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1 Introducing the Theorem

Recall the following basic fact from algebra:

Theorem 1.0: Let F be a field and f ∈ F [x] a polynomial of degree t. Then, f has at
most t roots.

We will prefer to think of this as follows:

Theorem 1.0 (reformulation): Let f be a field and f ∈ F [x] a polynomial of degree
t. Then, for any S ⊆ F with |S| > t, there exists an s ∈ S such that f(s) ̸= 0
if the coefficient of xt is non-zero.

Today’s main attraction can be thought of as a generalization of this.

Theorem 1.1 (Combinatorial Nullstellensatz): Analogously to before, let F be a
field and f ∈ F [x1, ..., xn] a polynomial of degree t = t1 + · · · + tn. Then, for any sets
S1, ..., Sn ⊆ F with |Si| > ti, there exists an n−tuple s = (s1, ..., sn) ∈ S1×· · ·×Sn such
that f(s) ̸= 0 given that the coefficient of xt1

1 · · ·xtn
n is non-zero.

In the original paper (Alon [1], pg.3) on the subject, Noga Alon also called the following
theorem Combinatorial Nullstellensatz.

Theorem 1.2: Let F be an arbitrary field, R ⊆ F any sub-ring, and f ∈ R[x1, ..., xn].
Let S1, ..., Sn ⊆ R be non-empty and define gi(xi) =

∏
s∈Si

(xi − s). If f vanishes over all
the common zeros of g1, ..., gn (that is; if f(s) = 0 for all s ∈ S1 × · · · × Sn), then there
are polynomials h1, ..., hn ∈ R[x1, ..., xn] satisfying deg(hi) ≤ deg(f)− deg(gi) such that
f =

∑n
i=1 higi.

In fact, theorem 1.2 was used to prove theorem 1.1. However, we will only think of theorem
1.1 as Combinatorial Nullstellensatz.

Note the similarities between theorem 1.2 and the more well-known theorem below:
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Theorem 1.3 (Hilbert’s Nullstellensatz): Let F be an algebraically closed field
and f, g1, ..., gm ∈ F [x1, ..., xn] such that f vanishes over all common zeroes of g1, ..., gm.
Then, there exists a natural number k and polynomials h1, ..., hm ∈ F [x1, ..., xn] such
that fk =

∑n
i=1 higi.

In essence, theorem 1.2 gives us a stronger conclusion in the special case when n = m and
each gi is a univariate polynomial of the form

∏
s∈Si

(xi − s) (Alon [1], pg.1).

2 Warm up

Here is a problem from the 2007 All-Russian Olympiad ([2]):

Problem: Two distinct numbers are written on each vertex of a regular 100−gon. Prove
one can remove a number from each vertex so that the remaining numbers on any two
adjacent vertices differ.

Solution: Let Si be the set of numbers on the ith vertex and note that |Si| = 2. Consider
the polynomial

P (c1, c2, ..., cn) := (c1 − c2)(c2 − c3) · · · (c99 − c100)(c100 − c1).

Note that the coefficient of c1c2 · · · c100 is 2. Hence, there exists s ∈ S1× · · ·×S100 such that
f(s) ̸= 0 by Combinatorial Nullstellensatz. Since the polynomial doesn’t vanish, adjacent
vertices must have different numbers. □

3 Applications to Additive Number Theory

Theorem 2.1 (Cauchy-Davenport): If A and B are non-empty subsets of Z/pZ with
p prime, then |A+B| ≥ min(p, |A|+ |B| − 1).

Exercise 1: Prove the above theorem in the case where min(p, |A|+ |B| − 1) = p.

Proof: We will suppose |A| + |B| − 1 < p. Assume for the sake of contradiction that
|A+B| < |A|+ |B| − 1 and define

f(a, b) =
∏

s∈A+B

(a+ b− s).

Clearly, f has degree |A + B|. Furthermore, note that the coefficient of a|A|−1b|A+B|−|A|+1

is
(|A+B|
|A|−1

)
, which is non-zero in Z/pZ since |A + B| < |A| + |B| − 1 < p. However, using

Combinatorial Nullstellensatz with S1 = A and S2 = B tells us that there exists a ∈ A and
b′ ∈ B with f(a′, b′) ̸= 0. This is a contradiction because f is 0 everywhere on A × B by
construction. □
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Note the assumption of primality is crucial. However, Inder Chowla found a generalization
to non-prime moduli in 1937 [3].

Theorem 2.2 (Chowla): Let n be a positive integer and A,B ⊆ Z/nZ such that 0 ∈ B
and gcd(b, n) = 1 for all b ∈ B \ {0}. Then, |A+B| ≥ min(n, |A|+ |B| − 1).

Next, we shall take a look at an application of the Cauchy-Davenport theorem:

Theorem 2.3 (Erdős-Ginzburg-Ziv): Given any 2n−1 integers, one can pick exactly
n whose sum is divisible by n.

