Ohio State nav bar

Quantum Algebra & Quantum Topology Seminar - Micah Chrisman

Micah Chrisman
November 13, 2018
1:50PM - 2:45PM
Bolz Hall 422

Date Range
Add to Calendar 2018-11-13 13:50:00 2018-11-13 14:45:00 Quantum Algebra & Quantum Topology Seminar - Micah Chrisman Title: Estimating the virtual slice genus of classical knots in $S^3$. Speaker: Micah Chrisman (Ohio State University) Abstract: For a compact connected oriented surface $\Sigma$, a knot $K$ in $\Sigma \times [0,1]$ is said to be virtually slice if there is a compact connected oriented $3$-manifold $W$ and a disc $D$ smoothly embeddded in $W \times [0,1]$ such that $\partial D=K$. The virtual slice genus of $K$ is the smallest genus orientable surface that $K$ bounds in some $W \times [0,1]$, where the minimum is taken over all compact connected oriented $3$-manifolds $W$. A classical knot in $S^3$ can be considered as a knot in the thickened surface $S^2 \times [0,1]$. A conjecture of Kauffman states that the slice genus of a knot in $S^3$ is equal to its virtual slice genus. Boden and Nagel proved the conjecture to be true for slice knots in $S^3$. In this talk, we provide some positive evidence for Kauffman's conjecture in both the smooth and topological categories. In particular, we will prove Kauffman's conjecture is true for all classical knots up to crossing number 11 and for 2150 of the 2175 clasical knots with crossing number 12. The first portion of this talk will be an introduction to virtual knot concordance. This project is joint work with H. U. Boden and R. Gaudreau. Seminar URL: https://www.coreyjonesmath.com/qaqt-seminar-osu Bolz Hall 422 Department of Mathematics math@osu.edu America/New_York public

Title: Estimating the virtual slice genus of classical knots in $S^3$.

SpeakerMicah Chrisman (Ohio State University)

Abstract: For a compact connected oriented surface $\Sigma$, a knot $K$ in $\Sigma \times [0,1]$ is said to be virtually slice if there is a compact connected oriented $3$-manifold $W$ and a disc $D$ smoothly embeddded in $W \times [0,1]$ such that $\partial D=K$. The virtual slice genus of $K$ is the smallest genus orientable surface that $K$ bounds in some $W \times [0,1]$, where the minimum is taken over all compact connected oriented $3$-manifolds $W$. A classical knot in $S^3$ can be considered as a knot in the thickened surface $S^2 \times [0,1]$. A conjecture of Kauffman states that the slice genus of a knot in $S^3$ is equal to its virtual slice genus. Boden and Nagel proved the conjecture to be true for slice knots in $S^3$. In this talk, we provide some positive evidence for Kauffman's conjecture in both the smooth and topological categories. In particular, we will prove Kauffman's conjecture is true for all classical knots up to crossing number 11 and for 2150 of the 2175 clasical knots with crossing number 12. The first portion of this talk will be an introduction to virtual knot concordance. This project is joint work with H. U. Boden and R. Gaudreau.

Seminar URLhttps://www.coreyjonesmath.com/qaqt-seminar-osu

Events Filters: