Final Exam - Form A

Print Name:
BuckID Number:
Instructor:
Signature:

MATH 1075

Final Exam

Autumn 2019

Read Instructions Carefully.

- Write clearly and legibly to receive full credit.
- You have 1 hour 45 minutes to complete this exam. Be careful and check your work.
- The exam will be scored out of 150 points, but there are 153 points possible. Extra credit will be awarded for any scores above 150.
- When applicable, mark answer bubbles completely, like this: •. Problems with answer bubbles have only ONE correct answer.
- Some problems require you to write your final answer on a designated line. Circle or box all other final answers.
- A calculator may be used given the calculator policy outlined in the syllabus. Even if a calculator is used, you must show all work on each problem to receive full credit.

Problem 1. Solve the compound inequality. Select the correct solution set from the
options below.(5 pts)

 $2x - 4 \le -16$ or $3x + 2 \ge 11$

 $\bigcirc [6, \infty)$ $\bigcirc [-6, 3]$ $\bigcirc (-\infty, -10] \cup [3, \infty)$ $\bigcirc (-\infty, -6] \cup [3, \infty)$ $\bigcirc (-\infty, \infty)$ $\bigcirc \varnothing$

Problem 2. Solve the absolute value inequality. Select the correct solution set from the
options below.(5 pts)

$$6|y+7|-8 < 4$$

- $\bigcirc (-9, -5)$ $\bigcirc (-\infty, -5)$ $\bigcirc (-\infty, -\frac{5}{6})$ $\bigcirc (-\infty, -\frac{22}{3})$ $\bigcirc (-\infty, \infty)$ $\bigcirc \varnothing$
- **Problem 3.** Subtract the rational expressions and simplify. Select the correct answer
from the options below.(5 pts)

$$\frac{x}{5x-8} - \frac{x+4}{6x}$$

$$\bigcirc -\frac{4}{6x(5x-8)}$$
$$\bigcirc -\frac{4}{x+8}$$
$$\bigcirc \frac{4}{x+8}$$
$$\bigcirc \frac{(x-4)(x-8)}{6x(5x-8)}$$
$$\bigcirc \frac{(x+4)(x-8)}{6x(5x-8)}$$

Problem 4. Multiply the rational expressions and simplify. Select the correct answer
from the options below.(5 pts)

$$\frac{3x}{2a} \cdot \frac{8a^3x^5}{15x}$$

$$\bigcirc \frac{45}{16a^4x^3}$$
$$\bigcirc \frac{16a^4x^3}{45}$$
$$\bigcirc \frac{24a^3}{x^6}$$
$$\bigcirc \frac{12a^2x^5}{15}$$
$$\bigcirc \frac{4a^2x^5}{5}$$

Problem 5. Select the least common denominator (LCD) of the two rational expressions
from among the options below.(5 pts)

$$\frac{14}{3st(s+3)^2(t-1)} \quad \text{and} \quad \frac{21}{9t^2(s+3)^3(t-2)}$$

$$\bigcirc 3t(s+3)^2$$

$$\bigcirc 9st^2(s+3)^3(t-1)(t-2)$$

$$\bigcirc 9st^3(s+3)^5(t-1)(t-2)$$

$$\bigcirc 12st^3(s+3)^5(t-1)(t-2)$$

$$\bigcirc 27st^3(s+3)^5(t-1)(t-2)$$

Problem 6. Simplify the radical expression. Select the correct answer from the options
below.(5 pts)

 $\sqrt[3]{108x^7}$

 $\bigcirc 3x^2\sqrt[3]{4x} \\ \bigcirc 9x^2\sqrt[3]{4x} \\ \bigcirc 36x^2\sqrt[3]{x} \\ \bigcirc x^2 + \sqrt[3]{4x} + 3 \\ \bigcirc x^2 + \sqrt[3]{4x} + 9 \end{aligned}$

