
2022 Gordon exam solutions

1. For a real number x, let ⌊x⌋ denote the integer part of x. Prove that the sequence
⌊

n
√
2
⌋

, n = 1, 2, 3, . . .,
contains infnitely many powers of 2.

Solution. To have
⌊

n
√
2
⌋

= 2k for k ∈ N we need 2k < n
√
2 < 2k + 1, that is, 2k−1

√
2 < n < 2k−1

√
2 + 1√

2
.

Such n exists if
{

2k−1
√
2
}

> 1 − 1√
2
(where {x} stands for the fractional part of x), and it suffices if

{

2k−1
√
2
}

> 1/2. So, it is enough to prove that
{

2k
√
2
}

> 1/2 for infinitely many k ∈ N.

Since
√
2 is irrational, k

√
2 is irrational for all integer k, so

{

2n
√
2
}

6= 0 for all n. Therefore for

every m ∈ N we have (1/2)d+1 <
{

2m
√
2
}

< (1/2)d for some integer d ≥ 0; so 1/2 < 2d
{

2m
√
2
}

< 1,

and so
{

2m+d
√
2
}

= 2d
{

2m
√
2
}

> 1/2. We obtain that for every m ∈ N there exists n ≥ m such that
{

2n
√
2
}

> 1/2; this proves that the set of such n is infinite.

2. Recall that tanhx = ex−e−x

ex+e−x
. Prove that for all x, y > 0,

(

1−
√
tanhx

)(

1−
√

tanh y
)

< 1−
√

tanh(x+ y).

Solution. We use the (well known) equality tanh(x + y) = tanh x+tanh y
1+tanh x tanh y . Putting u =

√
tanhx and v =

√
tanh y, we need to prove that (1− u)(1− v) < 1−

√

u2+v2

1+u2v2 , which is equivalent to

u2 + v2

1 + u2v2
<

(

1− (1− u)(1− v)
)2
,

with 0 < u, v < 1.
Since (1 − u)(1 − v) > 0 we have 1 + uv > u + v, so 2(1 + uv) > 1 + uv + u + v = (1 + u)(1 + v), so

2 > (1+u)(1+v)
1+uv , and

2uv >
(1 + u)(1 + v)uv

1 + uv
=

(1 + u)(1 + v)
(

(1 + uv)− 1
)

1 + uv
= (1 + u)(1 + v)− (1 + u)(1 + v)

1 + uv
.

So,
(1 + u)(1 + v)

1 + u2v2
>

(1 + u)(1 + v)

1 + uv
> (1 + u)(1 + v)− 2uv = 2− (1− u)(1− v).

Hence,
(1− u2)(1− v2)

1 + u2v2
> 2(1− u)(1− v)− (1− u)2(1− v)2,

and

u2 + v2

1 + u2v2
= 1− (1− u2)(1− v2)

1 + u2v2
< 1− 2(1− u)(1− v) + (1− u)2(1− v)2 =

(

1− (1− u)(1− v)
)2
.

3. Let (an) and (bn) be two sequences of real numbers with an, bn ≥ 1 for all n ∈ N such that limn→∞
1
n log an =

a and limn→∞
1
n log bn = b. (Here log denotes the natural logarithm.) Prove:

lim
n→∞

1
n log(an + bn) = max{a, b}.

Solution. Let a 6= b; without loss of generality assume that a < b. Then an ≤ bn for all n large enough.
Write

1
n log(an + bn) =

1
n log bn + 1

n log(1 + an/bn) =
1
n log bn + log(1 + an/bn)

1/n, n ∈ N.

Since 1 + an/bn ≤ 2 for large n, we have (1 + an/bn)
1/n −→ 1 as n −→ ∞, thus log(1 + an/bn)

1/n −→ 0,
and so 1

n log(an + bn) −→ b.
Now let a = b. Then we also have limn→∞

1
n log 2an = limn→∞

1
n log an + limn→∞

1
n log 2 = a and

limn→∞
1
n log 2bn = a. Since for every n, 2an ≤ an + bn ≤ 2bn or 2bn ≤ an + bn ≤ 2an, by the squeeze

theorem, limn→∞
1
n log(an + bn) = a.
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4. Let u, v be two points in C lying on the circle C = {z : |z| = R}, and let the tangent lines to C at points
u and v intersect at point w. Prove that w = 2uv/(u+ v).

b

b

b

u

v

w

Solution. Let z = 2uv/(u+ v); if we show that the vector z−u is orthogonal to u and z− v is orthogonal to
v, this will imply that the lines uz and vz are tangent to C, and so, z = w. We have z−u = (uv−u2)/(u+v)
and so

z − u

u
=

v − u

u+ v
=

(v − u)(u+ v)

|u+ v|2 =
|v|2 − |u|2 + vu− uv

|u+ v|2 =
vu− uv

|u+ v|2 =
vu− vu

|u+ v|2 ∈ iR;

so z − u = icu for some c ∈ R, so z − u ⊥ u. The same way, z − v ⊥ v.

5. Let A and B be orthogonal n× n matrices such that detA+ detB = 0. Prove that det(A+B) = 0.

Solution. Orthogonal matrices have determinant ±1, thus assume that detA = 1 and detB = −1. Then

det(A+B) = − detAT det(A+B) detBT = − det
(

ATABT +ATBBT
)

= − det(BT +AT ) = − det(A+B).

Hence, det(A+B) = 0.

Another solution. Complex non-real eigenvalues of orthogonal matrices appear in pairs: α, α, and real
eigenvalues are equal to ±1. After multiplying (from the left) both A and B by A−1, we may assume that
A = I. Then B is an orthogonal matrix with detB = −1. It follows that B has a real eigenvalue equal to −1,
and if u is the corresponding vector, then (I +B)u = 0. So, I +B is degenerate, and has zero determinant.

6. Find a pair (n,m) of integers such that n2 +m2 = 12101210.

Solution. We have 12101210 = 121 · 10 · 10001 = 112 · (32 + 12) · (1002 + 12). Using the nice identity
(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2, we get 12101210 = 112 · (3012 + 972) = 33112 + 10672.

Another solution. There is, actually, a criterion for an integer to be representable as a sum of two squares,
and an algorithm that allows to find (all) such representations. The prime factorization of 12101210 is
2 · 5 · 112 · 73 · 137. The only prime factor here that is congruent to 3 modulo 4 is 11, and it appears with an
even exponent; hence 12101210 is representable as a sum of two squares. To find such a representation we
write 2 = (1+ i)(1− i), 5 = (2+ i)(2− i), 73 = (8+ 3i)(8− 3i), and 137 = (11+ 4i)(11− 4i); then compute,
for instance, (1 + i)(2 + i)11(8 + 3i)(11 + 4i) = −1309 + 3223i, and get 12101210 = 13092 + 32232.
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