch and
Scharlau (1980).



Chapter 10

Central SmpleAlgebras
and an Expansion Theorem

Our previous expansion result (7.6) followed from an explicit analysis of the pos-
sible involutions on a quaternion algebra. The Expansion Theorem in this chapter
depends on similar information about involutions on a central simple algebra of de-
gree 4. Albert (1932) proved that any such algebra A is a tensor product of two
guaternion algebras. However there can exist involutions J on A which do not arise
from quaternion subalgebras. It isthe analysis of these“indecomposable involutions”
which provides the necessary information for the Expansion Theorem. The principa
ingredient is Rowen’s observation that a symplectic involution on a central smple
algebra of degree 4 must be decomposable.

The chapter begins with a discussion of maximal (s, r)-families and a characteri-
zation of those dimensions for which expansions are always possible. The Expansion
Theorem requires knowledge of involutions on algebras of degree 4. We derive the
needed results from a general theory of Pfaffians. This theory is first described for
matrix rings, then lifted to central ssimple algebras, and finally specialized to algebras
of degree 4. The exposition would be considerably shortened if we restrict attention
to the degree 4 case from the start. (Most of the results needed here appear in Knus et
al. (1998), Ch. 1V.) Our long digression about general Pfaffiansisincluded here since
it isanovel approach and it helps clarify some of the difficulties of generalizing the
theory to larger algebras.

Suppose (S, T) € Sim(V, g)isan(s, t)-family. IfdmV = 2" ands+t = 2m—1
the Expansion Proposition (7.6) says that (S, T) can be enlarged to some family of
maximal size. We will sharpen this result by showing families of certain smaller
sizes can aso be enlarged. For example let us consider the case dimg = 16. If
S € Sim(V, g) wheredim § = 5 then there exists T such that (S, 7) € Sm(V, q)
isa (5, 5)-family. On the other hand there exist quadratic forms ¢ with dimg = 16
such that Sim(gq) has (3, 3)-families but admits no (s, r)-families of larger size. See
Exercise 1.

The Expansion Lemma(2.5) provides examples of maximal families. For instance
if Sop € SIm(V, ¢g) isa3-dimensional subspace with orthogonal basis {1y, f, g} then
it can be expanded by adjoining fg. The expanded space S = span{ly, f, g, fg}
is maximal family because no non-zero map can anticommute with f, ¢ and fg.
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If w(f) = a and u(g) = b the quadratic formon S iso = (1, a, b, ab) and the
associated Clifford algebrais C = C(—o1) = C({(—a, —b, —ab)). If {e1, e2, e3} is
the set of generatorsof C then z = ejeze3 isthe element of highest degree, generating
the center of C. If 7 : C — End(V) isthe representation corresponding to S we see
that7(z) = (f)(g)(fg) = —ab-1ly,ascaar. Thensw isnotfaithful (i.e. notinjective).
This sort of behavior always occurs when afamily arises from the Expansion Lemma.
More generally recall the properties of the character x (S, T') defined in (7.17). The
next lemmais arepetition of (7.18).

10.1 Lemma. Suppose (S, T) € Sim(V, g) isan (s, ¢)-family with forms (o, 7). If
x(S,T) #0thens =r (mod 4), do = dt and (S, T) ismaximal.

We call thissort of family “trivially maximal”. If s + ¢ isodd then no (s, #)-family
can be maximal since we can aways expand by one dimension to get a non-faithful
(maximal) family. To avoid this sort of triviality we will investigate when (S, T') can
be expanded by 2 (or more) dimensions.

We have already considered some expansion results. For example Proposition 7.6
states that if (S,7) € Sim(V, q) is an (s, t)-family such that dmg = 2™ and
s+t =2m —1,then (S, T) can be expanded by 3 dimensions. Asanother example,
recall that (1, a) < Sim(g) if and only if ((1, a), (1, a)) < Sim(g), and similarly for
(1, a, by < Sim(q). These results are be generalized in the next proposition, which is
amild refinement of (7.12).

10.2 Proposition. Let (o, ) be a minimal pair with unsplittable (o, t)-modules of
dimension 2. Suppose (S, T) € SIm(V, g) is an (s, t)-family with forms (o, 7).
Then thereis an associated (s’, ¢')-family in Sim(V, g) withs’ +¢' = 2m + 2.

Proof. If (S, T) istrivialy maximal, this associated family cannot be an actual ex-
pansion of (S, T). Let C = C(—o1 L t) withtheusual involution J, and let (W, )
be an unsplittable (C, J)-module. If C does not act faithfully on W, we replace
(S, T) by asmaller family obtained by deleting one dimension. This smaller fam-
ily is till minimal. By (7.11) we know that every unsplittable module is (C, J)-
similar to (W, ¢). The Decomposition Theorem 4.1 then yields a (C, J) isometry
V,q) ~ (W, ¥) QF (a1, ...,a,) for somea; € F°*. Now the Expansion Proposi-
tion 7.6 can be applied to (W, ) to produce the larger family as desired. O

Suppose (S, T) € Sim(V, q) isan (s, t)-family with s 4 7 odd. Let (o, 7) bethe
corresponding forms and C = C(—o1 L 1) the associated Clifford algebra. Then
C is a central simple F-algebra of dimension 25+~ and the given representation
. C — End(V) induces an isomorphism

C®AZEnd(V)
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where A = End¢ (V) is the centralizer of C in End(V). Then A is also a centra
simple F-algebra and since the involution J on C and I, on End(V') are compatible,
thereis an induced involution K on A.

10.3 Lemma. (S, T) can be expanded by 2 dimensions if and only if there is a
guaternion subalgebra Q € A which is preserved by the involution K .

Proof. Such Q existsif and only if thereexist a, b € A such that ¢ and b2 arein F*,
a, b anticommute, K (a) = +a and K (b) = £b. Let z bean element of highest degree
in C so that z anticommutes with S1 + 7', z2 € F* and J(z) = +z. Let f = za and
g = zb. Then Q existsif and only if there exist f, g € End(V) which anticommute
with S1 + T, f2 and g? arein F*, I,(f) = = f and I,(g) = £g. Thisoccursif and
only if (S, T') can be expanded by 2 dimensions. O

Of course this lemma is just a slight generalization of the Expansion Proposi-
tion 7.6. In order to go further we need information about quaternion subalgebras of
larger algebras with involution. Recall that if A is acentral simple F-algebra then
dimy A = n? isaperfect square (since over some splitting field E, A ® E = M,,(E)
for somen). Definethe degree of the algebra A to bethisinteger n. Then aquaternion
algebra has degree 2.

The basic examples of central simple F-algebras with involution are tensor prod-
ucts of split algebras and quaternion algebras. For instanceif A = 01 ® Q2 where
Q1 and Q> are quaternion algebras, then A is a central simple algebra of degree 4.
Certainly this A has an involution, since we can use J = J1 ® Jo where J; isan
involution on Q;. We consider the converse.

10.4 Definition. Let A be a central simple F-algebra. Then A is decomposable if

A AR Ar

for some central smple F-algebras A; withdeg A; > 1.

If J isaninvolution on A then (A, J) is decomposableif (A, J) = (A1, J1) ®
(A2, J2o) for some central simple F-algebras A; with involutions J; and with
degA; > 1. When the agebra A is understood we say that the involution J is
decomposable.

Notethat J isdecomposableif and only if there exists aproper J-invariant central
simple subalgebra A1 of A. For A, can be recovered as the centralizer of Aj.

Every agebra of prime degree is certainly indecomposable. In particular, quater-
nion algebras are indecomposable. If A = End(V) issplit and J isany involution of
symplectic type on A then J is decomposable if and only if deg A > 2. Similarly if
J = I, istheadjoint involution of aquadraticformg on V andif ¢ ~ o« ® g for some
quadratic forms «, 8 of dimension > 1, then J is decomposable. (See (6.10).)
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Let us now concentrate on algebras of degree 4. Albert (1932) proved that if A
has degree 4 and possesses an involution then A is decomposable as a tensor product
of quaternion subalgebras. Rowen (1978) used Pfaffians to prove that symplectic
involutions on a division algebra of degree 4 are always decomposable. The next
theorem is a refinement of these results.

10.5Theorem. Let A bea central simple F-algebra of degree 4 with involution. Then
A >~ Q1 ® QO for some quaternion algebras Q;.

(D If J isaninvolution on A of symplectic typethen J is decomposable. Further-
moreif y € A — F suchthat y? € F* and J(y) = +y, thenthereexistsa J-invariant
quaternion subalgebra Q withy € Q.

(2) Suppose J isan involution on A of orthogonal type. Then J is decomposable
if and only if there exists y € A such that y? € F* and J(y) = —y. Furthermore if
such y isgiven, then there exists a J-invariant quaternion subalgebra Q withy € Q.

Certainly there exist indecomposable involutions on split algebras of degree 4,
provided F is not quadratically closed. (Just use I, on End(V) where (V,q) =~
(1,1, 1, c) for some non-square ¢ € F.) Indecomposable involutions on division
algebras of degree 4 were first exhibited by Amitsur, Rowen, Tignol (1979). These
exampleswere clarified by work of Knus, Parimala, Sridharan on the*discriminant” of
aninvolution. We present an exposition of the theory of Pfaffians, the characterization
of indecomposable involutions on algebras of degree 4, and a proof of Theorem 10.5.

Before beginning those tasks, we mention an easy lemma and then apply that
theorem to deduce ancther expansion result for (s, ¢)-families.

10.6 Lemma. Suppose A is a central simple F-algebra of degree 4 with involution
J. Then (A, J) is decomposable if and only if (A, J) = (C(U, a), J') for some
4-dimensional quadratic space (U, «) and some involution J” which preserves U.

Proof. Suppose A isaproduct of two invariant quaternion algebras. Choosegenerators
whichare J-invariant (i.e. J (x) = *x). Alter thetwo quaternion algebrastoaClifford
algebraasin (3.14), and note that the Clifford generators are still J-invariant. O

Suppose (S, T) € Sim(V, g) isan (s, t)-family wheredimg = 2" ands + ¢ =
2m —3. Thendim C = 22"—* and the centralizer A will be central simple of degree 4.
If theinduced involution K on A has symplectic type then (10.3) and (10.5) imply that
(S, T) can be expanded to a family of maximal size. Thisis the situation mentioned
at the start, when S € Sim(g) wheredimg = 16 anddim § = 5.

For exactly which dimensions s, r and 2" are we guaranteed that a family will
expand to one of maximal size? One necessary condition is easily verified: if
s = p;(2"=2) then there exists some (s, t)-family on 2"-space (over some field)
which cannot be expanded by 2 dimensions.
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In fact we can construct one over the rea field R. For such s, ¢, m there is a
family (s(1), #(1)) < Sim(2"~2(1)). Therefore (s(1), (1)) < Sim(q) whereg =
2m=2(1,1,1, —1). Thendimg = 2" but ¢ isnot aPfister form. Then Sim(g) admits
no family of maximal size because PC(m) holds over R. We prove that this necessary
condition is also sufficient.

10.7 Expansion Theorem. Suppose (S,T7) € Sim(V,q) is an (s, t)-family and
dimg = 2”. If s > p;(2"2) then there is an associated (s’, t')-family (', T') C
Sim(V, g) wheres’ +t' = 2m + 2.

Here the family (S, T”) might not be an expansion of (S, T'), since (S, T') could
betrivially maximal. For such casess 4+t iseven and the representation is not faithful.
Then we first pass to a subfamily of (S, T') of codimension 1 and expand that to the
family (S, T").

Note. That inequality is equivalent to:

2m —3 ifm=t

2m—1 ifm=r+1
2m—2 ifm=r+2
2m -3 ifm=t+3

Of course this condition is related to the condition for minimal pairs given in (7.9).
In this situation an unsplittable (o, t)-module must have dimension 2n=1 or 2m |n
the former case we find that (o, t) is a minimal pair and the unsplittable module
(S, T) € SM(W, ¢) is unique by (7.11). Since (V, g) is a sum of unsplittable
components, it follows that (S, T) € Sim(V, ¢) expands uniquely to a family of
maximal size. Therefore the new content of the theorem occurs when unsplittables
have dimension 2.

s+t > (mod 4).

Proof. If s +t = 2m — 1 then (7.6) implies that the family always expands by 3
dimensions. Supposes +t =2m —3andm =t ort+3 (mod4). ThenC ® A =
End(V) with involutions J ® K = I, where (A, K) is an algebra of degree 4 with
involution. Sinces = 2m —3—t = ¢+ 3 (mod 8) we seefrom (7.4) that theinvolution
J on C hastype —1. Then (6.9) impliesthat K hastype —1 on A. Now (10.5) and
(20.6) imply that

(A,K)=(CWU,a),J)

wheredim U = 4and J’ preservesU . Thenthereexistsanorthogonal basishs, ..., kg
of U suchthat J/'(h;) = +h;. Then the elements zh;, along with zh1h2h3h4, can be
adjoined to (S, T') to provide afamily of maximal size (s’ + ¢ = 2m + 2).

Finally supposethat s+t = 2m—2andm = t+2(mod 4). Thens = r+2 (mod 8),
theinvolution K hastypeland J(z) = —z. Thentherepresentation : C — End(V)
cannot send z to ascalar, and therefore m must be faithful. We may identify C with its
image 7 (C) € End(V). Since Cg iscentral simple of dimension 22”4 its centralizer
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A iscentral simple of degree 4 and
Co® A = End(V).

Since the involutions J and I, are compatible, /, restricts to an involution K on
A. Since z commutes with Co we findthat z € A and K(z) = J(z) = —z. By
Theorem 10.5(2) the involution K is decomposable, so that (A, K) = (C(U, ), J')
as above. Furthermore in this isomorphism the element z corresponds to an element
of U. We choose an orthogonal basis {z, /1, ho, h3} of U with I,(h;) = +h; and
expand the family (S, T) by adjoining {h1, h2, h3, zh1hohs}. O

Thereisafinepoint to be made hereabout “ maximal” families. Supposes+¢ isodd
and an (s, t)-family (S, T) € Sim(V, g) isgiven. Let the corresponding forms be o,
T and suppose that there exists (o, t) C (67, ') < Sim(g) wheres’ +1 = s+1+ 2.
It does not necessarily follow that the original family (S, T) can be expanded by
2 dimensions. The explanation is that a given (s, ¢)-pair (o, t) can have different
realizations as an (s, ¢)-family in Sim(q). (See Exercise 2(2).)

We now begin our analysis of Pfaffians and central simple algebras, ultimately
leading to aproof of Theorem 10.5. Few of theresults here are new, but the properties
of the set D(A) provide an interesting approach. As usual in this book we assume
that F isafield of characteristic not 2. Thisrestriction simplifies the exposition. The
results have analogs in characteristic 2 and there exist treatments of the subject which
unify both cases.

If A isan F-algebra (always assumed finite dimensional, associative and with 1)
then A* denotes the group of invertible elementsin A. If § C A isasubset we write
4° fortheset § N A°.

10.8 Classical Definition. Let S be askew-symmetric n x n matrix over F such that
n iseven. Then the Pfaffian Pf (S) € F isdefined with the following properties:

(1) Pf(S) isaform (homogeneous polynomial) of degree n/2 in the entries of S.
In particular Pf (cS) = c"/?2Pf(S) forany c € F.

(2) Pf(S)2 = dets.
(3) Pf(PT.S-P)=Pf(S) - detP.

(4) Pf(S,) =1lwhere S, = <_01 é) D (_01 é),withn/Zsummands.

There are several proofs that Pf(S) iswell defined. One way is to use the theory
of alternating spaces to show that if S is skew-symmetricthen S = PT - S, - P for
some P. Then detS = (det P)2. We could define Pf(S) = det P and then prove
that this value is independent of the choice of P (using thelemma: Q € Sp, implies
det 0 = 1).

Alternatively we could use a “generic” skew-symmetric S over Z[s;;], argue as
above that det S is a square in Q(s;;). Thenitisalso asquare in Z[s;;]. Choose a
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squareroot, Pf (S), for thisgeneric case, with the sign chosen so that the specialization
to S, yieldsthe value 1.

Another method avoids aternating spaces, using induction to prove directly that
the generic S has a square determinant (see Jacobson (1968)). One can aso define
Pfaffians using exterior algebras and multilinear algebra. For example see Chevalley
(1954) or (1955), Bourbaki (1959), 85, n°® 2.

Remark. Thereexistsa"“ Pfaffian adjoint” Pfadj(S) whichisan x n skew- symmetric
matrix satisfying
S - Pfadj(S) = Pfadj(S) - S = Pf(S) - I,

Theentries of Pfadj(S) areformsof degreen/2 — 1lintheentriesof S. Consequently
there exists a “Pfaffian expansion by minors’ as well. The existence of Pfadj can
be proved using the generic Pfaffian. Each cofactor S;; in the matrix S must be
a multiple of the (irreducible) polynomial Pf(S). Cancel Pf(S) from the equation
S-adj(S) = (det S) - I,, toobtain Pfadj(S). Thisapproach appearsin Jacobson (1968).

10.9 Corollary. (1) If A, B are skew symmetric then

A0
Pf(o B):(PfA)'(PfB).

(2) If S isinvertible and skew-symmetric n x n then Pf(S~1) = (—1)"/2(Pf §)~L.
(3) For any m x m matrix C and an m x m skew-symmetric matrix S,

S C m(m—1)
Pf <—CT 0) = (1™ . detC.

These properties are easy to derive from the definition. In particular,

P 9 )= 0™ inthed x 4caselet
-1, O

0 aw aiz aus

_ 0 ax ax
§= 0 am
0

where we omit writing the lower half. Then

0 —ass axu —ax

Prcjs) = [ 0 TgM
0

and Pf(S) = ai2azs — aizazs + aisazs.
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It is convenient to introduce a new notation for the eigenspaces of an involution J.
If J hastype 2 on End(V) define

Sym(J) = {f € End(V) : J(f) = Af},
Alt(J) = {f € End(V) : J(f) = —Af}.

Then for any J, if dmV = n then dimAlt(J) = "(”—2‘1) The classical Pfaffian
map on matrices is defined on Alt(T). Note also that Alt(J) = image(1 — AJ) =
{g —AJ(g) : g € ENd(V)}.

When J has symplectic type, thereisanatural notion of “Pfaffian” for elements of
Alt(J), defined independently of the matrix Pfaffian mentioned above. If f € Alt(J)
then J(f) = f sothematrix B of f satisfiess M~1. BT . M = B. Then the matrix
T = M B isskew-symmetric. Such amatrix B can also be characterizedby: B = ST
for some skew-symmetric matrices S, 7' such that S isnonsingular. 1t quickly follows
that the characteristic polynomial x(x) is the square of another polynomial. (For
xr(x) = det(x1 — B) = detM~!.detxM — T). Since Mt and xM — T are
skew-symmetric over thefield F(x), xr(x) isasquarein F(x) and henceis asquare
in F[x].) With alittle more work we get a stronger result.

10.10 Lemma. For f asabove, every elementary divisor of f has even multiplicity.

Proof of TheoremA.7. Herethe elementary divisorsare the polynomial swhich appear
as the characteristic polynomials of blocks in the Rational Canonical Form for f.
(Each of them is apower of an irreducible polynomial.) First assumethat F' contains
al the eigenvalues of f. If X is an eigenvalue the elementary divisors (x — 1)" are
determined by the numbers d; = dimker(A1 — f)/ for j = 1,2,... Since MB is
skew symmetric and hence has even rank we know that rank f = rank(M B) = even.
Similarly since (A\1 — f)/ € Alt(J) we conclude that d; = n — rank(A1 — f)/ =
even. It followsthat (x — A)™ occurs with even multiplicity.

In general if K/F isafield extension, the elementary divisorsof f ® K over K
determine the elementary divisorsof f over F. Passingtoafield K containing all the
eigenvalues of f theresult follows. |

Proof #2, following Kaplansky (1983). We are given B = M 1T where M, T are
skew-symmetric and M isinvertible. Thenx/ — B = M~1(xM — T). The matrix
xM — T isskew-symmetric over the principal ideal domain F[x]. Applyingthetheory
of aternating spacesover F[x], (e.g. seeKaplansky (1949), p. 475 or Bourbaki (1959),
85, n° 1) there exists some invertible matrix R over F[x] such that

0 m;m 0 p2
R-(aM—T)-R" =
(@ ) (-Pl 0)@<—P2 0>€B
where p; € F[x] and each p; divides p; 1. Absorbing the factor M~ and applying

some elementary column operations, we find that there exist invertible matrices P,
Q over F[x] suchthat P - (xI — B) - Q = diag(p1, p1, p2, p2, ...). Therefore the
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invariant factorsof B are p1, p1, p2, p2, ... Thisshowsthat theinvariant factors, and
hence the elementary divisors, of B have even multiplicities. ]

Proof #3. Thereis amore geometric proof dueto Tignol (1991). Suppose (V, b) is
a(regular) alternating space over F and f € End(V) issalf-adjoint (i.e. I, (f) = f).
Then there exists a decomposition V = U @ U’ such that U and U’ are totally
isotropic and f-invariant. The action of f on U’ is dual to the action of f on U so

that there exists a basis for which the matrix of f is g COT . The proof usesthe
“primary decomposition” of V relative to f but does not employ more complicated
linear algebra. ]

Foraring A anda, b € A define therelation a ~ b to meanthat b = pap~? for
somep € A®. If A= M, (F)thena ~ bif andonly if a and b are* similar” matrices,
or equivalently, they have exactly the same elementary divisors.

10.11 Proposition. For f € End(V) with n x n matrix B over F, the following are
equivalent:

(1) J(f) = f for some symplecticinvolution J on End(V).

(2) B = ST for some skew-symmetric S, T such that S is nonsingular.
(2) B = S'T’ for some skew-symmetric S’, T’ such that 7’ is nonsingular.
(3) All elementary divisorsof f have even multiplicity.

4 nisevenandva(g g>forsomeW2xn/2matrixC.

Proof. (1) «= (2)isclearusing § = M~1. For (2) < (2') notethat ST = (STS) -
S~1. Theimplication (1) = (3) is done in Lemma 10.10. (3) = (4) is standard

linear algebra. (4) = (2): Since C ~ CT we find that B ~ (g COT) = ST

0 I 0 —-CT . . . .
where § = 7 0 and T = c 0 . Then thereis an invertible matrix P

suchthat B=P-ST - P~1 = (PSPT). (P~ TTP~Y), verifying statement (2). O

We define & = D(End(V)) to be the set of al f € End(V) satisfying these
equivalent conditions. When we consider M, (F) rather than End(V), we write D,,.
Here are some basic properties of this set D:

D isclosed under polynomials. (p € F[x] and f € D imply p(f) € D.)
D isclosed under inverses. (f € D* implies f~1 € D.)

D isclosed under conjugation. (f € D andg € GL(V) imply gfg~1 € D.)
Let J beany involution on End(V).
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If f,g € Alt(J) and f or g isinvertible, then fg € D.
If J has symplectic type then Alt(J) € D, a linear subspace of dimension
nn —1)/2.

We can now define Pfaffians on O by using that matrix C.
10.12 Definitions. Suppose f € D(End(V)) wheren = dim V. Choose a basis of
V such that the matrix of f is 0 g) asin Proposition 10.11.

Define pf (f) = det C, the Pfaffian of f. Define

pf xr(x) = xc(x) = det(x1I,2 — C),
the Pfaffian characteristic polynomial.

Definen (f) € D(End(V)) to be the map with matrix (ad] ¢ 0 )

0 alcC

Here we have used alower case p” to distinguish this Pfaffian from the previous
“matrix Pfaffian” Pf(S). Of coursewe must verify that these definitions do not depend

on the choice of the basis. Suppose f has matrix < g g ) with respect to one basis

of V and has matrix (g g) with respect to another basis. Then C and D have

the same elementary divisors, so that C ~ D. Consequently pf (f) and pf xr(x) are

well defined. One way to prove that this adjoint map is well defined is to recall the
following fact about the classical adjoint:

Let p(x) = x" +ap,_1x" "1+ - - 4 ag bethe characteristic polynomial of C (and

of D). If p*(x) = (=11 22O — (qym=1m=1 4 g, 1xm=2 ...t ay),

c 0 D O

— 0. .n-1
0 c)=9% g p) @ fo

thenadj C = p*(C). (See Exercise 7.) Since
. . adj D 0 1 (D O
somematnxQ,wefmdthatQ-( 0 ade>'Q =Q-p {(0 D)}'

ot=pi($ g)} _ <adéc m?c)‘ Therefore 7( f) is well defined (and
w(f) = p*(f)).

10.13 Lemma. Supposen = dimV isevenand let D = D(End(V)).

(1) pf: D — Fisapolynomial map of degreen/2. If f € D = D(End(V)) then:
pf ()% = det f.
pf(g~1fg) = pf(f) for any g € GL(V).
pf (f%) = pf(H)*. In particular, pf(1y) = 1andif f € D° then pf(f~1) =
pr(H
If f € DEND(V)) and g € D(END(W)) thenpf(f & g) = pf(f) - pf(g).
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(2) pfxr(x)isamonic polynomial of degreen/2 and pf x(f) = 0.
(3 7 :D — Disapolynomial map of degreen/2, satisfying
fa(f)y==(f) - f=pf(f) 1y
ng-f-gH=g-n(f)-g"
T(w(f) =pt(fH272- fandpf(x(f)) = pf(f)2 2

Proof. (1) Clear from the definitions.

(2) Apply the Cayley—Hamilton Theorem.

(3) Use standard properties of the classical adjoint adj C. The second statement
follows from the fact that adj f iswell defined, independent of the basis chosen. For
the final equations recall that adj(adj C)) = (det C)"~2 - C for any m x m matrix
C. (See Exercise 7.) Note that the situation needs some special interpretation when
n=2and f =0y. O

This version of the Pfaffian on D is related to the classical version for skew-
symmetric matrices.

10.14 Lemma. (1) Suppose M, T are skew-symmetfric n x n matrices and M is
invertible. ThenM~1. T € ©, andpf(M~1.T) = (Pf M)~L. (PF T).

(2) Suppose J(f) = f for a symplectic involution J. Then for any g € GL(V),
pf(J(g)fg) = pf(f) - detg.

(3) Suppose J isa symplectic involution on End(V). If f, g € Alt(J) and either
f or gisinvertiblethen fg € D. Inthiscase

pf(fg) =pf(f) -pf(g) and n(fg) =mn(g) n(f).
In particular if f € D then (%) = n(f)k.

Proof. (1) Choose independent generic skew-symmetric n x n matrices Sp, Tp and
use determinants to see that pf (So7o) = ¢ - Pf(Sp) - Pf(Tp) for some e = +1. This
formula specializesto al n x n skew-symmetric S, T over F, with the same sign ¢.
Evaluate ¢ by computing one special case.

(2) Pick abasis and let B be the matrix of f and P the matrix of g. Represent
JasJ(X)=M1.XT .M where M isnonsingular skew-symmetric. Then M B
is skew-symmetric and J(P)BP = M~1.(PT . MB - P) so that pf(J(P)BP) =
(PE M)~ L. PI(PT-MB-P)= (Pt M)"1.Pf(MB) - det P = pf(B) - det P.

(3) Let B, C bethe matricesof f, g and M isgivenasin (2). Since J(f) = f
we know that M B and BM 1 are skew-symmetric. Similarly MC and CM ! are
skew-symmetric. Suppose f isinvertible. Then pf(f) - pf(g) = pf(B) - pf(C) =
pf(BM~1. M) -pf(M~1. MC) = PF(MB~YH)~1. Pf(M) - PE(M)~L - PE(MC) =
pf (MB~1)~1. MC) = pf(BC) = pf(fg), using several applications of part (1).

From (10.13) (3) weget (fg) - fg = pf(fg) = Pf(f) - pf(g) = pf(f)-7(g)g =
(@) (Pf(/)Lv)g = w(e)m(f) - fg. Thenif f, g € Alt(J)* wehaver(fg) = 7(g) -
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w(f). Now for fixed f e Alt(J)* we need to verify that formulafor al g € Alt(J).
(Thecasewhen g isinvertibleissimilar). If | F|isinfinitethisfollowssince Alt(J)® is
Zariski densein Alt(J). For thegeneral caseweuseagenericargument. Let S = (s;;)
be a generic skew-symmetric matrix and set ¢ = M~1S. Then the given matrix B
and this C are in Alt(J)* over the field F(s;;) so that 7(BC) = n(C)n(B). This
equation holds over thering F[s;;] (since(C) = Y1_ya;C7 for somea; € Fsi],
asin Exercise 10). Thereforeit can be specialized to any C € Alt(J). O

Supposen = dimV = 4. We will analyze D = D4 = D(End(V)) in further
detail. Theresults above show that pf : D — F isaquadraticformandnz : D — D
is alinear form. These maps have natura extensions to the whole space End(V).
To describe these extensions we use the trace map tr(f) = trace(f). Note that
tr(ly) = n.

10.15 Example. Supposen = 4. Define Q : End(V) — F by Q(f) = 3 - tr(f)? —
3-tr(f?). Definex’ : End(V) — End(V) by 7/(f) = 1 - tr(f) - 1v — f.

(1) Then Q isaregular quadratic form extending pf : & — F and =’ isalinear
formextendingz : D — D. Also Q(f) = % tr(@’(f) - f) and Q(fg) = O(gf)
sothat Q(s~1fs) = Q(f). Furthermore

(@' =f ad Q@&'(f)= Q).

Any f € End(V) isexpressed as f = aly + fowherea = ;11 -tr(f) isascaar and
tr(fo) = 0. Then7/(f) = aly — fo.
(2 If f € D then f hasminimal polynomial m s (x) of degree < 2. Thefollowing
are equivalent for any f € End(V) which isnot a scalar:
mp(x) =x2—3.tr(f) - x + p forsome g € F
f =aly + fosuchthattr(fo) = Oand f2 € F.
[ (f)eF.
These conditionsimply f € D, except in the case f02 =0andrank fo = 1. In
particular if my(x) isirreducible of degree 2 then f € D.

c 0
0 C
C. The characteristic polynomial of C is p(x) = x2 — (tr C)x + (det C) so that
p*(x) = ({trC)—x. Thenn(f) = p*(f) = l'[r(f)—f. Alsosincepf (f) isascaar
wefindthat pf (f) = -tr(pf (/)1y) = 3-tr(x(f)- ) = 3G (f)-Ly—[f)-f) =
§-tr(f)2— 7 -tr(f?). Therefore n’ extends = and Q extends pf. The remaining
properties are easily checked. (Compare Exercise 10.)

@ mpx) =x2—3-tr(f)-x+pthen f2=(f —str(fN2eF.If fZeF
then f-7'(f) = (aly + fo) - (aly — fo) = a?ly — f@isascalar. If f-7'(f) € F
then (f — % -tr(f)? = fZisascaar, sothat f2— 3 -tr(f) - f + B = Oy for some
B e F. Thenmy(x) = x? — % -tr(f) - x + B. Suppose these conditions hold but

Proof. (1) If f € D then the matrix of f is ( ) for some 2 x 2 matrix
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f & D. Thenm(x) must bereducible (why?) sothe minimal polynomial of fo must
be (x —a)(x + @) for somea € F. If @ # 0 each elementary divisor must equal
x + o, and fo issimilar to adiagonal matrix. But thentr fop = O implies f € D.
Thereforea = 0 and fo2 = Oy. Since fp & D the elementary divisors of fo must be
{x, x,x%) sothat fo hasrank 1. O

Now let us turn to the main topic of this chapter: central simple algebras. We
assumethestandard factsabout central simple F-algebraswithinvolution, aspresented
in Scharlau’s book, for example. We continue to assume all involutions here are of
the “first kind”, unless explicitly stated otherwise.

If J isaA-involution on the central simple F-algebra A, we define

Alt(A, ) =Alt(J)={a € A: J(a) = —\a)}.
If A isan agebraof degreen then dimAlt(4, J) = 22,

10.16 Proposition. Let A be a central simple F-algebra with involution. Suppose
n = deg A iseven. Define

D(A) ={a € A: J(a) = a for some (—1)-involution J on A}.
For any involution Jg on A,
D(A) = {bc: b e Alt(Jp)*and c € Alt(Jo)} = {a € A : Alt(Jp)*-aNnAlt(Jo) # 0}.

Thisset D(A) isclosed under polynomials, under inverses and under conjugation.
(1) Thereisa “ reduced Pfaffian” map pf 4, : D(A) — F whichis a polynomial
map of degree n/2 satisfying
pf 4 (a)? = nrd(a)
pf 4 (p~tap) = pf 4(a)
pf ,(a¥) = pf ,(a)* (In particular, pf ,(1) = 1 and pf ,(a~1) = pf4(@)~ L if
a€ DA°)
If J(a) = afora(—1)-involution J andifb € A®thenpf 4, (J(b)ab) = pf 4, (a)-nrd(D).
(2) If a € D(A) define the polynomial p,(x) = pf 4, (x1 —a) € F[x]. Then
pa(x) ismonic of degreen/2 and p,(a) = 0.
(3) Thereisa polynomial map r4 : D(A) — D(A) of degreen/2 — 1 satisfying
a-mwala) =mala)-a=pf ) -1
wabab™Y) =b - wA(a) -b~lforanyb e A®
ma(ma(a)) = pf 4(@)27% - a and pf 4 (a(a)) = pf 4(a)
If Jisa(=1)-involutiona, b € Alt(J) and either a or b isinvertiblethenab € D(A)
and
pf 4(ab) = pf 4(a) - pf 4(b) and mwa(ab) = wa(b) - wa(a).

31,

Proof. The equivalence of the two descriptions of £D(A) and the various closure
properties follow as before. To define pf , we use “descent”, following the standard
definition of the reduced norm, nrd. Let K be a splitting field for A and choose an
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algebraisomorphisme : A® r K =>M,,(K). Giventhe(—1)-involution J on A define
theinvolution 7 onMi,, (K) by requiringittobe K -linearand I (¢ (a®1)) = ¢(J (a)Q®1)
for every a € A. That is, the diagram

A® K —2= M, (K)

J®1J/ r

A®K —2> M,(K)

commutes. Then I has symplectic type on M,,(K) and it follows that if a € D(A)
then p(a ® 1) € D,,. Definepf 4(a) = pf(pa ® 1)) € K.

First note that this value does not depend on the choice of K (for we may passto
an algebraic closure of F and note that the matrix is unchanged). Furthermoreit is
independent of the choi ce of theisomorphism . (Another isomorphism v differsfrom
@ by an inner automorphism: there exists p € GL,(K) suchthat ¥ (x) = p~te(x)p
forall x e A® K. Recall that pf (p~1xp) = pf (x) for matrices.) Finally suppose that
K /F isaGaois extension (using the theorem that there exists a separable splitting
field). The standard “descent” argument (asin Scharlau (1985), pp. 296-297) used to
provethat the reduced norm hasvaluesin F a so applieshereto show that pf 4 (a) € F.

The stated properties of pf , follow from the corresponding properties for the
matrix Pfaffian. The polynomia p,(x) is the analog of the Pfaffian characteristic
polynomial defined in (10.12) above.

Themap 4 arisesfrom the Pfaffian adjoint map discussed in (10.12) and (10.13).
Defining ma(a) = ¢ L(n(p(a @ 1))) € D(A ® K), the usua descent argument
shows that thisvalueliesin D(A). The stated formulas follow from Lemmas 10.13
and 10.14. ]

A question about a central simple algebra can often be reduced to the split case
after an extension to a splitting field. In order to exploit thisideawe need atechnical
lemma.

10.17 Lemma. Let K/ F be an extension of infinite fields.
(1) Suppose U isa K-vector spaceand p : U — K isa polynomial function. If
U =V ®r K for some F-vector space V and if p vanisheson V ® 1, then p = 0.
(2) If A isafinite dimensional F-algebraand W C A isan F-linear subspace
suchthat (W ® K) N (A ® K)® # @then W N A® £ (.

Proof. (1) Choosing an F-basisof V this statement becomes: if X = (x1, ..., x,)
isasystem of indeterminatesand p(X) € K[X] vanisheson F” then p(X) = 0. This
follows by induction on » and the fact that a non-zero polynomial in one variable has
finitely many roots.
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(2) Let £ : A — Endg(A) be the representation defined by: £(a)(x) = ax.
DefineN : A — F by N(c¢) = det(£L(c)). Then p = N ® lisapolynomial function
ONnA® K andcisaunitin A ® K if andonly if p(c) # 0. Apply part (1). O

Note that these assertions are false over finite fields (see Exercise 11). The next
result isrelated to (6.15) but is proved independently here.

10.18 Corollary. Let A be a central simple F-algebra with involution J. There
existsa € A® such that J(a) = —a, except when A is (split) of odd degree and J
has orthogonal type. Consequently A admits a 1-involution, and it admits a (—1)-
involution provided deg A is even.

Proof. That exception is necessary since a skew-symmetric matrix must have even
rank. Also recall that a division algebra with involution must have 2-power degree.
(Thiswas mentioned earlier in (6.17).) Then an algebra of odd degree with involution
must be split.

Suppose A = M, (F) is split and express J(X) = M~1. X" . M for some A-
symmetric matrix M. If J hassymplectictypethen J (M) = —M. If J hasorthogonal
type choose a nonsingular skew-symmetric matrix S, which exists since we assume
that n iseven. Then J(M~1S) = —(M~15).

Now suppose A is not split. As mentioned above this implies that n = deg A
is even. In addition, Wedderburn’s Theorem on finite division rings implies
that F isinfinite. Let W = {a € A : J(a) = —a}. Let K be a splitting field,
¢ A® K = M,(K) and I the involution on M, (K) corresponding to J. Since
W ® K containsunits, by the split caseanalyzed above, (10.17) impliesthat W contains
aunit of A. O

10.19 Corollary. Let A be a central simple F-algebra with involution and let K
be a splitting field with g : A ® K = M, (K). Leta,b € Aand f = ¢p(a ® 1),
g=9pb®1).

1) ae DA ifandonlyif f € D,.

(2) a~binAifandonlyif f ~ ginM,(K).

(3) For anyinvolution J on A, a ~ J(a).

Proof. If A = M, (F) is split, we may alter ¢ by an inner automorphism to assume
that ¢ induces the inclusion M, (F) € M, (K). Since the elementary divisors of
a € M, (F) are determined by its elementary divisors over K, the assertions (1) and
(2) follow. For (3) expressJ asJ(a) = M1 -a" - M. Thena ~a' ~ J(a) holds
for every a € A.

Suppose A isnot split so that F isinfinite by Wedderburn.
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(1) Let J beal-involutionon Aandlet W = {c € A: J(c) = —c and J(ca) =
—ca}. If ce WN A® thena = ¢~ ca € D(A). The statement follows by applying

Lemma 10.17 to this space W.
(2QQUseW = {c € A:ac = cb}.
B UseW ={ce A:ac=cJ(a)}. O

We begin our discussion of algebras of degree 4 with apreliminary lemma.

10.20Lemma. Let A beacentral simple F-algebraof degree4 witha (—21)-involution
J. Then therestriction of pf to the 6-dimensional space Alt(J) isaregular quadratic
form.

Proof. We may extend scalars to assume A = End(V) is split. Then J = I, isthe
adjoint involution for some regular alternating form » on V. Choosing a symplectic
basis for (V, b) we get the matrix of the formis M = _Ol (l) in 2 x 2 blocks.
Then B isthe matrix of some f € Alt(J) if and only if M B is skew-symmetricif and
only if

X 0y 0 r

z w —-r O

—S X
s 0 y w

Then the formulas in Lemma 10.14(1) and after Corollary 10.9 show that pf (B) =
—rs + xw — yz. Thisisaregular quadratic form in 6 variables. O

for somex, y,z, w,r,s € F.

10.21 Proposition (Albert, Rowen). Suppose A isacentral simple F-algebraof degree
4 with involution. Then any (—1)-involution on A is decomposable. In particular A
is decomposable as an algebra.

Proof. By (10.16) thereisalinear map  : Alt(J) — Alt(J) suchthat a - w(a) =
w(a) - a = pf(a) for every a € Alt(J). Furthermore 7 (7 (a)) = a. Infact, as
in Example 10.15, = is the restriction of the linear map 7’ : A — A defined by
a'(x) = % -trd(x) — x. Therefore Alt(J) = F & W where W isthe (—1)-eigenspace
of r anddimWw = 5.

The quadratic form pf ; on Alt(J) has associated bilinear form B; given by
2By (x,y) =pf;(x+y)—pf ;) —pf ;) = (x+y) -7 (x+y) —x-7(X) —y-7(y) =
x-7(M)+ymx). Ify e Wthen2B;(1,y) = (—y)+y = 0. HenceAlt(J) > F 1L W
relative to the quadratic form pf ; and consequently the induced form on W is regu-
lar (using Lemma 10.20). Choose x, y as part of an orthogonal basis of W relative
topf,. Thenx? = —x - 7(x) = —pf(x) € F* and similally y?> € F*. Also
xy + yx = —2By(x,y) = 0 and we conclude that {x, y} generates a quaternion
subalgebra Q of A. Since W C Alt(J) this Q is J-invariant. O
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Although we are interested mainly in the case A has degree 4, we will define the
Pfaffian associated to an orthogonal involution in the general case of acentral simple
algebra of degree n. Suppose that J is an involution of orthogonal type on A. We
define a Pfaffian on Alt(J) in analogy to the classical Pfaffian on skew symmetric
matrices. Since Alt(J)® - Alt(J) € D(A), as mentioned in (10.16), we obtain a
“Pfaffian” map and a*“ Pfaffian adjoint” associated to afixed s € Alt(J)®:

Pf, : Alt(J) — F isdefined by Pf;(a) = pf (sa).
s L Alt(J) — Alt(J) isdefined by 75 (a) = 7 (sa)s.

Some aspects of these maps are independent of the choice of s.

10.22 Lemma. Let J be a 1-involution on a central simple algebra A of even degree
n. Lets € Alt(J)®.

(1) Ifa,b e Alt(J) thenpf(a=1b) = Pf;(a)~1 - Pf,(b).
Ifs, 1 € Alt(J)® let A = pf(rs~1). Thenfor everya € Alt(J)

Pf,(a) =X -Pfg(a) and m,(a) = X - 75(a).

(2) Pfs(a)? = nrd(s) - nrd(a) for every a € Alt(J).
Pfs(J(D) -a-b) = Pfg(a) - nrd(b) for everya € Alt(J) and b € A°®.

(3) Ifa e Alt(J)thenms(a) -a = a - 73(a) = Pfs(a).
(4) Ifa e Alt(J) then 7, (5 (a)) = (nrds) - (=1)2 - Pfy(a)2 2 - a.

Proof. (1) This generalizes Lemma 10.14(1). Define another involution Jg, by set-
ting Jo(x) = s - J(x) - s~L. Then Jg is a (—1)-involution (since J(s) = —s),
Jo(s) = —s and Alt(Jo) = s - Alt(J) = Alt(J) - s~1. Since sa and sb € Alt(Jo)
the last statement in (10.16) implies pf (a=1b) = pf((sa) ™t - sb) = pf (sa) L pf (sb),
as claimed. For the second statement, note that ts—1 € Alt(J) - s~1 = Alt(Jo)
and sa € s - Alt(J) = Alt(Jp). Then (10.16) (3) implies. Pf;(a) = pf(ta) =
pf (ts™1 - sa) = pf(rs™1) - pf(sa) = A - Pfy(a). The second equality is proved later.

(2) The first statement is clear. The second follows from (10.16) (1) since
pf (s J (b)ab) = pf (Jo(b) - sa - b) = pf(sa) - nrd(D).

(3) Certainly n5(a) - a = n(sa) - sa = pf(sa) = Pfs(a). For the second equality
recall that sa - 7 (sa) = Pf(a) isascalar sothat Pfs(a) = st sam(sa)-s = a-ny(a).
Now tofinishthe proof of (1): using (3) theequation r; (a) = A -7, (a) holdswhenever
a € A®. The standard “generic” argument now applies.

(4) Thisfollows from the definition in terms of = and the properties of 7 stated in
(10.16) (after noting that s2, sa € Alt(J) andpf (s2) = (—1)2-(nrds).) Alternatively
wenotethat if a € Alt(J)® thenn,(a) = Pfy(a)-a~L. Thenn,(ng(a)) = Pfs(a)%*l-
Pf,(a~1)-a. SincePf,(@a1) = (=1)% - Pf,(a)~! - nrd(s) the claim holds. Sincethis
claim isapolynomial equation valid for every a € A*® the standard generic argument
applies again. O
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L et usnow specialize again to the case of maininterest: A hasdegreen = 4. Then
(Alt(J), Pfy) isaquadratic space of dimension 6 whose similarity classisindependent
of the choice of s, depending only on the algebra A.

10.23 Corallary. Let A be a central simple F-algebra with involution and degree 4.
If Jisaninvolution on A definetheforme; : Alt(J) — F asfollows:

If J hastype —1let ¢, (a) = pf(a).

If J hastype 1 chooses € Alt(J)*® and define ¢, (a) = Pf(a).
Then (Alt(J), ¢y) isaregular 6-dimensional quadratic space, and all these spaces
aresimilar.

Proof. First we prove the similarity. Let J be any 1-involution on A and choose
s € Alt(J)®. Let J1 beany (—1)-involution on A. Thenthereexistst € Alt(J)® such
that Jo(x) =1 - J(x) - t~L so that Alt(J1) = ¢ - Alt(J). The left-multiplication map
Ly o Alt(J) — Alt(J1) provides the desired similarity, since for any a € Alt(J) we
have ¢, (L;(a)) = pf(ta) = Pfi(a) = 1 - Pfy(a) = A - ¢;(a), where & = pf (rs~)
asin (10.22). Theregularity of ¢; now follows from (10.20). O

Define the Albert form o4 to be this 6-dimensional quadratic form associated to
A. To caculate a4 note that A is decomposable (by (10.21)) sothat A = C(V, q)
for some 4-dimensional quadratic space (V, ¢). Use the involution Jo which is the
identity on V, sothat Jp hastype (—1) and Alt(Jo) = F®V & Fz. Herez = z(V, q)
so that z° = § wheredq = (8). From Example 10.15 we know that 77 (« 4+ v + Bz) =
o — v — Bz. Therefore pf (e + v + Bz) = a® — q(v) — B8 and a4 is similar to
(Alt(Jo), pf ;) = (1, —dg) L —q.

It is this form for which Albert proved: A isadivision algebraif and only if the
form a4 isanisotropic. (See Exercises 3.10(5) and 3.17.) This Albert form can also
be expressed nicely interms of adecomposition A = Q1 ® Q2 for quaternion algebras
Q;. Let ¢; bethe norm form of Q; with pure parts ¢; (so that ¢; >~ (1) L ¢;). Then
a4 issimilar totheforme; L —¢5. Itiseasy torecover thealgebra A from the Albert
form a since c(aa) = c(pr L —@2) = c(p1)c(p2) = [Q1] - [Q2] = [A]. If these
formulas for the Albert form a4 are taken as the definition, the uniqueness properties
do not seem clear. (See Exercise 3.17.)

10.24 Lemma. Suppose A is a central simple F-algebra with involution J of or-
thogonal type. If A has even degree then Alt(J)® # @ and all values of nrd(b) for
b € Alt(J)* liein the same square classin F*/F*2.

Proof. We proved thefirst statement in Corollary 10.18. Now supposeb, ¢ € Alt(J)®.
Then be € D(A) and therefore nrd(b) - nrd(c) = nrd(bc) = pf (bc)? € F*2. O

Define the determinant det(J) € F*/F*? to be that common square class. That
is, if J isa l-involution on the central simple algebra A and deg A is even, then
det(J) = (nrd(b)) € F*/F*2forany b € Alt(J)".
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10.25 Lemma. (1) Let (V,q) be a quadratic space of even dimension. Then
det(l,) = detq in F*/F*2.

(2) Suppose (4;, J;) arecentral simple F-algebraswith involutions of orthogonal
type and with even degrees. Then det(J1 ® J2) = (1).

Proof. (1) Pick abasisand let M be the symmetric matrix of theform ¢. Let B bethe
matrix of b € End(V). Then I,(B) = M~ L. BT . M.Ifbe Alt(1,) wefind that M B
is skew- symmetric so that det(M B) is a square. Therefore det(l,) = (det(B)) =
(det(M)) = detq in F*/F*2.

(2) If deg(A;) = n; and a; € A; recdl that nrd(a1 ® az) = (nrdag)™2(nrd ap)™t
where the reduced norms are computed in the appropriate algebras. Now simply
choose b € Alt(J1)®, which exists in A; by Corollary 10.18, note that b ® 1 €
Alt(J1 ® J2)* and compute nrd(b ® 1) = nrd(b)"2 isasguare. O

Thus one necessary condition that a 1-involution J be decomposable (relative to
subalgebras of even degree) isthat det(J) = (1). Inthe case A has degree 4 thiswas
proved by Knus, Parimala and Sridharan to be a sufficient condition aswell. The key
ideaisthe linear map 7, discussed in (10.22).

10.26 Proposition. Let A be a central simple F-algebra of degree 4 with involution
J. Then J isindecomposableif and only if J has orthogonal type and det(J) # (1).

Proof. The"if” partisin (10.25). We proved in (10.21) that symplectic involutions
are decomposable. Therefore we assume that J is an involution of orthogonal type
with det(J) = (1) and search for a J-invariant quaternion subalgebra. By definition
there exists b € Alt(J)* such that nrd(b) = A2 for some 1 € F*. Then by (10.22)
Ty oMy = A2. 1ait(sy SO the 6-dimensional space Alt(J) breaksinto +A-eigenspaces:
Alt(J) = UT @ U~. Let By bethebilinear form associated to the quadratic form Pf;.
Then 2B (x, y) = Pfy(x +y) — Pfy(x) — Pfs(y) = x - o (y) + y - w5 (x). Similarly
we argue that this quantity equals s (x) - y + w5 (y) - x.

IfxeUtandy e U then2By(x,y) = x - (=Ay) + (Ax) -y = —A - (xy — yx)
and it aso equals (Ax) - y + (—Ay) - x = A - (xy — yx). Thereforexy — yx = 0
and we concludethat U T centralizes U~ and that Alt(J) = UT L U~ relativetothe
quadratic form Pf . Consequently the restrictions of Pf to the subspaces U+ and U~
areregular.

We may assume dimU™* > 3 (otherwise interchange » and —A). If x,y e U™
then 2B, (x, y) = A - (xy + yx) and in particular x2, y2 € F. Choosex,y € U™ to
be part of an orthogonal basisrelativeto B;. Thenx, y areunitsand xy + yx = 0, sO
they generate aquaternion subalgebra QO € A. Sincex, y € Alt(J) this Q iscertainly
J-invariant. (In fact, the induced involution on Q isthe standard “bar”.) O

Now we are in a position to prove Theorem 10.5.
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Proof of Theorem 10.5. There are three cases to be considered. If y is given with
y2 =d e F*2, it sufficesto find some a € D(A)* which anti-commutes with y and
with J (a) = +a. For with sucha weknow that a? = aa+ f for somew, B € F, since
deg(a) < 2, by (10.16) (2). Conjugating by y and subtracting, we find that « = 0 so
that a®> = B € F*. Then y and a generate a J-invariant quaternion subalgebra Q.
Let K be a splitting field of A withv/d € K, letg : A ® K = Endg (V) and
f=¢(y®1). Then f2 = d -1y sothat f provides an eigenspace decomposition
V = V*T@V~ withdimensions4 = n*+n~. Thematrix of f relativetoacompatible

basisis
NZRY 0
0 —Vd -1~ )"

(1) We know J is decomposable from (10.21). Supposefirst that J(y) = y. Then
y € D(A). Since f € D thedimensionsn™ andn~ areeven. Thennt =n~ = 2,
since y ¢ F. Following the notations in the proof of (10.21) we see that trd(y) = 0
so that y € W. Extending {y} to an orthogonal basis {y, a, ...} of W, we see that
a € Alt(J)* € D(A)® and a, y anti-commute.

Suppose y is given with J(y) = —y. Then J(f) = —f in End(V) so that
f ~ —f. Thereforen™ = n~ = 2 and hence f € D(End(V)). Theny € D(A)
by (10.19) so there exists some (—21)-involution J; on A with Ji(y) = y. Express
Ji=J%sothat J(@) =aandy = J%y) = a1 -J(y)-a = —atya. Then
a € D(A) and a, y anti-commute.

(2) If J isdecomposablewecan certainly find suchanelement y insidea J -invariant
quaternion subalgebra. Conversely suppose J isa 1-involution with J(y) = —y. As
before we find that f ~ —f sothat n™ = n~ = 2. Then nrd(y) = det(f) =
(Vd)2(—+/d)? = d?. Thendet(J) = (1) and (10.26) impliesthat J isdecomposable.
Asabovey € D(A) sothereexistssome (—1)-involution J; with J1(y) = y. Express
J1 = J% and notethat J(a) = —a and a, y anti-commute. Sinceay € D(A) and y,
ay anticommute, the claim follows. O

The existence of an indecomposable involution on a degree 4 division algebra
was first proved by Amitsur, Rowen and Tignol (1979). The Knus, Parimala and
Sridharan Theorem (10.26) shows that the determinant det(J) determines whether J
is indecomposable. This criterion is made clearer by the following result of Knus,
Lam, Shapiro, Tignol (1992).

Proposition. Let A be a central simple F-algebra of degree 4, with involution. The
following subsets of F'* are equal.

{d : (d) = det(J) for some 1-involution J on A}.

Gr(ay), thegroup of similarity factors of an Albert formof A.

nrd(A®) - F*2, the group of square classes of reduced norms.
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Consequently the algebra A admits an indecomposable involution if and only if
the Albert form a4 has a similarity factor which is not a square.

Analogous decomposition results fail for algebras of larger degree. Any tensor
product of three quaternion algebrasis acentral simple algebra of degree 8. However
Amitsur, Rowen and Tignol (1979) found an example of adivision algebra D of degree
8 over its center and such that D has an involution but is indecomposable (i.e. D has
no quaternion subal gebras).

Several standard properties of quadratic forms have analogs for orthogonal invo-
lutions of central simple algebras. We end this chapter with some remarks about this
correspondence. An orthogonal involution on End(V) must equal the adjoint involu-
tion /, for some quadratic form ¢ on Vv, unique up to scalar multiple. Any invariant of
g which remains unchanged if ¢ isaltered by asimilarity should be definable entirely
interms of theinvolution 7,,. For example:

detg € F*/F*2 inthecasen = dimg iseven.

| sgnp (¢)|, the absol ute value of the signature of ¢ at an ordering P of F.
Co(q), the even Clifford algebra.

The Witt index of g.

G r(q), the group of similarity factors (or norms) of the form g.

Arethere analogousinvariants for orthogonal involutions on arbitrary central sim-
ple agebras, coinciding with the given invariantsin the split case? Of course we hope
that the newly defined invariant will be useful in the theory of involutions.

We have already seen one example of this program: the determinant det(J) is
the analog of detq. Lewis and Tignol (1993) have investigated the signature of an
involution. The analog of the even Clifford algebra was done long ago by Jacobson
(1964) and discussed further by Tits (1968). The determinant det(J) also arises
naturally out of Jacobson’'s theory. This even Clifford algebra of an algebra with
involution (A, J) isinvestigated extensively in Knus et al. (1998).

The Pfister Factor Conjecture provides another example of thistheme. A quadratic
space (V, ¢) is similar to a Pfister form when ¢ is a tensor product of some binary
forms. Equivalently, the algebra (End(V), 1,) is atensor product of split quaternion
algebras with involution. Motivated by this, let (A, J) be a centra simple algebra
with 1-involution and defineit to be a“ Pfister algebra’ if it isatensor product of some
quaternion algebras with involution. The Pfister Factor Conjecture says. When A is
split then these two notions coincide. A precise statement appearsin (9.17).

Exercises for Chapter 10

1. Maximal examples. (1) If dmg = 16 and (o, t) < Sim(g) isan (s, ¢)- familiy
wheres +1t > 7, then g issimilar to aPfister form. Find an example of ¢ over R such
that dimg = 16 and Sim(g) has a (3, 3)-family but admits no families of larger size.
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(2) There exists ({1, a), (x)) < Sim(V,g) where dimg = 12 but such that
((1, a), {x)) does not admit any expansion by 2 dimensions. (See Exercise 7.10.)
Find similar examples (o, ) < Sim(g) of an (s, ¢)-family wheres +¢ = 2m — 1 and
dimg = 2™ . 3, but o admits no expansion by 2 dimensions.

(3) Open question. Aretheresimilar examplesin other dimensions? For instance,
isthere some o < Sim(g) wheredimo = 5, dimg = 48, but the 5-plane does not
expand by 2 dimensions? That involves adegree 4 Clifford agebra D (which must be
adivision algebra) and a (—1)-involution on Mi3(D) having no invariant quaternion
subalgebras. Does such an involution exist?

(4) Whencan (1, a) < Sim(q) bemaximal asasubspace? Certainly if ((a)) | ¢ but
g has no 2-fold Pfister factor then this occurs. The converse is unknown.

Open question. If ((a)) | ¢ and ((x, y)) | ¢ then must there exist b € F* with
{(a, D)) | q?

(Hint. (1) If s + ¢ > 7 then (10.7) shows that thereis a (5, 5)-family and ¢ is Pfister
by PC(4). Find a proof that does not invoke Theorem 10.7.)

2. Non-uniqueness. (1) Suppose (o, T) is an (s, t)-pair where s + ¢ is odd, and
let (C, J) be the corresponding Clifford algebra with involution. Then (o, 1) <
Sim(V, ¢) if and only if there is a central simple F-algebra with involution (A, K)
suchthat (C® A, J ® K) = (End(V), I,). However this (A, K) need not be unique.

(2) The two representations 7, and g of C — End(V) arising from the two
choices above yield two (2, 1)-families on the 8-dimensional space (V, ¢g). One of
them expands to a (4, 4)-family and the other does not admit any expansion of 2 or
more dimensions.

(Hint. (1) Let (0,7) = ((1,1),(1) so that (C,J) = (M2(Q), Ij1y). Let
g >~ {L,L1),a=(L1L1Ladps =(111L12. Then{(lh) Q@ ~ (1) ® B
but «, 8 are not similar.)

3. Matrix Pfaffians. (1) If S, T are skew-symmetric n x n matrices which anticom-
mute then ST is also skew-symmetric and Pf(ST) = £ Pf(S) - Pf(T). Isthissign
independent of S, T?

