Ohio State nav bar

Analysis and Operator Theory Seminar - Dany Leviatan

Dany Leviatan
May 17, 2018
5:00PM - 5:55PM
Cockins Hall 240

Date Range
Add to Calendar 2018-05-17 17:00:00 2018-05-17 17:55:00 Analysis and Operator Theory Seminar - Dany Leviatan Title: Comparing the degrees of unconstrained and constrained approximation by polynomials Speaker: Dany Leviatan (Tel Aviv University) Abstract: It is quite obvious that one should expect that the degree of constrained approximation be worse than the degree of unconstrained approximation. However, it turns out that in certain cases we can deduce the behavior of the degrees of the former from information about the latter. Let $E_n(f)$ denote the degree of approximation of $f\in C[-1,1]$, by algebraic polynomials of degree $<n$, and assume that we know that for some $\alpha>0$ and $N\ge1$, $$ n^\alpha E_n(f)\leq1,\quad n\geq N. $$ Suppose that $f\in C[-1,1]$, changes its monotonicity or convexity $s\ge0$ times in $[-1,1]$ ($s=0$ means that $f$ is monotone or convex, respectively). We are interested in what may be said about its degree of approximation by polynomials of degree $<n$ that are comonotone or coconvex with $f$. Specifically, if $f$ changes its monotonicity or convexity at $Y_s:=\{y_1,\dots,y_s\}$ ($Y_0=\emptyset$) and the degrees of comonotone and coconvex approximation are denoted by $E^{(q)}_n(f,Y_s)$, $q=1,2$, respectively. We investigate when can one say that $$ n^\alpha E^{(q)}_n(f,Y_s)\le c(\alpha,s,N),\quad n\ge N^*, $$ for some $N^*$. Clearly, $N^*$, if it exists at all (we prove it always does), depends on $\alpha$, $s$ and $N$. However, it turns out that for certain values of $\alpha$, $s$ and $N$, $N^*$ depends also on $Y_s$ and, in some cases, even on $f$ itself and this dependence is essential. Cockins Hall 240 Department of Mathematics math@osu.edu America/New_York public

Title: Comparing the degrees of unconstrained and constrained approximation by polynomials

Speaker: Dany Leviatan (Tel Aviv University)

Abstract: It is quite obvious that one should expect that the degree of constrained approximation be worse than the degree of unconstrained approximation. However, it turns out that in certain cases we can deduce the behavior of the degrees of the former from information about the latter. Let $E_n(f)$ denote the degree of approximation of $f\in C[-1,1]$, by algebraic polynomials of degree $<n$, and assume that we know that for some $\alpha>0$ and $N\ge1$, $$ n^\alpha E_n(f)\leq1,\quad n\geq N. $$ Suppose that $f\in C[-1,1]$, changes its monotonicity or convexity $s\ge0$ times in $[-1,1]$ ($s=0$ means that $f$ is monotone or convex, respectively). We are interested in what may be said about its degree of approximation by polynomials of degree $<n$ that are comonotone or coconvex with $f$. Specifically, if $f$ changes its monotonicity or convexity at $Y_s:=\{y_1,\dots,y_s\}$ ($Y_0=\emptyset$) and the degrees of comonotone and coconvex approximation are denoted by $E^{(q)}_n(f,Y_s)$, $q=1,2$, respectively. We investigate when can one say that $$ n^\alpha E^{(q)}_n(f,Y_s)\le c(\alpha,s,N),\quad n\ge N^*, $$ for some $N^*$. Clearly, $N^*$, if it exists at all (we prove it always does), depends on $\alpha$, $s$ and $N$. However, it turns out that for certain values of $\alpha$, $s$ and $N$, $N^*$ depends also on $Y_s$ and, in some cases, even on $f$ itself and this dependence is essential.

Events Filters: