Department of Mathematics The Ohio State University

1971-1972 Mathematics Courses

Course Number 105	Course Title
106	Mathematics for Elementary Teachers
107	Mathematics for Elementary Teachers
116	Mathematics for the Behavioral Economic, and Social Sciences I
117	Mathematics for the Behavioral Economic, and Social Sciences II
118	Mathematics for the Behavioral Economic, and Social Sciences III
121	Mathematics for the Business, Social, and Biological Sciences I
122	Mathematics for the Business, Social, and Biological Sciences II
151	Differential and Integral Calculus
152	Differential and Integral Calculus
254	Differential and Integral Calculus
190	Freshman Analysis
191	Freshman Analysis
192	Freshman Analysis
221	Mathematics for Business, Social and Biological Sciences IV
255	Ordinary Differential Equations
415	Ordinary and Partial Differential Equations
416	Vector Analysis and Complex Variables
450	Advanced Calculus I
550	Advanced Calculus I
471	Matrices and Linear Algebra
504	History of Mathematics
507	Advanced Geometry
512	Partial Differential Equations and Boundary Value Problems
513	Vector Analysis
514	Complex Variables for Engineers
545	Mathematical Logic I
551.01	Advanced Calculus II
551.02	Advanced Calculus II
552.01	Physics Mathematics
552.02	Complex Variables I
556.01	Ordinary Differential Equations without Linear Algebra
556.02	Ordinary Differential Equations with Linear Algebra

Course Number 557	Course Title
560	Topology
568	Linear Algebra I
569	Linear Algebra II
570	Elementary Modern Algebra
570	Introduction to Linear Algebra
571.03	Introduction to Linear Algebra
573	Elementary Number Theory
574	Geometry
577	Discrete Algebraic Structures
580	Three Quarter Algebraic Sequence
581	Three Quarter Algebraic Sequence
582	Three Quarter Algebraic Sequence

Syllabus for Math 106

This course is open only to students whose indicated major is elementary education. It is a continuation of Math 105 and investigates mathematical concepts appropriate for prospective elementary school teachers. The prerequisite for this course is Math 105. The sequence 105 and 106 fulfills a ten-hour mathematics requirement for Elementary Education majors. Math 106 is offered Autumn and Spring Quarters.

Topics covered include relations, measurement, mathematical structure, probability and statistics.

The probable texts for this course are Rlementary Mathematics for Teachers by Kelley and Richert (Chapters 7-8) and More Topics in Mathematics for Mementary School Teachers, the 30th Yearbook of the National Council of Teachers of Mathematics (Chapters 11, 13, 15, and 16).

Further information may be obtained from the course coordinator, Proîessor Jim Schultz.

Syllabus for Math 107

This course is open only to students whose indicated major is elementary education. It serves as an informal approach to geometry as appropriate for prospective elementary school teachers. The prerequisite for this course is Math 105. (Math 106 is not a prerequisite.) The sequence 105 and 107 folfills a ten-hour mathematics requirement for Elementary Education majors. Math 107 is offered Autumn and Summer Quarters.

Topics covered include basic definitions, properties of geometric figures, similarity, congruence, linear and angular measure, area, volume, constructions, and geometric transformations.

The probable text for this course is Informal Geometry for Elementary Teachers by Eberle (preliminary edition).

Further information may be obtained from the course coordinator, Professor Jim Schultz.

Mathematics 116-Mathematics for the Behavorial, Economic, and Social Sciences I

Credit: 5 hours
Coordinator: Jolnn Riner
Prerequisite: Math 101 or Math Placement Level III
Text: An Introduction to Calculus with Economic Applications.
Catalog Description: The sequence 116, 117 treats topics in Mathematics with applications to the non-physical sciences. Topics will include analytic geometry, calculus, linear algebra, linear programming, and graph theory; applications.

Outlook: Emphasis is on intuitive understanding. It is hoped that students may feel less intimidated by terminology and symbolism. Primary goal of the sequence is an appreciation of calculus as a great invention of man.

Audience: Generally apprehensive about mathematics. Backgrounds will vary although most have two years of high school mathematics.

Areas listing 116,117 as suggested courses include: Agriculture (General and Industrial programs); School of Allied Medical Professions; College of the Arts (Division of Design, Visual Cormunication): Economics, Psychology.

Follow-up Courses: Students may elect 117 to complete the ASC 10 hour requirement for : Skills and Understandings of Analysis and Interpretation: Symbolic Communication.

Note: Students may also elect 116 and any course from CIS or Statistics or Philosophy 150, 250, 650, 653, and 674.

Content and Suggested Time Schedule

I Notation and Functions
Set Language
Properties of Functions
II Algebra
Axioms and Properties of Real Numbers Inequalities Absolute Value Equations

9 days

```
III Graphing
    5 days
        Subsets of R}\mp@subsup{R}{}{2
        Inequalities
        Absolute Value
        Equations
IV Vectors
    1 0 \text { days}
    R
    Lines
    Slope
V Linear Algebra
    13 days
        Matrix Theory
    Linear Transformations
VI Linear Programming
3 days
```


SYLIABUS

Mathematics 117 - Mathematics for the Behavioral, Economic, and Social Sciences II

Credit: 5 hours

Coordinator: John Riner
Prerequisite: Mathematics 116
Text: An Introduction to Calculus with Economic Applications
Catalog Description: The sequence 116, 117 treats topics in mathematics with applications to the non-physical sciences. Topics will include analytic geometry, calculus, linear algebra, linear programming, and graph theory; applications.

Audience: Generally apprehensive about mathematics. Backgrounds will vary although most have two years of high school mathematics.
Areas listing 116, 117 as suggested courses include: Agriculture (General and Industrial programs); School of Allied Medical Professions; College of the Arts (Division of Design, Visual Communication); Economics, Psychology.

Follow-up Courses - Mathematics 118 is offered as a bridge between 116, 117 and Math 221 or Math 153 depending on student's need. Students interested in further course work in mathematics should consult with either Professor Riner or Professor Elbrink.

Content and Suggested Time Schedule
I. Limits

Sequences
Functions
Continuity
II. The Derivative

9 days
Definition
Techniques
Increasing, Decreasing, and Concavity
Applications to Curve Sketching
III. Analytic Geometry

7 days

Circle
Rectangular Hyperbola
Parabola
Graphing Technique解
IV. Economic Applications of the Derivative 8 days

Total Revenue
Marginal Revenue, Marginal Cost
Net Revenue

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNUGRSITY
231 WEST EIGHTEENTH AVENUE COLUMBUS, OHO 43210-1174
V. Logarithmic and Exponential Functions 7 days Definitions Derivatives "Growth" Applications -- Interest
VI. The Integral

11 days
Area Approximation
Definition
Properties and Basic Theorems
Basic Techniques
Applications

Mathematics 118 - Mathematics for the Behavorial, Economic, and Social Sciences III

Credit: 5 hours
Coordinator: John Riner
Prerequisite: Mathematics 116 and 117 and permission of instructor
Text: Any suitable calculus text. We have used the program series A Programmed Course in Calculus published by Benjamin and developed by the Committee on Educational Media of the MAA.

Audience: The course is planned for students who have taken 116 and 117
but who find more mathematics necessary or desirable. For example a student who changes his major to an area in the College of Administrative science and has taken 116 and 117 may take 118. He would then have the equivalent of 121 and 122 and eligible for 123 or 221. Other students may use the sequence (116, 117, 118) as a path into 153 or beyond.

Suggested Content
I Limits and Continuity
II The Derivative
Slope of tangent line
Instantaneous rate of change
Techniques of differentiation
Chain rule
Differentials and approximation
Maximum and Minimum
Mean Value Theorem
Curve Tracing
Applications
III Transcendental Functions
Logarithmic
Exponential
Trigonometric
Inverse trigonometric
Hyperbolic functions.
IV The Integral
Antiderivative \quad DEPARTMENT OF MATHEMATCS Indefinite int ais sim THE OHIO STATE UNIVERSTTY Techni ques of in igratiogai M. 231 WEST EIGHTEENTH AVENUE Work
Volume
Improper integrals
Note: This is considerable material to cover in one quarter. However, the general concept should be familiar to the student as a result of 117 .

MATH 121: Mathematics for the Business, Social and Biological Sciences I. COORDINATOR: Bert K. Waits
PREREQUISITE: Math placement Level II or a grade of C or higher in Math 101.
AUDIENCE: Freshmen with majors in the college of Administrative Science. (Requirement: Math 121, 122 and 123.) Some students in the biological sciences elect this course. Also, some students in the Colleges of the Arts and Sciences with majors in accounting and psychology will elect this course.

BACKGROUND OF AUDIENCE: A basic knowledge of high school algebra can be assumed. However, Math 121 begins with a review of certain elements of basic algebra - functions and graphing. The overall attitude of the audience \therefore towards their mathematies requirement is poor. They are, to say the least, not very well motivated (to the study of mathematics).

FOLLOW-UP COURSES:
Mathematics 122 and Mathematics 123 (Math 123 will become Statistics 123 next yaar.) Mathematics 221 (several variable calculus) can be elected after the 121-122-123 sequence for those needing more mathematics. The Math 221 course serves as a "bridge" course between the 121 sequence and higher level math and statistics courses.

CONTENT: Algebra review including work with inequalities - 2 weeks. Functions and graphing - 2 weeks. Exponential, logarithm and trigonometric functions - 2 weeks. Differential calculus - 4 weeks.

TEXT: (1971-1972 Academic Year) Elementary Analysis and Statistics,
Whitney and Shapiro.
SUGGESTED OUTLINE:

SYLIABUS

MATH 122: Mathematics for the Business, Social and Biological Sciences II. COORDINATOR: Bert K. Waits

PREREQUISITE: Math 121 or 120.02 or 151 or equivalent. AUDIENCE: Freshmen with majors in the College of Administrative Science. (Requirement: Math 121, 122, 123.) Some students in the biological sciences also elect this course. Also, some students in the Colleges of the Arts and Sciences with majors in accounting and psychology elect this course.

BACKGROUND OF AUDIENCE: The students have a wide range of abilities and interests. Their background consists of some knowledge of elementary differential calculus (as indicated by grades of D through A in Math 121!).

FOLIOW-UP COURSES: Mathematics 123 (Statistics 123 next year). Math 221 (several variable calculus) can be elected by those needing higher level mathematics. Math 221 serves as a "bridge" course between the Math 121 sequence and higher level math and statistics courses.

CONTENT: Differential calculus including L'Hopital's Rule and Taylor's Formula - 5 weeks
Integral calculus including improper integrals - 5 weeks.
TEXI: (1971-1972 Academic Year) Elementary Analysis and Statistics, Whitney and Shapiro.

SUGGESTED OUTLINE:

Topic Text Reference

DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY 231 WEST EIGHTEENTH AVENUE COLUMBUS, OHIO 43210-1174

Syllabi and Recommended Textbook For Mathematics 151, 152, 254

Text: Leithold, The Calculus, Harper and Row, 1972

Mathematics 151. Lines, functions, graphs. Trigonometric, exponential, \log functions, inverse functions, inverse trigonometric functions. Limits, continuity, tangent lines, derivatives (of the above functions), applications. Rolles' theorem, mean value theorem, applications.

Nathematics 152. Antiderivatives, area, definite integral, fundamental theorem of calculus. Review of transcendental functions. Applications and techniques of integration.

Mathematics 254. Vectors and parametric equations, arc length, differentiation and integration of functions of several variables, line integrals, applications.

Comments: Math 151, roughly Leithold Chs. I-IV, plus material on transcendental and inverse functions.

Math 152. Roughly Leithold, Ch. 5, Section 3-Ch. 10.
Math 254. Roughly Leithold, Chs. 15-18 plus material on line integrals.
math $190=191-192$
Fueshmag AneItyst
Prerequisites: Entrance exams in the 9609 percentile rage, hirh paskisg on special homons exqm, ant consent of instructoro

The content and mode of presentation of this year sequence is fartialiy up to the inotructors At the end of the year the students shonld have had the materind of tho standard calculus sequence and the meteriel of the one variable atvanced calculuso nduitional techmical azd theoretical naterial from analysis should be includedo

Obrinue for $71-72$ acamenic yeav.
Text: Apostelg Calculus Vol. I. Gixn=Alaissell
Hath 1o0: Introductiono Sets, real fumber System, Induction Chapter $I=$ Inlefral Calculus Chapter II = Applications of Intepration Chapter III - Costinaour Functions Chapter TV Differtatial Calculus Chapter \mathcal{F} Relationshif between Jifferentintior and Intefration Cheptex VI = Lotarithpo Exponemtial, and Inverse Trip. Fumctions

Han 191 Chapter TX Compex Rumbers
Chapter X - Seguences and Series, Improper I tegrals Gomplex iower series Shapter VIII = Introduction to Differential Equations Chapter UT = Folinomial ipproxination to Fumctions

Gath laz intric lheory - Openg closed, and compact sets Comtinuous Punctions, Unifgen convermence \therefore pifications of uniforn conver ence- Fourier serieso Fejer's Theorem, and heierstrass Aplroxination lheorem Kevisw of kiemman Tntempl area, volume, are lenirth fatroduction to functions of 2 and 3 variables
D. tu:tice

2/72

MATH 221: Mathematics for the Business, Social and Biological Sciences IV. COORDINATOR: Bert K. Waits

PREREQUISITE: Math 123 and permission of the department (grades of A or B in the 121 sequence).

AUDIENCE: Administrative Science Freshmen and Sophomores.
BACKGROUND OF AUDIENCE: Calculus of one variable. Grades of A or B in the Math 121-122-123 sequence. The students are well motivated.

PURPOSE OF COURSE: The course should serve as a "bridge" between the 121. sequence and higher level mathematics and statistics courses. Students with Math 121-122-123-221 should be able to elect Math 471, Math 550 or Statistics 425 and 426.

FOLLOW-UP COURSE: Math 471 or Math 550 or Statistics 425.
CONTENT: Introduction to matrix algebra including solving systems of equations - 2 weeks. Calculus of several variables - 8 weeks.

TEXT: No required text. Any good calculus text would be suitable. Schaum's Matrices would be appropriate for the matrix algebra component of the course.

RESOURCE PEOPLE: Bryce Elkins, Bob Georges (Administrative Science), John Riner, Jerry Silver, Tom Willke.

SUGGESTED OUTLINE: In preparation.

Tris it everyones btandard problem solving course in differential equations. The students come out of the calculus sequence and are primarily engineers and computer science majors.
gext: Reinvilie and Pedient, Elementay Differential Equations, Fourth Pd., Macmillan.

Chatere 1-8黄1,2 two ays
Chapter $2-1 \frac{1}{2}$ weeks
dowe in conjemetion with applications in Chapter 3 .
Chaptar 5 - they should read it.
Chapter $6 \times 7-8-2-\frac{2}{2}$ weelr
Leplace Trensfoxm §\% 50-53

$$
\left.\begin{array}{l}
857 \\
860-61
\end{array}\right\} \quad 1 \frac{7}{2} \text { weeks }
$$

Chaptex 12-§64 1 - $\frac{1}{2}$ weeka
Chapter 17 - I week
Chapter $18-\S \S 96,97,99,101,102,103$ Bessel eqtin $1 \frac{1}{2}$ wka

Math 4 25 Ordinery and Eartial Differential Equations.

This is a course designed by a comittee (primarily of enginegre) Which is intended to expose electrical ard asronautical engineering students to problem solving in differentis zaustions. It is a cone bination of 255 (DIfP. Eq.) and (512) Pourier Series and Bounamy Value Problems. One hopes to introduce the standsan techniques of eleacntary ordinary differential equations, fourier trig series, and sparation of warlables in Partial Difrerential Equations. The students ustally cone to the course directly from the calculus maquence.

Text: Boyce and De Prink, Disfereatial Equtions

Section Kubuers

1.1, 1.2, 2.1 2.7
$3.1-3.62$
$4.1-4.7$
$10.1-10.8$
$11.1-18.6$
Optional Natertal

Mays spent710

10
13
5
$3-5$ Syrteas

 anginertide studatiz. It in a comination or 544 (complex variabie) and 513

Wumater sctiongem

Cumptran vable - 35 clactes incluaing test
3. Fertor andyais....

 meded Rozemplex veriable. Gerns and Stokea moorvas needed fur wainesing courct fatra concuryently.

Sw wanla

Trat - mamenive
Scheruxie -

Cive o
that: $3-0-4$ citumer

that. $4-25$ clacect
Chat $5-3$ clmase
6ha. $6 .-$ - 4 equesas yas wix

Advanced Calculus I
This is the first course in analysis following the basic froshman-sophomove calculus sequence. It should be considered as an introduction to the theory of convergence. The students are math majors and some graduate students from C.I.S, Statistecie, and Engineering. tit is a prerequisite math course foo math 551 (math and math 552 .
lest: Aver O'meidman - Advanced calculus

- Holt, Rinehart, Winston

1. Sequences and series of constants chapter 1
chapter 5 sections 1,2 and 3$\} 4$ weeks
2. Junctions of one variable 4 weeks Chapters 2 and 3
3. Sequences and series of functions 2 week

* Math 450 is a comparable course for math Education majors.
H. al. Colson 2/15/72

M 472

Nitulces mut Linear Algebra

A couswe nemigned in conjunction with the Maparwent of Tnduatwial
 in not iox yajors and only carrie is hre creait. There is a mererutaitu of 153 but con ${ }^{\circ}$ count on the studenter having wy Pemiliarity uth the yatarial.

Hems: Nobles Amplici Innags Alrebse
(It heis been usad onee may not be the batt aysiliable).

1. Hatrices and symbun of aqumions
2. Rineax indarmance mid reak
3. Space of raturise over fit bases and dinemelon
4. Tmernes of matrice axd detemuinents
5. Ahmaract vectro meace

Juanes k. C. Ieltzel 2/72

MATH 504
(History or Mathematics)
This course is an introduction to the history of Mathematics. Since it is principally taken by Math pducation students in their sophomore and junior years; their backgrounds are extremely spotty; and as a whole they are weak mathematically. The best one could expect is that all the students have completed Math 254 and Math 571. (This course is required by the Math Education Department and is definitely not recommended in its present form for our own majors). The purpose of this course is to expose the students to the good mathematics of yesteryear. Math 504 has prerequisites 50502507
and is terminal. The actual course content should be at the discretion of the individual teacher; however, based on past experience I recommend certain topics which seem to be within the grasp of these students and omit others which seem to be beyond them. I emphasize that this should be a tough course and one should take the students as far as possible.

TEXT: EVES: History of Mathematics
(It is very readable with lots of problems; however, great care should be taken in choosing the problems as at least $1 / 2$ of them are not accessable to these students.)

COURSE STRUCTURE: I strongly recommend a lecture-recitation type arrangement with a maximum of 12 students in a recitation section.

SYLLABUS:

I - Students should be required to read Eves
II - A term paper should be required; this paper should be at least 80 ? mathematics and the rest history. The purpose of this paper is to have the student really dig in and learn a certain small portion of mathematics, well. (On file in my office are several examples of these term papers.) I would count them from $1 / 4$ to $1 / 2$ of the total course grade.

III - Possible lecture topics:
(At least one topic should be covered in great depth, 3 to 4 weeks.)

1. Number Theory*
2. Counting and the Abacus
3. General Solution of Polynomial Equations
4. Irrational Numbers (extremely tough as a major topic)
5. Astromony and its effect on development of mathematics
6. Cantor Theory*
7. Conic Sections
8. Calculus
9. Parallel problem and non-Euclidean geometry
10. Euclids Elements
11. Axiomatics
12. Boolean Algebra
13. Fields and Extensions
*Have been covered in depth with success.

> DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSTTY 231 WEST EIGHTEENTH AVENUE COLUMBUS, OHIO 43210-177!

IV - Some outside reading should be mandatory. (I have lists.)
Sandy Scheick
February 1972

A FEW IDEAS FOR TERM PAPERS IN MATH. 504

The abacus
Algebraic numbers
Angle trisection
Babylonian mathematics
Boolean algebra
Calculating prodigies
Chinese mathematics
Congruences
Conic sections
Construction with compasses only
Construction with other instruments
Construction with ruler only
Continued fractions
Counting boards
Dissections
Dot-age and d-ism e

Egyptian mathematics
Elegant proofs
Fibonacci numbers
Finger arithmetic
Game theory
The golden section
Greek algebra
Greek calculus
Higher dimensions
i
Indian mathematics
Inequalities
Irrational numbers
Large numbers
Latin squares
Logarithms
Magic squares
Map-making
Mathematical symbolism
Abu Kamit

Apollonius
Archimedes
Bernoulli

Mathematics and art
Mathematics and astronomy
Mathematics and music
Mathematics south of the Sahara
Mayan mathematics
Non-Euclidean geometry
Non-standard analysis
Number theory
Paradoxes
The parallel postulate
π
Polygonal numbers
Polyhedra
Polynomials
Prime numbers
Probability
Projective geometry
Puzzles and games
Pythagorean theorem
Quipus (from Peru)
Real numbers
Renaissance mathematics
Taylor's series
Transcendental numbers
Transfinite numbers (x_{0}, etc.)
Unsolved problems
What is a limit?
Women in mathematics
Abel Boole Dodgson (Carroll) Leibniz

Dodgson (Carroll) Leibniz
Cantor Eudoxus Lobachevskii

Cardano
Euler Newton
Pascal
Riemann
Russell

This course is required of students in secondary education having minors in the teaching of mathematics ands perhaps, 75% of the students are enrolled in Education College.

The present course (Autumn 1971) is divided about equally into two pertions; firsty a review of the content of high school geometry combined with generalizations and related new material and second, a study of various transformations with emphasis on circular inversion. Text material is suppelmented by a unit on finite geometry (computer taught), by use of coordinates, and by special topics.

TEXT: Miller, College Geametry, Appleton=CenturgeCrofts

Chapters Id $4 \frac{2}{2}$ weeks
Chapters 5-6 $4 \frac{1}{2}$ weaks

The listed prerequisite is integral calculus which serves restrict the course to non ${ }^{\text {freshmen. (Students seem moefully }}$ weok in elementary analytic geometry.) Math 507 is a prerequisite for Math 608 (which is not required for any studento).

Math Ye

```
Fambel Diffocential Equations am:: Boundary Value Froblems
    This course is a three hour course with a lot of raterial
%fth Litble emghasis on theoryo A daymbymday outline bosed on the
```



```
preaticgentall.
Hodl, limple, ##d Vinorrade. Introductioa to Laplace Transform.
AppletonoCenturyoCrofts.
Chapter IT - Pourier Sertes
Ghapter ITI Separatiom of Variables
```



```
Chapter \(2=\) Sufficient Conditions for Existance Convolution Iategral
Gmpter \(5=A p p h i n t i o n s t o\) Linear Partial Differential Equations
```

D. Eustice
$2 / 72$

 Many have not thien math couse Ror aevarsl youss. Sudense mond learn to hande vector notation, vector operations, line-surface intersela, end they Ghould be ble to read and apply theoreme. Ample class tine shoukd devoted to problens.

TEXI-Vector Calculug--Lindgren

 Vector Calculus--Schauna) may be needed.

Suggestod Schedule-

$$
\text { Ch. } 1 \text {-- Vector algebra, gecmetry, operations } 5 \text { deyss }
$$

Ch. 2 -- Pector Iunctione of 1 variable, space cuxves, aze langth

6 dass
Ch. 4 -- Vector functions of position, chais rule eurfaces. doh gherator, line and surfice integrels

9 daza

> DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY 231 WEST EIGHTEENTH AVENUE COLUMBUS, OHIO 43210-1174

This is a "skills" course, taken by certain engineering students, bo"h undergraduates and graduates. The emphasis should be on problems, ani not on proofs. The course has a 513 (or equivalent) prerequisite, which should save some time on line integrals and allow a Green's theorem proof of the Cauchy Integral Theorem. The course is not a prerequisite for other mathematics courses, but the subject matter is needed in the students engineering courses.

TEXT: Churchill, Complex Variables and Applications, (2nd Ed.), McGraw-Hill, is the canonical text. At times, other complex variables books are used, or the complex variables chapters from some engineering math book, like Wiley or Kreysig.

A Possible Syllabus--(Churchill):

Chapter 1	3 days
Chapter 2	3 days
(play down limits, continuity, etc.)	
Chapter 3	4 days

TEST

Chapter 4 3 days $\frac{\text { Chapter } 5}{\text { (don't do the Goursat proof) }}$ \quaddays	

TEST

Chapter $6 \quad 3$ days
(Lots of practice obtaining series, no proofs, minimal theory.)

Chapter 7
6 days
F. W. Carroll

Whenetios 5le: Methematical logio

Qutine (How the course catalog). A first course in the stupy of fomal logical systoms and theix epplications to the foundetions of mathenatics. Topics includes definition of ratehemation proor, statement oalculus, predicate calculus, first order number theory, consistency complotoness.

Prosoquisitos: (537,542), 153, or pemaission of instructor. 5 credthes. 5 classes per weok.

Commente, About hali of the students exe mathenatics majorss Tho zomeinder come principally from computer science, philosophy and mathematics oducation. The mathonatical proparam thon of the students is quite variod: some heve only the minimal proxequatate (which was put in in order to keep out students having no college mathematics, since, caloulus per se is of no direct use hero), wherass othera have extensive methematical background. About hale of the students heve had some training in logie (mainly in the philosopty depertment); this is sonetimes helpful and sometimes hindraneerul. The purpose of the counse is to introduce the stwents to worine in fomel systens, with particular attention pedd to ono fommation of prodicato colculus (for practice).

Zort. Usuely, Margaris, First order mathematioal Iogic, \$§f-25. (Wheotaty wretten for this courso.)

Mathemetics 516: Methenatical logie 2

Dutine. More advariced topies in fizst order theorias, chosen from: feneral theomons about first oncor thoories, suoh as Goedersa onoletencss and incompleteness theonems nocol thoorys recursive function theorys abstract machines; set theory. (The contentsonerabte)

Pxerequisttes: 545 (I require a grade or at loast: B .

Several vaxiables for math majozg primaily. 550 is a prerequitite. Students are presurned to be interected in Theory and faniliax with one variable analysis. Counuthenal aspects of paxial denivatives, vector ogerations, line integrals have been wet briethy in 25 . whis comae
 grior to 552 (complas vasiobla) and 556, 557 (ordinasy and pastial. (ifiterential equetiona).

Tast: Fricoman Azvancod Colculum

Sugeestax gyliabus
 functions o weveral variables. ($21 / 2$ wecis)

Ch. 7 - Farcial derivatives, Sean valua Theorens Jecobians, imreras and implicit iunctions (3 weeks)

that is linited, no concertratica on cne of thase chapters is juererale.
mininal content - line integrals. Geene lemang Path indayandence.

> DEPARTMENT OF MATHEMATICS
> THE OHIO STATE UNIVERSITY 231 WEST EIGHTEENTH AVENUE COLUMBUS, OHO 43210-1174

A vactor calculus conves for anginearing phymics and physies unmergraciubles. 550 is not a wroquisite. Cousee moula include theory and apiscotions, mut epailwaic peosis are not the wain thrust. students
 the exi of the coure. 551.02 is a presequisite por Fuysies 555, 6a6, 627.705 which dictete the minamal contemu.

Thes: Priewn Mdyenced Colcalus

Sugested achedrle

Ch. 6 S1.6 comnsrence, himitas continuity on $\mathrm{E}^{2} \& \mathrm{E}^{3}$.
(pargoterization of curven and suspaces might be introduced)

Che7 §2-3, 5m7 parial dexivatives, directional derivatives, chain rule, man vaike tiooren, Jacobiani, implicit and invorae functions
(entif fuctional ceymance. § 8 on vactore is review and conal patpened until reeded in lime and surface integrele). (3 $1 . / 2$ welw)
 integeras
Divergeme sus stolka theorem ($31 / 2$ weoks)

This is a course primarily for Physics undergraduates, and is recommended for them. The five hours should allow some depth as well as considerable problem solving. On the other hand, the students will not have had 550 and should not be expected to give analytic proofs. Applications may be included, as time and taste allow.

TEXTS: Churchill, Pennisi, Kaplan, Nehari, etc., etc.

The content should be at least equivalent to the first eight chapters of Churchill.

A POSSIBLE SYLLABUS:

4 days	Complex Arithmetic and Geometry
4 days	Analyticity, Cauchy-Riemann equations, harmonic functions
6 days	Exponential, trigonometric, logarithm functions, branches
5 days	Conformal mapping, linear fractional transformations

TEST

10 days The Cauchy Integral Theorem and its immediate extensions and applications

5 days Taylor and Laurent series representations
TEST
12 days The Residue Theorem and applications
F. W. Carroll

DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY
231 WEST EIGHTEENTH AVENUE COLUMBUS, OHIO 43210-1174

This is a rigorous first course in complex variables. It has a 550 (or equivalent) prerequisite. It should be taken by undergraduate mathematics majors and by any student intending to do serious work in graduate analysis and applied mathematics. Careful statements of theorems, a proof of the Goursat version of the Cauchy integral theorem, concern about uniform convergence, and justifying interchange of operations would all be in the spirit intended for this (as yet untaught) course. On the other hand, the students must learn technique in problem solving, comparable at least to that acquired in MA 514.

Possible Texts: Ahlfors, Hille (Vol. I), Levinson and Redheffer.

Possible Syllabus:

> 5 classes Algebra and geometry of complex numbers elementary functions
> TEST
> Linear fractional transformations, topological concepts, conformality
> 10 classes
> The Cauchy Integral Theorem and formula, their consequences, open mapping, maximum modulus
> TEEST
> 5 classes
> Series representations
> 5 classes
> Residue Theory and applications
> 6 classes
> Optional topics, e.g., Riemann surfaces, harmonic functions, infinite products, analytic continuation
F. W. Carroll
,

Math 556.02
Orinayy Dietarential Equations
without liness aligebra.

 the theory and solution of intial value problems. i fea chat linear problems should be emphasieci, wnd thet th least one existenceruniquness theorem nomp be proted. The wole prerequitite is the calculus cequence, and zut the cheombers a wine range usthantical bachground in the course. the course is prevegunte to 557 (Orbhogonal series and boundary value probems), so there 4 wh wecp mect fow
 portion of the weidere to be physics and minn jors. In view of the fomer gowsy an occasional exampe is in cuder, but the primary bhragt of the course is mathen matical.
 Prenticearalt。

3y atteck would be as follows:
Chapter i o Pirat order linear equations
fotressing the idea what $y^{0}+a y=b$ sarves as andel for nost of whet follows)

Chapter 2 - Second order linear aquations with conment coesficienta

Chapter 3 8 8 thru 6 gecond order variable coefticientas up to madytic coefficients.

Chater 5 - 88 th thru 7 The existence and uniqueners fheoram.

Hath 556.02
Ordinary Diferential Rquatione with Tinaar Mgebwa.

The consee is an introduction to the theory of ordinary ditierential equathons, and not Herely a proolem aclving counce. The lineax algebra privequaite gilows us
 at lesst one existence-unipueness theoren should be presented. The sturents must have at least 571 linear algebra to muryive this one. One purpose is to firm up their linear algebra and to begin chowng the connectiona with analysis. This in another or the prerequisitea to 557 (Borandary vaiue problens) so thet topic need not be introduced here. We hope that arge portion of the amience fill tare 556-557 sequentially. The aucience will wrobably contain primerily math mejors, but there will also be others (notabiy from paysics).

Text: F. Brauer and J. Hohel, Entrodnction bo the Theory of Grdinaxy Diferential Equations, Renjanira.
 seems to be the bect avilable for our goals.
 most of it should be enough.

Frow Chapter 2, look at and learn

1) Variables separable and
2) Hrgt order linear $y^{y}=p(t) y+q(t)$.

The second provides the model for solution and theory of aecond order lineas and thas systeas $Y^{p}=A Y+G$. There one can point out variation of paremeters; etc.
3) Very little time should be devoted to Chapter 3-a apecial case of cuaper 6.
4) Most of your time will probebly be spent in chayber 6. You will need to develop $e^{\text {At }}$ for $n \times m$ constant matrices, etc.
5) Do an exdstence - uniquezess theorem (Chapter 7).