Reduction to primes: We will first show that it suffices to prove theorem 2.3 in the
case where n is prime. To this end, let P (n) be the statement of the theorem for n ∈ N.
We will prove that P (a) and P (b) implies P (ab). So suppose that we are given integers
x1, x2, ..., x2ab−1. Using P (a), select a numbers s1,1, s1,2, ..., s1,a with sum divisible by a. This
leaves us with 2ab− 1− a numbers. Out of these, pick a numbers s2,1, s2,2, ..., s2,a with sum
divisible by a. Perform this procedure a total of 2b−1 times. Note that this is possible since
2ab− 1− a(2b− 1) = a− 1 ≥ 0 (so we don’t run out of numbers). By construction, for any
j ∈ {1, 2, ..., 2b− 1},

sj,1 + sj,2 + · · ·+ sj,a = acj

for some cj ∈ N. So we end up with 2b − 1 sums ac1, ac2, ..., ac2b−1. Using P (b), pick b of
these (say acℓ1 , acℓ2 , ..., acℓb) such that cℓ1 + · · · + cℓb is divisible by b. Each sum consists of
a summands and so we have chosen exactly ab numbers. Furthermore, the sum of all our
numbers is a(cℓ1 + · · ·+ cℓb) which is plainly divisible by ab. □

The above is rephrased version of the reduction found in [4]. Additionally, [4] also contains
a different proof of the theorem that uses the Chevalley-Warning theorem.

Proof of Theorem 2.3: It suffices to prove the statement for an arbitrary prime p. So
suppose that we are given x1, x2, ..., x2p−1 ∈ Z/pZ. We may assume that they are ordered
so that x1 ≤ x2 ≤ · · · ≤ x2p−1. Now define Ai := {xi, xi+p−1} for all i ∈ {1, 2, ..., p− 1}.
If |Ai| = 1 for some i, then xi = xi+p−1, implying that xi = xi+1 = · · · = xi+p−1 since
we ordered them. Hence, xi + xi+1 + · · · + xi+p−1 = pxi = 0 and so we have found our p
numbers. So now suppose that |Ai| = 2 for all i. Then, repeated application of Cauchy-
Davenport yields |A1 + · · ·+ Ap−1| = p. In particular, −x2p−1 = a1 + a2 + · · ·+ ap−1 where
ai ∈ Ai. Rearranging yields x2p−1 + a1 + a2 + · · ·+ ap−1 = 0 as desired. □

The above proof was taken from [5].
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The following theorem was known as the Erdős-Heilbronn conjecture for about thirty years
before it was solved in 1996 by J. A. Dias Da Silva and Y. O. Hamidoune [6]. However, their
proof used some very fancy methods. As it happens, Heilbronn was Inder Chowla’s advisor
[7].

Theorem 2.4: Given S1, S2, define S1+̇S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S and s1 ̸= s2}.
Then for any A ⊆ Z/pZ, we have |A+̇A| ≥ min(p, 2|A| − 3).

Proof: We will only consider the case where 2|A| − 3 < p. Now assume for the sake of
contradiction that |A+̇A| < 2|A| − 3 and consider the polynomial

f(a, b) = (a− b)
∏

s∈A+̇A

(a+ b− s).

Observe that f has degree |A+̇A|+1. Additionally, note that the coefficient of a|A|−1b|A+̇A|−|A|+2

is (
|A+̇A|
|A| − 2

)
−

(
|A+̇A|

|A+̇A| − |A|+ 1

)
=

|A+̇A|!(2|A| − 3− |A+̇A|)
(|A| − 1)!(|A+̇A| − |A|+ 2)!

.

Since this is non-zero by our assumption, Combinatorial Nullstellensatz tells us that f is
non-zero somewhere on A× A. However, this is clearly a contradiction. □

The above proof is a modified version of Peter Scholze’s solution to corollary 6 on Art of
Problem Solving [8]. This is very likely the same person who won a Fields medal in 2018 for
his work on Perfectoid Spaces.

4 A Difficult IMO problem

One of the hardest IMO problems to date has been #6 from 2007. Out of approximately
500 participants, only 5 were able to solve it perfectly [9]. One of them was Peter Scholze.

Problem (IMO 2007 #6): Let n be a positive integer. Consider

S = {(x, y, z) : x, y, z ∈ {0, 1, ..., n} , x+ y + z > 0}

as a set of (n+1)3−1 points in three-dimensional space. Determine the smallest possible
number of planes, the union of which contains S but does not include (0, 0, 0).

Solution: The fewest number of possible planes is 3n. Consider, for example, the planes
given by x+ y + z = ℓ for ℓ ∈ {1, 2, ..., 3n}. Assume for the sake of contradiction that fewer
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planes suffice, say k < 3n. Given one of these planes P, let aPx+ bPy + cPz − dP = 0 be
it’s equation. Now define

P (x, y, z) :=
∏
P

(aPx+ bPy + cPz − dP)

Q(x, y, z) :=
n∏

j=1

(x− j)(y − j)(z − j)

and consider

R(x, y, z) := P (x, y, z)− P (0, 0, 0)

Q(0, 0, 0)
Q(x, y, z).

If (x, y, z) ∈ S, then P (x, y, z) = Q(x, y, z) = 0, implying R(x, y, z) = 0. Furthermore,
simple algebra shows that R(0, 0, 0) = 0. Hence, R is 0 everywhere on I3 where I =
{0, 1, ..., n}.
Now, observe that the coefficient of xnynzn in P is 0 since deg(P ) = k < 3n. However, the
coefficient of xnynzn in Q is 1 and so the coefficient of xnynzn in R is −P (0, 0, 0)/Q(0, 0, 0).
This is non-zero since none of the planes hit the origin (meaning that dP is always non-
zero). Thus, Combinatorial Nullstellensatz tells us that there exists α, β, γ ∈ I such that
f(α, β, γ) ̸= 0. However, this is a contradiction. □
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