What is Combinatorial Nullstellensatz?
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1 Introducing the Theorem

Recall the following basic fact from algebra:

Theorem 1.0: Let F be a field and f € F[z] a polynomial of degree ¢. Then, f has at
most t roots.

We will prefer to think of this as follows:

Theorem 1.0 (reformulation): Let f be a field and f € F[z] a polynomial of degree
t. Then, for any S C F with |S| > ¢, there exists an s € S such that f(s) # 0
if the coefficient of x' is non-zero.

Today’s main attraction can be thought of as a generalization of this.

Theorem 1.1 (Combinatorial Nullstellensatz): Analogously to before, let F' be a
field and f € Flxy,..., 2, a polynomial of degree t = t; + --- + t,. Then, for any sets
S1, .y Sp € F with |S;| > ¢;, there exists an n—tuple s = (sq, ..., 8,) € S1 X -+ X S, such

that f(s) # 0 given that the coefficient of z' - - - % is non-zero.

In the original paper (Alon [I], pg.3) on the subject, Noga Alon also called the following
theorem Combinatorial Nullstellensatz.

Theorem 1.2: Let F' be an arbitrary field, R C F any sub-ring, and f € Rz, ..., 2,].
Let Si, ..., 8, € R be non-empty and define g;(z;) = [[ g, (zi — s). If f vanishes over all
the common zeros of gy, ..., g, (that is; if f(s) =0 for all s € S} X --- x S,,), then there
are polynomials hy, ..., h, € Rz, ..., x,] satisfying deg(h;) < deg(f) — deg(g;) such that
f= Z?:l h;g;.

In fact, theorem 1.2 was used to prove theorem 1.1. However, we will only think of theorem
1.1 as Combinatorial Nullstellensatz.

Note the similarities between theorem 1.2 and the more well-known theorem below:



Theorem 1.3 (Hilbert’s Nullstellensatz): Let F' be an algebraically closed field
and f, g1, ..., gm € F[x1,...,x,] such that f vanishes over all common zeroes of gy, ..., G-
Then, there exists a natural number k and polynomials hy, ..., h,, € Flxy,..., 2, such

that fk = Z:’l:l h’zgz

In essence, theorem 1.2 gives us a stronger conclusion in the special case when n = m and
each g; is a univariate polynomial of the form [] ¢ (z; — s) (Alon [1], pg.1).

2 Warm up

Here is a problem from the 2007 All-Russian Olympiad ([2]):

Problem: Two distinct numbers are written on each vertex of a regular 100—gon. Prove
one can remove a number from each vertex so that the remaining numbers on any two
adjacent vertices differ.

Solution: Let S; be the set of numbers on the i*" vertex and note that |S;| = 2. Consider
the polynomial
P(ey,ca,ny0n) 1= (c1 — c2)(ca — ¢3) -+~ (o9 — €100) (€100 — C1)-

Note that the coefficient of cicy - - - c199 is 2. Hence, there exists s € S; X - - - X Sigg such that
f(s) # 0 by Combinatorial Nullstellensatz. Since the polynomial doesn’t vanish, adjacent
vertices must have different numbers. ]

3 Applications to Additive Number Theory

Theorem 2.1 (Cauchy-Davenport): If A and B are non-empty subsets of Z/pZ with
p prime, then |A + B| > min(p, |A| + |B| — 1).

Exercise 1: Prove the above theorem in the case where min(p, |A| + |B| — 1) = p.

Proof: We will suppose |A| + |B] —1 < p. Assume for the sake of contradiction that
|A+ B| < |A| +|B| — 1 and define

flab)= JJ (a+b—s).
s€eA+B
Clearly, f has degree |A 4+ B|. Furthermore, note that the coefficient of al4I=1plA+BI=I4l+1
is ('QJ‘FE'), which is non-zero in Z/pZ since |A + B| < |A| + |B| — 1 < p. However, using
Combinatorial Nullstellensatz with S; = A and Sy = B tells us that there exists a € A and
b € B with f(a’,0/) # 0. This is a contradiction because f is 0 everywhere on A x B by

construction. O



Note the assumption of primality is crucial. However, Inder Chowla found a generalization
to non-prime moduli in 1937 [3].

Theorem 2.2 (Chowla): Let n be a positive integer and A, B C Z/nZ such that 0 € B
and ged(b,n) =1 for all b € B\ {0}. Then, |A+ B| > min(n, |A| +|B| —1).

Next, we shall take a look at an application of the Cauchy-Davenport theorem:

Theorem 2.3 (Erd6s-Ginzburg-Ziv): Given any 2n— 1 integers, one can pick exactly
n whose sum is divisible by n.

Reduction to primes: We will first show that it suffices to prove theorem 2.3 in the
case where n is prime. To this end, let P(n) be the statement of the theorem for n € N.
We will prove that P(a) and P(b) implies P(ab). So suppose that we are given integers
T1, T, ..., Tagp—1. Using P(a), select a numbers s 1, $1.9, ..., S1,, with sum divisible by a. This
leaves us with 2ab — 1 — a numbers. Out of these, pick a numbers s3 1, 529, ..., 52 o With sum
divisible by a. Perform this procedure a total of 2b — 1 times. Note that this is possible since
2ab—1—a(2b—1) =a—12> 0 (so we don’t run out of numbers). By construction, for any
je{1,2,...,2b — 1},

S+ Sj2+ -+ Sje = ag;

for some ¢; € N. So we end up with 2b — 1 sums acy, acs, ..., acyp—1. Using P(b), pick b of
these (say acy,, ace,, ..., acy,) such that ¢ + - -+ + ¢, is divisible by b. Each sum consists of
a summands and so we have chosen exactly ab numbers. Furthermore, the sum of all our
numbers is a(cy, + - -+ + ¢4,) which is plainly divisible by ab. O

The above is rephrased version of the reduction found in [4]. Additionally, [4] also contains
a different proof of the theorem that uses the Chevalley-Warning theorem.

Proof of Theorem 2.3: It suffices to prove the statement for an arbitrary prime p. So
suppose that we are given xy, s, ..., Zop—1 € Z/pZ. We may assume that they are ordered
so that zy < zy < -+ < 9, 1. Now define A; := {x;, 2,1, 1} for all i € {1,2,...,p—1}.
If |A;] = 1 for some i, then x; = 4,1, implying that z; = 2,41 = -+ = x;4,1 since
we ordered them. Hence, x; + 241 + -+ + Zi3p—1 = pr; = 0 and so we have found our p
numbers. So now suppose that |A;| = 2 for all . Then, repeated application of Cauchy-
Davenport yields |A; + - -+ A,_1| = p. In particular, —x9,_1 = a1 + ag + - - - + a,—1 where
a; € A;. Rearranging yields xo,—1 + a1 + a2 + -+ - 4+ a,—1 = 0 as desired. O

The above proof was taken from [5].



The following theorem was known as the Erdos-Heilbronn conjecture for about thirty years
before it was solved in 1996 by J. A. Dias Da Silva and Y. O. Hamidoune [6]. However, their
proof used some very fancy methods. As it happens, Heilbronn was Inder Chowla’s advisor

.

Theorem 2.4: Given Si,S,, define S1+Sy = {51+ 53 : 8, € 51,8, € S and 51 # s9}.
Then for any A C Z/pZ, we have |A+A| > min(p, 2|A| — 3).

Proof: We will only consider the case where 2|A| — 3 < p. Now assume for the sake of
contradiction that |A+A| < 2|A| — 3 and consider the polynomial

fla,b) =(a=b) J] (a+b-5s).

SEA+A

Observe that f has degree |A-+A|+1. Additionally, note that the coefficient of alAI=1plA+AI=14+2
1s

<|A4—A|) B ( |A+ A ) _JAFAJN(2|A] - 3 — |A+A])

|A| —2 |A+A| —|Al+1/)  (JA] — DI(JA+A| — |A] +2)1

Since this is non-zero by our assumption, Combinatorial Nullstellensatz tells us that f is
non-zero somewhere on A x A. However, this is clearly a contradiction. U

The above proof is a modified version of Peter Scholze’s solution to corollary 6 on Art of
Problem Solving [8]. This is very likely the same person who won a Fields medal in 2018 for
his work on Perfectoid Spaces.

4 A Difficult IMO problem

One of the hardest IMO problems to date has been #6 from 2007. Out of approximately
500 participants, only 5 were able to solve it perfectly [9]. One of them was Peter Scholze.

Problem (IMO 2007 #6): Let n be a positive integer. Consider
S=A{(z,y,2) :z,y,2 € {0,1,....,n} ,x +y + z > 0}

as a set of (n+1)3—1 points in three-dimensional space. Determine the smallest possible
number of planes, the union of which contains S but does not include (0,0, 0).

Solution: The fewest number of possible planes is 3n. Consider, for example, the planes
given by x +y+ z = { for £ € {1,2,...,3n}. Assume for the sake of contradiction that fewer

4



planes suffice, say k < 3n. Given one of these planes &2, let apx + bpy + cpz — dep = 0 be
it’s equation. Now define

P(z,y, z) = H(am +bpy + cpz —do)
3”

Q(z,y, 2 H =)y —i)z—J)
7j=1
and consider

0,0,0)
m@(% Y, 2).

Q(x,y,z) = 0, implying R(z,y,z) = 0. Furthermore,
0) = 0. Hence, R is 0 everywhere on I where I =

R(l’,y,Z) = P(l‘,y, Z) -

If (x,y,2) € S, then P(x,y,z) =
simple algebra shows that R(0,0,

{0,1,...,n}.

Now, observe that the coefficient of z"y"z" in P is 0 since deg(P) = k < 3n. However, the
coefficient of 2"y"2" in @ is 1 and so the coefficient of z™y"2™ in R is —P(0,0,0)/Q(0,0,0).
This is non-zero since none of the planes hit the origin (meaning that d is always non-
zero). Thus, Combinatorial Nullstellensatz tells us that there exists «, 3,7 € I such that
f(a, B,7) # 0. However, this is a contradiction. O



References

[1] ALON, NOGA. “Combinatorial Nullstellensatz.” Combinatorics, Probability and Com-
puting, vol. 8, no. 1-2, 1999, pp. 7-29., doi:10.1017/50963548398003411.

[2] Agbdmrbirdyface. “Combinatorial whuuu...?” Problems of the day, 26 Nov. 2016, artof-
problemsolving.com /community /¢282525h1344647. Accessed 29 July 2022.

3] I. CHOWLA. “A THEOREM ON THE ADDITION OF RESIDUE CLASSES:
APPLICATION TO THE NUMBER T'(k) IN WARING’'S PROBLEM.” The
Quarterly Journal of Mathematics, Volume o0s-8, Issue 1, 1937, Pages 99-102,
https://doi.org/10.1093 /qmath/0s-8.1.99

[4] Amit, Alon. “Given 2n — 1 natural numbers, how can one prove that you can choose n
of them such that their sum is a multiple of n?” Quora, 21 Mar. 2016, qr.ae/pvMEXA.
Accessed 29 July 2022.

[5] Uncudh. “The Erdos-Ginzburg-Ziv Theorem.” Uniformly at Random, 25 Jan. 2009,
uniformlyatrandom.wordpress.com/2009/01/25/the-erdos-ginzburg-ziv-theorem/.

[6] Da Silva, J. A. D., & Hamidoune, Y. O. (1994). Cyclic Spaces for Grassmann Deriva-
tives and Additive Theory. Bulletin of the London Mathematical Society, 26(2), 140-146.
d0i:10.1112/blms/26.2.140

(7] Mathematics Genealogy Project. www.genealogy.math.ndsu.nodak.edu/id.php?id=27149.

[8] Scholze, Peter. “nice theorem.” Art of Problem Solving, 9 Nov. 2004, artofproblemsolv-
ing.com/ community/c7h19496p133386. Accessed 29 July 2022.

9] International Mathematical Olympiad. www.imo-official.org/
year_individual r.aspx?year=2007&column=p6&order=desc&gender=hide&nameform=western.

[10] Yeo, Dominic. ” The Combinatorial Nullstellensatz.” Eventually Almost Everywhere, 25
Nov. 2013, eventuallyalmosteverywhere.wordpress.com/2013/11/25/the-combinatorial-
nullstellensatz /.



	Introducing the Theorem
	Warm up
	Applications to Additive Number Theory
	A Difficult IMO problem