This is minimal content at this point. It will teke scme work to get here. It you have the left, you have inem vell pepered to stert atudytag stabilfty theory (intro. in the text). If you wise move trantionaly oriented, do some powers seates methods and pessel equations. If you want some fun, get them mone comuter titas and
DEPARTMENT OF MATHEMATICS

```
Nath 557
Orthogonal Series and Boundary Value Problems
Ferequisite: Math 556(01 or %O2)
This course should provile the atudents with a good workine knowledpe of both the theory and application of the course material.
Mext: Rabengtenh, Iatroduction to Ordinary Differential Equations, Academic Zress.
Chapter 6 orthogomel Polymomials(Omit 6.9 Tchebycheff)
Chapter 7 - Eigemualue Problems
Chapter 8 - Fourier Serves
Chapter 11- Partial Differential Equations
It time.
Chapter 10 - Laplace Tramsiform
```

D. Eustice

2/72

 Convergence vic sequences, nets and finters are stndied as wixa as

Chapter 1 Chapter 2	Sets, functions, retetions Structure of R , $\mathrm{R}^{\text {R }}$	3 days 3 days
Chapter 3	Hetric spaces	4 days
Chapter 4	Metric spaces, continued	4 dags
Chaptex 5	Hetric apmces, continued	4 days
Chapter 6	ceneral popozacical apaces	5 ªya
Chapter 7	Compsctness	5 days
chapter 8	Comectedress	4 days
Chapter 9	Quctient sizces	3 deys
Chapter 10	哿ts and Finttirs	4 days
Chaptex 11	Product apaces	4 days

R. Gold

Audience: The course started with 28 students and finished with 21. All but 8 of the original class had the course 573; of the 7 students who dropped, 6 had not had 573. There were a few CIS students with scheduling difficulties that prevented their taking 577. Most of the students were math majors who had had 571 and were willing to commit themselves to 2 but not 3 additional quarters of algebra.

Prerequisites: The course used almost no formal results from number theory except for the division algorithm in Z.

Text: Lang, Algebraic Structures.

Contents: I. Group Theory (Lang, chapter II, sections 1, 2, 3, 4, 6).
Cyclic groups and dihedral groups, mappings, orders of elements, La Grange Theorem, homomorphisms, quotient groups.
(No permutation groups, Sylow Theorems, correspondence theorems, decomposition theorems).
II. Rings (Lang, chapter III, sections 1, 2, 3).
Z_{m} (clock-arithmetic), rings of matrices, Z, Q, C, continuous real-valued functions on $[0,1]$; ideals, homomorphisms, quotient rings (no prime or maximal ideals).
III. Last week: Definitions and examples of integral domains and fields.

This somewhat controversial course is intended to give students a one quarter experience with algebraic ideas. Technically, both 571 and 573 are prerequisite but the 573 is sometimes ignored. This means students come to the course with varying dcses of number theory and linear algebra. (My own feeling is that most students who do not have time to take both 573 and 570 are best advised to take 573; that most students who have time to take 571, 573, 570 are best to take the 580 sequence.)

The important thing to be said is that this course is not intended to acquaint students with a large variety of algebraic ideas lest it become simply a vocabulary course with students gaining only superficial understanding of many concepts. The instructor is urged to chose a limited number of topics and pursue these in reasonable depth. For example we have had teachers do the algebra necessary to get Galois theory for characteristic 0 . We have had teachers do group theory and ring theory with no field theory in the course at all.

Because this course is not prerequisite to any other, we do not need to guarantee that the subject content of each section is the same. However, it probably can be agreed that the course should contain the fundamentals of group theory, similar to the treatment in Lang's Structures, and move out from there.

Of the following suggested textbooks, the one by Lang has been used often and seems to be appropriate to the level of this course.

Suggested texts:
Joseph Landin, An Introduction to Algebraic Structures, Allyn and Bacon, Boston, 1969.

Serge Lang, Algebraic Structures, Addison Wesley, Reading, Mass., 1967.
Mnil Aritin, Modern Higher Algebra: Galois Theory, notes by A.A. Blank, New York University, 1947 .

Birlhoff-MacLane, A Survey of Modern Algebra, third ed., Macmillan, New York, 1965.
4571.03

Tntrosuction to inneas figebra

That 2 a
 Fhantum

Myside:

W: Winmatery humber yizuxy

(b) Congrawosi arm the wing memetrue of z_{n}.
(c) Croxps. Unit groum ane Ingrange tineoren.
(G) The Mexis ${ }^{2}$ an mixitive roots.

 Pinita sieind
(a) Irateparasaca, bases, bimonaion
(3) Thass woulut (with zespact to a basia)

Jexais Ex C. Iaitzal 2/72

Taturanction to Lireas Algera

 the rew mat cormias numberis.
 an lide of level - the rollenine an aumenter:

(2) Fishari An Incycauctica to Linear higeora; Dichenson
(3) Pree e Swity; Limex Atgenes Gim

2. Tuncas bransorwations man maticce
3. Syatere of ematicas and remb

6. Chametaristic potycinicu and aigenvanea
7. Frincipal Anis thoorm (Spactral theoxy)

 coums

Elementaxy Thubex Theray

 conzizuction of fowal wrot. part of the instructicu of the courge is to derelon in

Five sollowitg tomice wand provink tia besic come for the course:

 $x^{12}=(T)$ 。

It is difficult to give much detail about this course, since it has been taught infrequently during the last few years, and the size and composition of the class is uncertain. (It was given in Spring 1970 as 574-694 to about 6 students with extremely varied backgrounds, and did not run in 1971 because of low enrollment. It is scheduled for Spring 1972). The class is expected to consist mainly of regular Math. majors. The course has 570, 571 as prerequisites, and is not a prerequisite of any other course. It seems that its aim should be to introduce some basic ideas of Projective Geometry, emphasizing the relation with Algebra, but at the same time providing experience with purely geometrical methods.

The following tentative syllabus is proposed for Spring 1972.

1) The complex projective plane. Use of homogeneous coordinates and dual coordinates. Projectivities and cross-ratio. Conics. Collineations and correlations. Applications to the real Euclidean plane.
2) Some axiomatics of projective and affine planes. Rôle of Desargues' and Pappus' Theorems.
3) (If time permits) Complex projective 3-space. Introduction to projective n-space.

