Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Combinatorics Seminar - Hanbaek Lyu

Hanbaek Lyu
April 11, 2019
10:20 am - 11:15 am
Math Tower 154

Title: Phase transition in random contingency tables with non-uniform margins

SpeakerHanbaek Lyu (UCLA)

Abstract: Contingency tables are matrices with nonnegative integer entries with fixed row and column margins. Understanding the structure of uniformly chosen contingency table with given margins is an important problem especially in statistics. For parameters $n,\delta,B,$ and $C$, let $X=(X_{k\ell})$ be the random uniform contingency table whose first $\lfloor n^{\delta} \rfloor $ rows and columns have margin $\lfloor BCn \rfloor$ and the other $n$ rows and columns have margin $\lfloor Cn \rfloor$. For any $0<\delta<1$, we establish a sharp phase transition of the limiting distribution of each entries of $X$ at the critical value $B_{c}=1+\sqrt{1+1/C}$. One of our main result shows that, for $1/2<\delta<1$, all entries have uniformly bounded expectation for $B<B_{c}$, but the mass concentrates at the smallest block and grows in the order of $n^{1-\delta}$ for $B>B_{c}$. We also establish a strong law of large numbers for the row sums within blocks.

Joint work with Igor Pak and Sam Dittmer.

Events Filters: