What are... the Euler-Lagrange equations?

Ethan Ackelsberg

What is...? Seminar

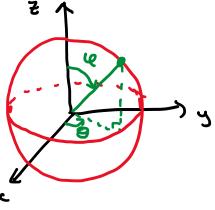
July 13, 2021

Outline

- 1. Functionals in optimization
- 2. Stationary points
- 3. Deriving the Euler-Lagrange equations
- 4. Applications

Functionals in Optimization

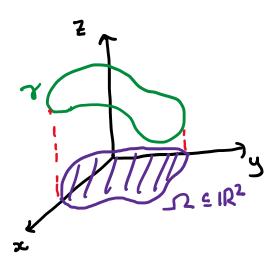
Geodesics What is the path with the shortest length between two points? In \mathbb{R}^2 : minimize arclength $l(\alpha) := \int_0^{1} \sqrt{2^2 + y^2} dt$ among curves $\alpha(t) = (\alpha(t), y(t))$ with $\alpha(0) = P$ and $\alpha(1) = Q$. In \mathbb{S}^2 : minimize $l(\alpha) := \int_0^{1} \sqrt{q^2 + \sin^2 q \theta^2} dt$



Brachistochrone problem

Along what curve will a ball roll from A to B in the shortest time, assuming a white gravitational field and no friction? $E = \frac{1}{2}mv^2 - mgy = 0$ $v = \sqrt{2gy}$ $B = (x_0, y_0)$ Minimize $T(f) := \int_{A}^{b} \frac{ds}{v} = \int_{a}^{\infty} \frac{\sqrt{1+f'(x)^{2}}}{\sqrt{2gf(x)}} dx$ $\omega/f(a) = 0, f(x) = y_{0}$ Minimal surface

Given a boundary curve $\Upsilon: S' \to \mathbb{R}^3$, find the surface M with minimal surface area such that $\partial M = \mathcal{T}$.



Minimize $A(f) := \iint_{SL} (1 + f_x^2 + f_y^2)^{1/2} dx dy$ w/ f(2S2) = 8

Stationary Points

Fermat's Theorem: Let $f: (a,b) \rightarrow \mathbb{R}$ be a differentiable function. If f has a local extremum at $x_0 \in (a,b)$, then $f'(x_0) = 0$.

Expanding in series,

$$f(x_0 t E) = f(x_0) + Ef'(x_0) + \frac{E^2}{2} f''(x_0) + O(E^3)$$

first order
change/first
var: a hon = 0
(Weakly) stationary points for functionals
clien $S := \int_{a}^{b} L(x, y, y') dx$ for curves $y(x)$
with $y(a) = c$ and $y(b) = d$. Assume L is smooth.
 $y = f(x) + E(x) + E(x)$
 $(b, d) T(a) = T(b) = 0$
 (a, c)

Using Taylor expansion:

C.

$$S[f+en] = \int_{a}^{b} J(x, f(x) + en(x), f'(x) + en'(x)) dx$$

= S[f] + $E \int_{a}^{b} (n(x) \frac{\partial L}{\partial y} + n'(x) \frac{\partial L}{\partial y'}) dx + O(e^{z})$
first variation δS

A curve is stationary (for weak variations) if S = 0 for every η ? [a, b] \rightarrow (h w/ $\eta(a) = \eta(b) = 0$. Euler—Lagrange Equations

Goal: Maximize or minimize an action functional $S := \int_{a}^{b} \mathcal{L}(x, y, y') dx$ () A local extremum will occur at a stationary point (55=0). 2) Integrate by parts: $\int_{a}^{b} \left(\eta(x) \frac{\partial f}{\partial y}(x, f(x), f(x)) + \eta'(x) \frac{\partial f}{\partial y'}(x, f(x), f(x)) \right) dx$ $= \int_{a}^{b} \mathcal{J} \frac{\partial f}{\partial y} dx + \mathcal{J} \frac{\partial f}{\partial y'} \Big|_{a}^{b} - \int_{a}^{b} \mathcal{J} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) dx$ $= \int_{a}^{b} \gamma \left(\frac{\partial L}{\partial y} - \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) \right) dx$ 3 The curve of is arbitrary, so $\frac{\partial d}{\partial y} - \frac{d}{\partial x} \left(\frac{\partial L}{\partial y} \right) = 0$ (Euler-Lagrange eq.)

Multi-variable Euler-Lagrange equations: An action functional

$$S = \int_{a}^{b} I(t_{1}, x_{1}, ..., x_{n}, \dot{x}_{1}, ..., \dot{x}_{n}) dt \text{ is stationary for weak}$$

variations at $\overline{z} = \overline{r}(t)$ if and only if \overline{r} satisfies the system
of equations
 $\frac{\partial I}{\partial x_{i}} - \frac{d}{dt} \left(\frac{\partial I}{\partial \dot{x}_{i}}\right) = 0$
for $i = l_{i} ..., n$.

Geodesics

IR² Minimize $l = \int_{-\infty}^{1} \sqrt{3x^{2} + 4y^{2}} dt$ Lagrangian $L(t, x, y, x, y') = \sqrt{3x^{2} + 4y^{2}}$ $\frac{\partial L}{\partial x} = \frac{x}{\sqrt{3x^{2} + 4y^{2}}} = \frac{3x}{\sqrt{3x^{2} + 4y^{2}}}$ Euler - Lagrange equation: $\frac{d}{dt}(\frac{x}{\sqrt{3}}) = \frac{d}{dt}(\frac{4}{\sqrt{3}}) = 0$. $\dot{x} = cv, \dot{y} = dv \Rightarrow \frac{dy}{dx} = const.$

S²
Minimize
$$l = \int_{0}^{1} \sqrt{\dot{q}^{2} + \sin^{2} q \dot{\Theta}^{2}} dt$$

Assume $\Theta = \Theta(q)$ so that $l = \int_{q_{0}}^{q_{1}} \sqrt{1 + \sin^{2} q \Theta'(q)^{2}} dq$.
Lagrangian $L(q, \Theta, \Theta') = \sqrt{1 + \sin^{2} q (\Theta')^{2}}$ does not
depend on Θ , so integrating the Euler-Lagrange
equation wrt q :

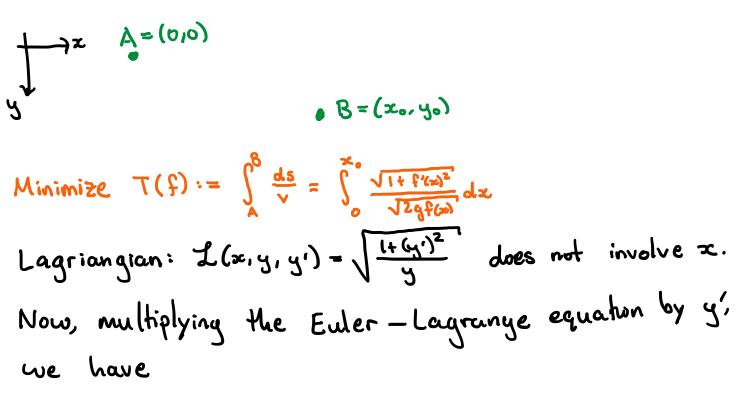
$$\frac{\partial L}{\partial \theta'} = \frac{\sin^2 \varphi \, \Theta'}{\sqrt{1 + \sin^2 \varphi \left(\Theta' \right)^2}} = \sin \alpha \quad (*)$$

for some fixed α . Solving (4) for Θ' , we get $\frac{d\Theta}{d\mu} = \frac{\sin \alpha}{\sin \mu \sqrt{\sin^2 \mu - \sin^2 \alpha}}$ Substituting $\cos \mu = \frac{\tan \alpha}{\tan \mu}$, we have $\frac{d\Theta}{d\mu} = 1$. Thus, $\cos (\Theta + \beta) = \frac{\tan \alpha}{\tan \mu}$

In Cartesian coordinates,

$$\infty \cos \beta - y \sin \beta = z \tan \alpha$$
.

This is a plane containing (0, 0, 0), so geodesics are the intersection of S^2 with a plane containing the origin (great circles).



$$\rightarrow y' \frac{\partial L}{\partial y} - y' \frac{\partial L}{\partial x} \left(\frac{\partial L}{\partial y'} \right) = 0.$$

But

$$\frac{d}{dx}\left(\mathcal{J}\left(x,y,y'\right) = \frac{\partial \mathcal{J}}{\partial y} y' + \frac{\partial \mathcal{J}}{\partial y'} y''$$

and

$$\frac{d}{dx}\left(y'\frac{\partial x}{\partial y'}\right) = y''\frac{\partial x}{\partial y'} + y'\frac{d}{dx}\left(\frac{\partial x}{\partial y'}\right)$$

Thus,

$$\frac{d}{dr}\left(1-y,\frac{\partial L}{\partial y}\right)=0$$

Theorem: Stationary points of an action functional

$$S = \int_{a}^{b} L(y, y') dx$$
 are solutions of the equation
 $L - y' \frac{\partial L}{\partial y'} = C$

· Ū

 \sim

Returning to the Brachistochrone problem, we want
to solve

$$\sqrt{\frac{1+(y')^2}{y'}} - y' \frac{y'}{\sqrt{y(1+(y')^2)}} = const.$$

Multiply by $\sqrt{y(1+(y')^2)}$:
 $1+(y')^2 - (y')^2 = (const.) \sqrt{y(1+(y')^2)}$
So,
 $y(1+(y')^2) = c$
Write $y_{be} = tan +tan so that $1+(y')^2 = sec^2 + t.$
Then
 $y = c \cos^2 + t$$

Hence,

-

.