There seems to be no one textbook which covers this material at a suitable level. Some sources are:

1) E. A. Maxwell: The Methods of Plane Projective Geometry Based on the Use of General Homogeneous Coordinates. Cambridge, 1948.
2) J. G. Semple and G. T. Kneebone: Algebraic Projective Geometry. 0xford, 1952.
3) H. S. M. Coxeter: Projective Geometry, Blaidsdell, 1964.

Prof. Jill Yaqub

This course in discrete and finite algebraic structures is intended for CIS people and has been designed with considerable input from CIS faculty. It has a 571 prerequisite. (We are right now running an experimental twoquarter course in linear and discrete algebra for CIS students. If this works out, we will expect a high percentage of the CIS students to take the twoquarter sequence rather than 571 and 577.)

It is the wishes of CIS that this course be an honest algebra course with relevancies to computers being pointed out as they arise. We have been using Birkhoff-MacLane (Survey of Modern Algebra, third ed., Nacmillan, N.Y.,1965) as a text. The following list of topics indicates minimal content:
I. Elementary number theory and an introduction to algebraic structures.
a) The integers, g.c.d.'s and the Euclidean algorithm, unique factorization.
b) Congruences, linear Diophantine equations.
c) Arithmetic of polynomials, rational roots.
d) The rings Z_{n} of residue classes modulo n.
e) Groups: the groups of units in Z_{n}, Lagrange's Theorem.
f) The fields Z_{p} and primitive roots.
g) Sets, mappings, groups of permutations, Cayley graphs.
h) Group codes over Z_{p}.
II. Polynomial rings.
a) G.c.d.'s and the Euclidean algorithm, unique factorization.
b) Congruences and factor rings.
c) Finite fields.
d) Polynomial codes.
III. Boolean algebra

This sequence is intended to include the content of 573,571 , and 570 but to permit the presentation of the ideas of number theory and algebra in a more integrated, coherent way. The audience is primarily junior and senior majors with perhaps a couple of first-year graduate students. Some will have had linear algebra and others not; this seems to make little difference in their performance.

Each year 5 or 6 students seem to develop particularly well and begin to think in terms of graduate school. When I taught this course two years ago, I separated these people into a special additional seminar winter quarter and had them work through Abraham's, Linear and Multilinear Algebra (Benjamin). Tom Ralley has two small sections from his class working now: one is more advanced topics from group theory and the other in number theory.

Each instructor is free to develop this course as he feels most appropriate for his students. I used two texts: one in number theory and Dean's Elements of Abstract Algebra (Wiley). I probably would not use Dean again.

I am including the syllabus of my own course to give an idea of what can realistically be attempted.

Elementary number theory: Arithmetic of rational integers, mathematical induction, divisibility, primes, Euclidean algorithm; number theory in selected examples of other rings

Basic ring and ideal theory
Additional number theory: congruences, Chinese Remainder Theorem, unit groups, linear diophantine equations.

Mappings: surjections, injections, bijections; symmetries of geometric configurations.

Elementary group theory: permutation groups, dihedral groups, cyclic groups; subgroups, cosets, La Crange Theorem, normal subgroups, quotient groups, direct sums, homomorphisms, isomorphisms, Cauchy's Theorem, p-groups, Sylow Theorems, classification of groups of order ≤ 15.

Linear algebra: radius vectors, coordinate geometry; independence, basis, subspaces, quotient spaces, field extensions, linear transformations, duality, inner products, orthogonal transiormations, matrices and determinants, similarity, systems of linear equations, eigenvalues and vectors, quadratic forms, quadric surfaces in R^{2} and R^{3}.

Basic field theory: complex numbers, algebraic number fields; normal extensions; Galois theory (characteristic 0): ruler - compass constructions; quadratic reciprocity and Jacobi symbol.

Syllabus for Math 105

This course is open only to students whose indicated major is elementary education. It is a study of the basic properties of the real numbers as appropriate for prospective elementary school teachers. Content is intended to be relevant to the mathematics curriculum for grades $\mathrm{K}-8$. The prerequisite is Math 101 or Level III on the OSU Mathematics Placement Exam. Students must complete either 105 and 106 or 105 and 107 to fulfill a ten-hour mathematcs requirement for Elementary Education. Math 105 is offered Winter, Spring and Summer Quarters.

Topics covered include sets, whole numbers, integers, rational numbers, real numbers, other number bases, and basic operations and their algorithms.

The probable text for this course is Elementary Mathematics for Teachers by Kelley and Richert (Chapters 1-6).

Further information may be obtained from the course coordinator, Professor Jim Schultz.

TO: Math Faculty (especially undergraduate advisors)

RE: New Course Offering: The History of Mathematical Ideas
A pilot will run Spring 1973 under Math 594; projected instructor Charles Saltzer.

CREDIT: 5 hours; 3 classes MWF at 12:00 p.m. or 1:00 p.m.

PREREQUISITES: 550 and 571 or permission of instructor.

PROBABLE TEXTS: 1) Euclid's Elements 3 vol. (Heath Translation);
2) The Works of Archimedes;
3) The Exact Sciences in Antiquity, Neugebauer;
4) Geometry, Descartes;
5) Essays on the Theory of Numbers, Dedekind;
6) A Concise History of Mathematics, D. J. Struik.

CONIENT: The development of fundamental ideas in mathematics, the interaction between science and mathematics, and the problems concerning which axiomatic systems are desirable will be studied. Topics will include the development of the concepts of continuity, the real number system, the development of algebraic symbolism, infinity, the concept of an algorithm, and proof theory. Extensive readings in the works of great mathematicians will be emphasized.