Problem 7. Simplify the sum of radical expressions. Select the correct answer from the
options below.(5 pts)

$$5w\sqrt{27u^3} + u\sqrt{75uw^2}$$

- $\bigcirc (5w+u)\sqrt{27u^3+75uw^2}$
- $\bigcirc 5uw\sqrt{102u^4w^2}$
- $\bigcirc 5u^3w^2\sqrt{102}$
- $\bigcirc 20uw\sqrt{3u}$
- $\bigcirc 20uw\sqrt{6u}$

Problem 8. Let $f(x) = \sqrt{5x+1}$ and g(x) = 2|x-1|. Use these functions to find the following values. (3 pts each)

(f - g)(3) =_____ $(f \circ g)(-2) =$ _____ (fg)(3) =_____

 $(g \div f)(0) _ (g \circ f)(7) = _$

			Final Exam - Form A
Problem 9.	Factor complete $9w^2 - 3y - 27w +$		(6 pts)
Problem 10.	Factor complete $y^2 + 8y + 12$		(6 pts)
Problem 11.	Factor complete $3z^2 + 14z - 24$		(6 pts)
Problem 12.	Factor complete $27x^3 - 192x$		(6 pts)
		Write your answer here:	

Problem 13. Solve the quadratic equation. Show your work. (7 pts) $5x^2 + 9x + 2 = 0$

Problem 14. Solve the quadratic equation. Show your work. (7 pts) $y^2 + 18y + 81 = 20$

Problem 15. Solve the quadratic equation. Show your work. (7 pts) $z^2 + 3z + 2 = 0$

- **Problem 16.** When a constant force acts upon an object, the acceleration (*a*) of the object varies **inversely** with its mass (*M*).
 - (a) Which equation below models the variation described above? The letter *k* represents the constant of variation. (4 pts)

$$\bigcirc a = kM$$
$$\bigcirc M = ak$$
$$\bigcirc a = \frac{M}{k}$$
$$\bigcirc a = \frac{k}{M}$$
$$\bigcirc M = \frac{k}{a^2}$$

(b) In a game of billiards, a player struck a mass of M = 156 grams. The ball accelerated at a rate of $a = 42 m/s^2$. Find the constant of variation, *k*. (3 pts)

Write your answer here: k = _____

(c) Suppose the billiards player were to strike a marble with mass M = 7 grams with the same amount of force. What would be the marble's acceleration? (3 pts)

Write your answer here: a =_____

Final Exam - Form A

Problem 17. Solve the rational equation.

(12 pts)

$$\frac{2}{w+4} = \frac{8}{w+4} + 6$$

Problem 18. Solve the radical equation. $u = \sqrt{11u - 24}$ (12 pts)

Problem 19. Let $f(x) = 4x^2 + 16x + 19$.

(a) Select the equation that represents f(x) written in **vertex form**. (5 pts)

f(x) = 4x(4x+4) + 3 $f(x) = 4(x-2)^2 + 3$ $f(x) = 4(x+2)^2 + 3$ $f(x) = 4(x+4)^2 + 19$ $f(x) = 4(x-4)^2 + 19$

(b) Select the equation of the axis of symmetry of f(x). (3 pts)

 $\bigcirc x = 2$ $\bigcirc x = -2$ $\bigcirc y = 2$ $\bigcirc y = 4$ \bigcirc None of the above

(c) What is the **minimum** value of the function? (3 pts)

Write your answer here: _____

(d) At which value of x does f(x) reach its minimum value? (3 pts)

Write your answer here: _____

(e) Fill in the blanks with the coordinates of the vertex of f(x). (4 pts)

(_____,____)

(f) True or False? If f(x) were graphed, the vertex of the function would lie to the left of the *y*-axis. (3 pts)

TRUE FALSE

(g) True or False? If f(x) were graphed, the vertex of the function would lie above the *x*-axis. (3 pts)

TRUE FALSE

Final Exam - Form A

This page was intentionally left blank.