2022 Gordon exam solutions

1. For a real number x, let $\lfloor x\rfloor$ denote the integer part of x. Prove that the sequence $\lfloor n \sqrt{2}\rfloor, n=1,2,3, \ldots$, contains infnitely many powers of 2 .
Solution. To have $\lfloor n \sqrt{2}\rfloor=2^{k}$ for $k \in \mathbb{N}$ we need $2^{k}<n \sqrt{2}<2^{k}+1$, that is, $2^{k-1} \sqrt{2}<n<2^{k-1} \sqrt{2}+\frac{1}{\sqrt{2}}$. Such n exists if $\left\{2^{k-1} \sqrt{2}\right\}>1-\frac{1}{\sqrt{2}}$ (where $\{x\}$ stands for the fractional part of x), and it suffices if $\left\{2^{k-1} \sqrt{2}\right\}>1 / 2$. So, it is enough to prove that $\left\{2^{k} \sqrt{2}\right\}>1 / 2$ for infinitely many $k \in \mathbb{N}$.

Since $\sqrt{2}$ is irrational, $k \sqrt{2}$ is irrational for all integer k, so $\left\{2^{n} \sqrt{2}\right\} \neq 0$ for all n. Therefore for every $m \in \mathbb{N}$ we have $(1 / 2)^{d+1}<\left\{2^{m} \sqrt{2}\right\}<(1 / 2)^{d}$ for some integer $d \geq 0$; so $1 / 2<2^{d}\left\{2^{m} \sqrt{2}\right\}<1$, and so $\left\{2^{m+d} \sqrt{2}\right\}=2^{d}\left\{2^{m} \sqrt{2}\right\}>1 / 2$. We obtain that for every $m \in \mathbb{N}$ there exists $n \geq m$ such that $\left\{2^{n} \sqrt{2}\right\}>1 / 2$; this proves that the set of such n is infinite.
2. Recall that $\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$. Prove that for all $x, y>0$,

$$
(1-\sqrt{\tanh x})(1-\sqrt{\tanh y})<1-\sqrt{\tanh (x+y)}
$$

Solution. We use the (well known) equality $\tanh (x+y)=\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}$. Putting $u=\sqrt{\tanh x}$ and $v=$ $\sqrt{\tanh y}$, we need to prove that $(1-u)(1-v)<1-\sqrt{\frac{u^{2}+v^{2}}{1+u^{2} v^{2}}}$, which is equivalent to

$$
\frac{u^{2}+v^{2}}{1+u^{2} v^{2}}<(1-(1-u)(1-v))^{2}
$$

with $0<u, v<1$.
Since $(1-u)(1-v)>0$ we have $1+u v>u+v$, so $2(1+u v)>1+u v+u+v=(1+u)(1+v)$, so $2>\frac{(1+u)(1+v)}{1+u v}$, and

$$
2 u v>\frac{(1+u)(1+v) u v}{1+u v}=\frac{(1+u)(1+v)((1+u v)-1)}{1+u v}=(1+u)(1+v)-\frac{(1+u)(1+v)}{1+u v}
$$

So,

$$
\frac{(1+u)(1+v)}{1+u^{2} v^{2}}>\frac{(1+u)(1+v)}{1+u v}>(1+u)(1+v)-2 u v=2-(1-u)(1-v) .
$$

Hence,

$$
\frac{\left(1-u^{2}\right)\left(1-v^{2}\right)}{1+u^{2} v^{2}}>2(1-u)(1-v)-(1-u)^{2}(1-v)^{2}
$$

and

$$
\frac{u^{2}+v^{2}}{1+u^{2} v^{2}}=1-\frac{\left(1-u^{2}\right)\left(1-v^{2}\right)}{1+u^{2} v^{2}}<1-2(1-u)(1-v)+(1-u)^{2}(1-v)^{2}=(1-(1-u)(1-v))^{2}
$$

3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences of real numbers with $a_{n}, b_{n} \geq 1$ for all $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} \frac{1}{n} \log a_{n}=$ a and $\lim _{n \rightarrow \infty} \frac{1}{n} \log b_{n}=b$. (Here \log denotes the natural logarithm.) Prove:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(a_{n}+b_{n}\right)=\max \{a, b\}
$$

Solution. Let $a \neq b$; without loss of generality assume that $a<b$. Then $a_{n} \leq b_{n}$ for all n large enough. Write

$$
\frac{1}{n} \log \left(a_{n}+b_{n}\right)=\frac{1}{n} \log b_{n}+\frac{1}{n} \log \left(1+a_{n} / b_{n}\right)=\frac{1}{n} \log b_{n}+\log \left(1+a_{n} / b_{n}\right)^{1 / n}, \quad n \in \mathbb{N}
$$

Since $1+a_{n} / b_{n} \leq 2$ for large n, we have $\left(1+a_{n} / b_{n}\right)^{1 / n} \longrightarrow 1$ as $n \longrightarrow \infty$, thus $\log \left(1+a_{n} / b_{n}\right)^{1 / n} \longrightarrow 0$, and so $\frac{1}{n} \log \left(a_{n}+b_{n}\right) \longrightarrow b$.