(2) Suppose R commutes with some nonsingular skew-symmetric S. Then
RT-Re Dandpf(RT - R) = detR.

() If S, T € GL, areskew-symmetricthen ST € D, andpf (ST) = (—1)2 P(S)-
Pf(T). Consequently if S15283S4 = I, where each S; is skew-symmetric then
Pf(S1) - Pf(S2) - Pf(S3) - Pf(S4) = 1. Arethere analogous results when I, equals a
product of some k skew-symmetric matrices?

(4) If S isskew-symmetric n x n then Pfadj(Pfadj(S)) = (—1)"2‘ - (Pf S)%_2 - S.

4. Properties of m. (1) Let M, T be given asin 10.14. Then x(M~1.T) =
Pfadj(M)~1 - Pfadj(T).
(21f f e Alt(J)andg € GL(V) then(J(g) fg) = (detg)-g~L-7(f)- J(e) L.
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5. Let A be acentral simple F-algebrawith involution. Supposedeg A = n iseven
andn > 2.

(D) Lemma. D(A) containsan F-basisof A.

(2) If J isan involution on A then Alt(J) generates A as an F-algebra. Does
Sym(J) generate A aswell?

Corollary. (i) If J, J/ are involutions on A then J = J’ if and only if
Alt(J) = Alt(J").
(i) (A, J) = (A, J) ifand onlyif Alt(J') = x - Alt(J) - x~1 for somex € A°.

(Note. Thisassertion is aso true when A is quaternion.)
(3) Given the subspace S = Alt(J) C A, express the subspace Sym(J) somehow
directly intermsof S.

(Hint. (1) It sufficesto settlethe split case. Anad hoc proof can begiven, but theclaim
follows immediately from a theorem of Kasch (1953). Further references appear in
L eep, Shapiro, Wadsworth (1985), §4.

(3) Sym(J) = (Alt(J))* relativeto thetraceformt : A x A — F defined by
T(x,y) = trd(xy).)

6. (1) Let J beai-involution on End(V) and fix sg € Alt(J)®. Then f € Alt(J) iff
f=J(g) so-gforsomeg € End(V).
(2) Does (1) remain valid for involutions on a central simple algebra A?

(Hint. Let B be the A-form on V corresponding to J, and By the aternating form for
J%. Then (V, Bo) has asymplectic basis and the regular part of B/ has asymplectic
basis. Choose a (not necessarily injective) isometry g : (V, B/) — (V, Bo).)

7. Let C beanm x m matrix over F.

(1) Ifp(x) = det(xI,, — C) is the characteristic polynomial, define p*(x) =
(_1)m+l . p(x);p(O). Thenadj C = p*(C).

(2) adj(adj C)) = (detC)" 2. C.

@) IfdmV =2, then D(ENd(V)) = F-1y. If f = «a -1y fora € F, then
pf(f) = o, pfxr(x) = x —a andn(f) = 1y. Explain the difficulty in the definition
when f = Oy.

(Hint. (1) Verifyfirstthat C - p*(C) = (det C) - I,,. Theclaim followsfor nonsingular
C. Apply this case to a generic matrix C, or to the matrix C + x - I, in F(x), and
then specialize to deduce it for arbitrary C.

(2) Apply the equation X - adj X = (det X)I,, to X = C and X = adj C and
deduce the claim when C is nonsingular. Complete the argument as before.)

8. Subspaces of D. Let A be a degree 4 algebra with involution. If S € D(A)
is alinear subspace withdimS = 6and 1y € S, then S = Alt(J) for some (—1)-
involution J.
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(Hint. Let Sp be the subspace of trace O elements. Then (S, pf) ~ (1) L —y
as a quadratic space, where ¥ (c) = ¢2 for ¢ € So. There is an induced algebra
homomorphism : C(y) — A. If ¢ isregular then i issurjective and theinvolution
Jo on C(y) induces the desired J on A. Otherwise, pass to the split case and find
T C SowithdimT = 3and+? = Ofor every r € T. Get acontradiction using Jordan
forms and the fact that every such ¢ has even rank.)

9. Albert forms. Let A be a central simple algebra of degree 4, with involution.
Then the Albert form a4 is uniquely defined up to a scale factor. If J isa (—1)-
involution on A let Altg(J) be the subspace of trace O elements of Alt(J). Then
a4 has a special presentation: (Alt(J), pf) ~ (1) L —y where ¥(¢) = 2 for
¢ € Altg(J). Conversely, if thereisaredization of o4 which represents 1, then there
isacorresponding (—1)-involution J. Consequently, if « isone choice for the Albert
form, then there is a bijective correspondence:

{isomorphism classes of (—1)-involutionson A} <> Dg(a)/Gp(a).

10. If f € D(End(V)) then = (f) isapolynomia in f. For example, whenn =
dmV:

ifn=4thenn(f)=3-@rHly — f;

(Hint. If n = 6then xr(x) = x® — c1x® 4+ cox* — - = p(x)? where p(x) =

x3 4+ ax2 4+ bx + ¢. Then n(f) = p*(f) where p*(x) = x2 + ax + b. Then
- _1 — 1., _1.2 i ) — R

a =—5c1andb = 5cp — gey. For the eigenvalues A;, c1 = Y A; = tr(f) and

c2 =Y Mihj = 5((tr )2 —tr(f?).)

11. Finitefield examples. (1) Suppose 4 € M, (F) isalinear subspace of singular
matrices, but that for some extension field K/ F the space § ® K € M, (K) contains
anonsingular matrix. Then F must befiniteandn > |F|.

X % *
(2) The set of all <0 y * ) provides a5-dimensiona examplein Mz(IFy).
0 0 x+y

Find asimilar example of 8§ C My(F3) withdim$ = 9.

12. Suppose A isacentral simple F-algebra.

(D If Jisaninvolutionon A anda € A thena ~ J(a), by Corollary 10.19. In
fact J(a) = bab~! for some b such that J (b) = b, where 1 = type(J).

(2) If a € Aisnilpotent thena ~ —a.

13. Linear algebra. (1) Lemma. If C € M, (F) then there exists some symmetric
S eGL,(F)suchthat S-C-S~t=CT.
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(2) Corallary. Let A be a central simple F-algebra with involution and ¢ € A.
Then there exists a 1-involution J on A such that J (a) = a.

(3) Proposition. Let A be asbefore and supposes = +1isgiven. Ifa € A® with
a ~ —a then there exists an ¢-involution J such that J(a) = —a.

(Hint. (1) Use the rational canonical form to reduce to the case C is a companion
matrix. Now S can be exhibited explicitly. It can also be derived as the Gram matrix
of atraceformonthealgebra F[x]/(p(x)) where p(x) isthe characteristic polynomia
of A.

(2) Suppose A = End(V) is split, choose a basis, apply (1) and define J(X) =
§~1.XxT.5.If Aisnot split then F isinfinite. Fix a 1-involution Jo, consider the
linear subspace W = {c € A : Jo(c) = ¢ and Jo(ca) = ca}, and apply (10.17).

(3) The same steps work, but the split case is harder. References appear in the
Notes below.)

14. Generalizing £. Define
DY = (B € M,(F) : B = ST for some skew-symmetric S, T'}.

(1) D, < DY with strict containment if n > 3.

(2) If B € DY then every elementary divisor of B not of the form x* occurs with
even multiplicity.

(3) Find some B ¢ i)g with rank(B) = 1. What conditions on the elementary
divisors characterize elements of D92 (See the Notes for references.)

(Hint. (1) Find 4 x 4 skew-symmetric S, T such that ST hasrank 1.
(2) Notethat QBQ 1 = (0SQ")(Q~TT Q1) and choose Q sothat 0SQT =

(H 0 By Bi

0 0 for some nonsingular skew-symmetric H. Then B ~ 0 0 where

Bo € O. Themultiplicity of anon-zero eigenvalue of B equalsthat of By and (10.10)
applies.)

15. (1) Let f € End(V). Then f liesin & <— [ ~ g g) Hereis a
“basis-free” version: f € O < f centralizes some split quaternion subalgebra of
End(V).

(2) Proposition. Let A beacentral simple F-algebrawith involution and suppose
0 C Aisaquaternion subalgebra. Then C4(Q) € D(A). Theconverseistrueif A

is split of even degree or if A has degree 4.
(Hint: (D) If f € DthenV = U @ W with bases {u1, ...} and {w1, ...} such that
f(uj) = Zi CijUi and f(wj) = Zi CijWi. Defineg,h € End(V) byg = <2 é)

1 0

and h = (0 1

). Then f centralizes the algebra generated by g and .