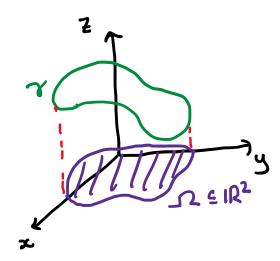
$$\tan \Psi = \psi' = -2c \cos \Psi \sin \tau \mathbf{I}$$

$$2\cos^2 \Psi d\Psi = -\frac{1}{c} dx$$
Substituting $\psi = 2\Psi$ and integrating, we get
$$\begin{cases} x = \alpha - b(\psi + \sin \psi) \\ y = b(1 + \cos \psi) \end{cases}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} - \begin{pmatrix} \psi \\ -1 \end{pmatrix} - \begin{pmatrix} \sin \psi \\ -\cos \psi \end{pmatrix}$$

This parametrizes a cycloid! Observation: One can show that the time it takes to reach the lowest point on the curve is $\pi\sqrt{\frac{b}{3}}$, which is independent of the starting point! The cycloid also solves the tautochrone/isochrone problem.

Minimal Surfaces



Minimize $A(f) := \iint (1 + f_{z}^{2} + f_{y}^{2})^{1/2} dz dy$

Need Euler-Lagrange-type equation for
$$\mathcal{I}(x,y,z,\frac{\partial z}{\partial x},\frac{\partial z}{\partial y})$$
.

$$S[f] = \iint_{\mathcal{I}} \mathcal{I}(z_1y_1, f(z_1y_2), f_{z_1}, f_{y_2}) dx dy$$
 with $f(\partial \mathcal{I}) = \mathcal{J}$.

Using Taylor extransion,

$$S[f+En] = S[f] + E \iint \left(\eta \frac{\partial f}{\partial z} + \eta_{x} \frac{\partial f}{\partial z_{x}} + \eta_{y} \frac{\partial f}{\partial z_{y}} \right) dx dy + O(E^{2})$$

$$\left(\eta : \mathcal{Q} \rightarrow VR \quad satisfies \quad \eta \mid_{\partial s_{x}} \equiv 0 \right)$$
Now, by Stokes' theorem,

$$\iint \left(\frac{\partial}{\partial z} \left(\eta \frac{\partial f}{\partial z_{x}} \right) + \frac{\partial}{\partial y} \left(\eta \frac{\partial f}{\partial z_{y}} \right) \right) = \iint \left(\frac{\partial f}{\partial z_{x}} dy - \frac{\partial f}{\partial z_{y}} dx \right)$$

95

$$\left(\mathcal{I}_{x} \stackrel{\partial \mathcal{L}}{\rightarrow} + \mathcal{I}_{y} \stackrel{\partial \mathcal{L}}{\rightarrow} \right) + \mathcal{I}\left(\stackrel{\partial}{\rightarrow} \left(\stackrel{\partial \mathcal{L}}{\rightarrow} \right) + \stackrel{\partial}{\rightarrow} \left(\stackrel{\partial \mathcal{L}}{\rightarrow} \right) \right)$$

Therefore,

$$\delta S = \iint_{\mathcal{T}} \gamma \left(\frac{\partial f}{\partial z} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial zy} \right) \right) dx dy$$

Characteristic Equation:

$$\frac{\partial f}{\partial z} - \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial z_{x}} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial z_{y}} \right) = 0$$

For $f = (1 + z_x^2 + z_y^2)^{1/2}$, we get the equation

$$(1+f_y^2)f_{xx} - 2f_xf_yf_{xy} + (1+f_x^2)f_{yy} = 0$$

related to mean curvature
(Lagrange's equation)

Principle of Least (Stationary) Action

Newton's 2nd Law of Motion: F = ma. As a diff. eq.: $-\frac{dV}{dx} = m\ddot{x}$ This is equivalent to E - L eq. for $L(t, x, \dot{x}) = \frac{1}{2}m\dot{x}^2 - V(x) = Kinetric - potential$

Principle of Least Acton: Trajectories are stationary points for $S = \int \left(\frac{1}{2}m\dot{x}^2 - V(x)\right) dt$

$$f = -m_0 c^2 \sqrt{1 - \frac{\sqrt{2}}{c^2}} - q(\phi - \sqrt{\sqrt{A}})$$

References

- · Feynman Lectures on Physics, "The Principle of Least Action"
- · Charles Fox. An Introduction to the Calculus of Variations.
- · Heinrich W. Guggenheimer. <u>Differential Geometry</u>.