Now let $a=b$. Then we also have $\lim _{n \rightarrow \infty} \frac{1}{n} \log 2 a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \log a_{n}+\lim _{n \rightarrow \infty} \frac{1}{n} \log 2=a$ and $\lim _{n \rightarrow \infty} \frac{1}{n} \log 2 b_{n}=a$. Since for every $n, 2 a_{n} \leq a_{n}+b_{n} \leq 2 b_{n}$ or $2 b_{n} \leq a_{n}+b_{n} \leq 2 a_{n}$, by the squeeze theorem, $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(a_{n}+b_{n}\right)=a$.
4. Let u, v be two points in \mathbb{C} lying on the circle $C=\{z:|z|=R\}$, and let the tangent lines to C at points u and v intersect at point w. Prove that $w=2 u v /(u+v)$.

Solution. Let $z=2 u v /(u+v)$; if we show that the vector $z-u$ is orthogonal to u and $z-v$ is orthogonal to v, this will imply that the lines $\overline{u z}$ and $\overline{v z}$ are tangent to C, and so, $z=w$. We have $z-u=\left(u v-u^{2}\right) /(u+v)$ and so

$$
\frac{z-u}{u}=\frac{v-u}{u+v}=\frac{(v-u)(\bar{u}+\bar{v})}{|u+v|^{2}}=\frac{|v|^{2}-|u|^{2}+v \bar{u}-u \bar{v}}{|u+v|^{2}}=\frac{v \bar{u}-u \bar{v}}{|u+v|^{2}}=\frac{v \bar{u}-\overline{v \bar{u}}}{|u+v|^{2}} \in i \mathbb{R} ;
$$

so $z-u=i c u$ for some $c \in \mathbb{R}$, so $z-u \perp u$. The same way, $z-v \perp v$.
5. Let A and B be orthogonal $n \times n$ matrices such that $\operatorname{det} A+\operatorname{det} B=0$. Prove that $\operatorname{det}(A+B)=0$.

Solution. Orthogonal matrices have determinant ± 1, thus assume that $\operatorname{det} A=1$ and $\operatorname{det} B=-1$. Then
$\operatorname{det}(A+B)=-\operatorname{det} A^{T} \operatorname{det}(A+B) \operatorname{det} B^{T}=-\operatorname{det}\left(A^{T} A B^{T}+A^{T} B B^{T}\right)=-\operatorname{det}\left(B^{T}+A^{T}\right)=-\operatorname{det}(A+B)$.
Hence, $\operatorname{det}(A+B)=0$.
Another solution. Complex non-real eigenvalues of orthogonal matrices appear in pairs: $\alpha, \bar{\alpha}$, and real eigenvalues are equal to ± 1. After multiplying (from the left) both A and B by A^{-1}, we may assume that $A=I$. Then B is an orthogonal matrix with $\operatorname{det} B=-1$. It follows that B has a real eigenvalue equal to -1 , and if u is the corresponding vector, then $(I+B) u=0$. So, $I+B$ is degenerate, and has zero determinant.
6. Find a pair (n, m) of integers such that $n^{2}+m^{2}=12101210$.

Solution. We have $12101210=121 \cdot 10 \cdot 10001=11^{2} \cdot\left(3^{2}+1^{2}\right) \cdot\left(100^{2}+1^{2}\right)$. Using the nice identity $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}$, we get $12101210=11^{2} \cdot\left(301^{2}+97^{2}\right)=3311^{2}+1067^{2}$.
Another solution. There is, actually, a criterion for an integer to be representable as a sum of two squares, and an algorithm that allows to find (all) such representations. The prime factorization of 12101210 is $2 \cdot 5 \cdot 11^{2} \cdot 73 \cdot 137$. The only prime factor here that is congruent to 3 modulo 4 is 11 , and it appears with an even exponent; hence 12101210 is representable as a sum of two squares. To find such a representation we write $2=(1+i)(1-i), 5=(2+i)(2-i), 73=(8+3 i)(8-3 i)$, and $137=(11+4 i)(11-4 i)$; then compute, for instance, $(1+i)(2+i) 11(8+3 i)(11+4 i)=-1309+3223 i$, and get $12101210=1309^{2}+3223^{2}$.

