2022 Rasor-Bareis examination problems

1. Prove that for all positive integers $n, 10^{n}-1$ cannot be a perfect cube.
2. For a real number x, let $\{x\}$ denote the fractional part of x. Prove that $\left\{2^{n} \sqrt{2}\right\}>1 / 2$ for infinitely many $n \in \mathbb{N}$.
3. Let A be a positive real number. If $\left(a_{n}\right)$ is a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} a_{n}=A$, find all possible values the sum $\sum_{n=1}^{\infty} a_{n}^{2}$ could have.
4. Prove that

$$
\int_{0}^{\pi / 2} \frac{(\cos x)^{\sin x} d x}{(\cos x)^{\sin x}+(\sin x)^{\cos x}}=\frac{\pi}{4} .
$$

5. Let $A B C D$ be a convex quadrilateral satisfying $|A B|=|C D|$. Let M and N be the midpoints of $A D$ and $B C$ respectively, and let the ray $M N$ intersect the rays $A B$ and $D C$ at points P and Q respectively. Show that the angles $\angle A P M$ and $\angle D Q M$ are equal.

6. Assume that three faces of a tetrahedron are pairwise orthogonal and have areas a, b, c, and let the area of the fourth face be d. Prove that $d^{2}=a^{2}+b^{2}+c^{2}$.
