
2022 Rasor-Bareis exam solutions

1. Prove that for all positive integers n, 10n − 1 cannot be a perfect cube.

Solution. By the way of contradiction, assume that 10n−1 is a perfect cube for some n. Then, since 10n−1
is divisible by 9, it must be divisible by 27, so (10n − 1)/9 = 11 · · · 11

︸ ︷︷ ︸

n

is divisible by 3, so n is divisible by 3,

n = 3k. But then both 10n − 1 and 10n = 103k are perfect cubes, which cannot be true.

Another solution. By the way of contradiction, assume that 10n − 1 = N3 for some integers n and N . Then
10n = N3 + 1 = (N + 1)(N2 − N + 1). It follows that the prime divisors of both N + 1 and N2 − N + 1
can only be 2 and 5, N + 1 = 2k5l and N2 −N + 1 = 2r5s for some k, l, r, s. Since N3 is odd, N is odd, so
N +1 is even, and N2 −N +1 is odd. On the other hand, if N +1 is divisible by 5, then N ≡ −1mod 5, so
N2 −N + 1 ≡ 3mod 5, so N2 −N + 1 is not divisible by 5. Hence, the only option is that N + 1 = 2n and
N2 −N + 1 = 5n. But then 4n = (2n)2 = (N + 1)2 = N2 + 2N + 1 > N2 −N + 1 = 5n, contradiction.

2. For a real number x, let {x} denote the fractional part of x. Prove that
{
2n

√
2
}
> 1/2 for infinitely

many n ∈ N.

Solution. Since
√
2 is irrational, k

√
2 is irrational for all integer k, so

{
2n

√
2
}

6= 0 for all n. Therefore

for every m ∈ N we have (1/2)d+1 <
{
2m

√
2
}
< (1/2)d for some integer d ≥ 0; so 1/2 < 2d

{
2m

√
2
}
< 1,

and so
{
2m+d

√
2
}

= 2d
{
2m

√
2
}

> 1/2. We obtain that for every m ∈ N there exists n ≥ m such that
{
2n

√
2
}
> 1/2; this proves that the set of such n is infinite.

Another solution. Let 1.c1c2c3 . . ., with ci ∈ {0, 1} for all i, be the binary expansion of
√
2. Then for every

n, the binary expansion of
{
2n

√
2
}
is 0.cn+1cn+2cn+3 . . ., and we have

{
2n

√
2
}
> 1/2 iff cn+1 = 1. (Notice

that
{
2n

√
2
}

6= 1/2 for all n.) Since
√
2 is irrational, the sequence (ci) contains infnitely many 1-s, so

{
2n

√
2
}
> 1/2 for infnitely many n.

3. Let A be a positive real number. If (an) is a sequence of nonnegative real numbers with
∑∞

n=1 an = A,
find all possible values the sum

∑∞
n=1 a

2
n could have.

Solution. Let S be the set of possible values of the sum
∑∞

n=1 a
2
n. First of all, if (an) is a sequence of

nonnegative real numbers with
∑∞

n=1 an = A, at least one of an must be positive, so
∑∞

n=1 a
2
n > 0. On the

other hand, an/A ≤ 1 for all n, so a2n/A
2 ≤ an/A, so

∑∞
n=1 a

2
n/A

2 ≤ ∑∞
n=1 an/A = 1, so

∑∞
n=1 a

2
n ≤ A2 (and

for the sequence (an) = (A, 0, 0, . . .) we have
∑∞

n=1 a
2
n = A2). Hence, S ⊆ (0, A2]; we claim that S = (0, A2].

For any m ∈ N let (am,n) be the sequence
(
A
m , . . . , A

m , 0, 0 . . .
)
, with m nonzero terms; then

∑∞
n=1 am,n =

A and has
∑∞

n=1 a
2
m,n = A2

m2m = A2

m . Fix m ∈ N. For any t ∈ [0, 1] the sequence (bt,n) = (1 − t)(am,n) +

t(am+1,n) =
(
(1− t)am,n+ tam+1,n)

)
also satisfies

∑∞
n=1 bt,n = A, and has the property that (b0,n) = (am,n)

and (b1,n) = (am+1,n). The function f(t) =
∑∞

n=1 b
2
t,n =

∑m+1
n=1 b2t,n is continuous with f(0) = A2

m and

f(1) = A2

m+1 . By the intermediate value theorem, f takes all values in the interval
[

A2

m+1 ,
A2

m

]
. Hence,

[
A2

m+1 ,
A2

m

]
⊆ S for all m ∈ N; since the union of these intervals is (0, A2], we get that (0, A2] ⊆ S.

4. Prove that
∫ π/2

0

(cosx)sin xdx

(cosx)sin x + (sinx)cos x
=

π

4
.

Solution. Let I =
∫ π/2

0
(cos x)sin xdx

(cos x)sin x+(sin x)cos x . After the substitution y = π/2 − x, we see that also I =
∫ π/2

0
(sin y)sin ydy

(sin y)cos y+(cos y)sin y . Then

I + I =

∫ π/2

0

(cosx)sin xdx

(cosx)sin x + (sinx)cos x
+

∫ π/2

0

(sinx)cos xdx

(sinx)cos x + (cosx)sin x
=

∫ π/2

0

(cosx)sin x + (sinx)cos x

(cosx)sin x + (sinx)cos x
dx

=

∫ π/2

0

dx = π/2.

Hence, I = π/4.

1



5. Let ABCD be a convex quadrilateral satisfying |AB| = |CD|. Let M and N be the midpoints of AD
and BC respectively, and let the ray MN intersect the rays AB and DC at points P and Q respectively.
Show that the angles 6 APM and 6 DQM are equal.

Solution. Let O be the midpoint of the interval AC. Then ON is a midline of
△ACB, so is parallel to AB, so 6 ONM = 6 APM , and OM is a midline of
△CAD, so is parallel to CD, so 6 OMN = 6 DQM . Also, |ON | = 1

2 |AB| =
1
2 |CD| = |OM |, so the triangle △NOM is isosceles, and 6 OMN = 6 OMN .
Hence, 6 APM = 6 DQN .

b b

b
b

b

b

b

b

A

B
C

D
M

N

P

Q

bO

Another solution. By the sine theorem for triangles, sin 6 CQN
|CN | = sin 6 CNQ

|CQ|

and sin 6 DQM
|DM | = sin 6 DMQ

|DQ| , so |DM |
|CN | = |DQ|

|CQ|
sin 6 CNQ

sin 6 DMQ
. Similarly, |AM |

|BN | =

|AP |
|BP |

sin 6 BNP
sin 6 AMP

. Since |DM | = |AM |, |CN | = |BN |, sin 6 CNQ = sin 6 BNP

and sin 6 DMQ = sin 6 AMP , we get that |DQ|
|CQ| = |AP |

|BP | . Since |DC| =

|AB|, this implies that |DQ| = |AP |. So, sin 6 DQM = |DM | sin 6 DMQ
|DQ| =

|AM | sin 6 AMQ
|AP | = sin 6 APM . Also, we have 6 DMQ ≥ π/2 or 6 AMP ≥ π/2;

on either case |DQ| = |AP | > |DM | = |AM |, so both 6 APM and 6 DQM are
acute. Hence, 6 APM ≃ 6 DQM .
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6. Assume that three faces of a tetrahedron are pairwise orthogonal and have areas a, b, c, and let the area
of the fourth face be d. Prove that d2 = a2 + b2 + c2.

Solution. Let A, B, C, D be the vertices of the tetrahedron opposite to
the faces whose areas are a, b, c, d respectively, let x = |DA|, y = |DB|,
z = |DC|, so that a = 1

2yz, b = 1
2xz, c = 1

2xy. Let E be the point
of intersection of the segment AB with the plane containing DC and
orthogonal to AB.

a b

c
D

B A

C

y x

z

E

Then |AB| =
√

x2 + y2, |DE| = xy/|AB|, |CE| =
√

|DE|2 + z2, so

d2 = 1
4 |AB|2|CE|2 = 1

4 (x
2 + y2)

(
x2y2/(x2 + y2) + z2

)
= 1

4

(
x2y2 + x2z2 + y2z2

)
= c2 + b2 + a2.

Another solution. Introduce the coordinate system such that the three
orthogonal faces of the tetrahedron lay in the coordinate planes (and the
common vertex of these faces is the origin of the coordinate system): 0 x

z
y

In this coordinate system, the other three vertices of the tetrahedron have coordinates (x, 0, 0), (0, y, 0), and
(0, 0, z), so that a = xy

2 , b = yz
2 , c = yz

2 . The “area vector” of the fourth face is u = 1
2 (−x, y, 0)× (−x, 0, z) =

1
2 (yz, xz, xy), thus d

2 = |u|2 = 1
4

(
(yz)2 + (xz)2 + (xy)2

)
= a2 + b2 + c2.
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