What is... Ptolemy's inequality in non-zero curvature?

Mario Roberto Gómez Flores

The Ohio State University

July 5, 2022

Table of Contents

- Historical context
 - Using Ptolemy's theorem
- ② Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry

Overview

- Historical context
 - Using Ptolemy's theorem
- 2 Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry
- 3 R-trees

Ptolemy's inequality

Theorem

For any four points $p_1, p_2, p_3, p_4 \in \mathbb{R}^2$,

$$d_{13}d_{24} \leq d_{12}d_{34} + d_{23}d_{41},$$

with equality if, and only if, the points are collinear or concyclic.

Ptolemy's inequality

Theorem

For any four points $p_1, p_2, p_3, p_4 \in \mathbb{R}^2$,

$$d_{13}d_{24} \leq d_{12}d_{34} + d_{23}d_{41},$$

with equality if, and only if, the points are collinear or concyclic.

Ptolemy's inequality

Theorem

For any four points $p_1, p_2, p_3, p_4 \in \mathbb{R}^2$,

$$d_{13}d_{24} \leq d_{12}d_{34} + \frac{d_{23}d_{41}}{d_{41}},$$

with equality if, and only if, the points are collinear or concyclic.

Claudius Ptolemy

- Born in Alexandria, Egypt (c. 100-170 AD).
- He was a mathematician, astronomer, geographer, and music theorist.

The Almagest

- It is considered the culmination of Greek astronomy [Ped11].
- It contains:
 - Table of chords,
 - The Ptolemaic model of the universe (geocentric),
 - Varied astronomical calculations.
- It influenced Western astronomy for over a millennium.
- Only Greco-Roman astronomical work that survives to this day.

Table of Contents

- Historical context
 - Using Ptolemy's theorem
- Quality Company Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry
- 3 R-trees

Table of chords

 $\mathsf{ch}(\theta) = 2R\sin(\theta/2)$

- The table recorded the length of chords in a circle where:
 - Diameter is 120
 - Subtended angle goes from 0° to 180° in increments of half a degree.

Tool	Angles	
Elementary polygons	36°, 60°, 72°, 90°	

1

Tool	Angles	
Elementary polygons	36°, 60°, 72°, 90°	
Pythagorean theorem	108°, 120°, 144°	

1

Tool	Angles	
Elementary polygons	36°, 60°, 72°, 90°	
Pythagorean theorem	108°, 120°, 144°	
Difference of angles	18°, 12°, 6°	
		I

1

Tool	Angles	
Elementary polygons	36°, 60°, 72°, 90°	
Pythagorean theorem	108°, 120°, 144°	
Difference of angles	18°, 12°, 6°	
Half-angle identity	3°,3/2° and 3/4°	

¹

Tool	Angles	
Elementary polygons	36°, 60°, 72°, 90°	
Pythagorean theorem	108°, 120°, 144°	
Difference of angles	18°, 12°, 6°	
Half-angle identity	3°,3/2° and 3/4°	
$\frac{\operatorname{ch}(x)}{x} < \frac{\operatorname{ch}(y)}{y}$ if $x > y$	$3/4^{\circ} < 1^{\circ} < 3/2^{\circ}$	
,		

2

Mario Roberto Gómez Flores (OSU)

¹

Tool	Angles
Elementary polygons	36°, 60°, 72°, 90°
Pythagorean theorem	108°, 120°, 144°
Difference of angles	18°, 12°, 6°
Half-angle identity	3°, 3/2° and 3/4°
$\frac{\operatorname{ch}(x)}{x} < \frac{\operatorname{ch}(y)}{y}$ if $x > y$	$3/4^{\circ} < 1^{\circ} < 3/2^{\circ}$
Half-angle identity	1/2°

¹

Tool	Angles	Known earlier? [Ped11]
Elementary polygons	36°, 60°, 72°, 90°	Early Greeks ¹
Pythagorean theorem	108°, 120°, 144°	Pythagoras (500 BC)
Difference of angles	18°, 12°, 6°	Archimedes (200s BC)
Half-angle identity	3°,3/2° and 3/4°	Archimedes (200s BC)
$\frac{\operatorname{ch}(x)}{x} < \frac{\operatorname{ch}(y)}{y}$ if $x > y$	$3/4^{\circ} < 1^{\circ} < 3/2^{\circ}$	Aristarchos (300s BC) ²
Half-angle identity	1/2°	

¹

Tool	Angles	Known earlier? [Ped11]
Elementary polygons	36°, 60°, 72°, 90°	Early Greeks ¹
Pythagorean theorem	108°, 120°, 144°	Pythagoras (500 BC)
Difference of angles	18°, 12°, 6°	Archimedes (200s BC)
Half-angle identity	3°,3/2° and 3/4°	Archimedes (200s BC)
$\frac{\operatorname{ch}(x)}{x} < \frac{\operatorname{ch}(y)}{y}$ if $x > y$	$3/4^{\circ} < 1^{\circ} < 3/2^{\circ}$	Aristarchos (300s BC) ²
Half-angle identity	1/2°	

 $^{^1\}mbox{Ptolemy}$ computed the chords in sexagesimal numbers.

Corollaries of Ptolemy's theorem

 $\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$

Images from:

- https://www.researchgate.net/publication/344787296_Ptolemy_Through_t he_Centuries_for_Fullerton_Mathematical_Circle
- https://www.cut-the-knot.org/proofs/sine_cosine.shtml

Overview

- Historical context
 - Using Ptolemy's theorem
- ② Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry
- 3 R-trees

Table of Contents

- Historical context
 - Using Ptolemy's theorem
- ② Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry
- 3 R-trees

Cayley-Menger determinant

Let $X = \{p_1, p_2, ..., p_n\}$ be a finite metric space with distances $d_{ij} = d_X(p_i, p_j)$. Define

$$\mathsf{CM}(p_1,\ldots,p_n) = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ \hline 1 & 0 & d_{12}^2 & \cdots & d_{1n}^2 \\ 1 & d_{21}^2 & 0 & \cdots & d_{2n}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & d_{n1}^2 & d_{n2}^2 & \cdots & 0 \end{pmatrix}.$$

The quantity $\Delta(p_1, \ldots, p_n) = \det(\mathsf{CM}(p_1, \ldots, p_n))$ is called the *Cayley-Menger determinant*.

• Let S be the convex hull of the n+1 points $p_1, \ldots, p_{n+1} \in \mathbb{R}^n$. The n-dimensional volume of S is given by

$$\operatorname{Vol}_n^2(S) = \frac{(-1)^{n+1}}{2^n(n!)^2} \Delta(p_1, \dots, p_{n+1}).$$

• Let S be the convex hull of the n+1 points $p_1, \ldots, p_{n+1} \in \mathbb{R}^n$. The n-dimensional volume of S is given by

$$\operatorname{Vol}_n^2(S) = \frac{(-1)^{n+1}}{2^n(n!)^2} \Delta(p_1, \dots, p_{n+1}).$$

• For $p_1, ..., p_{n+2} \in \mathbb{R}^n$, $\Delta(p_1, ..., p_{n+2}) = 0$.

• Let S be the convex hull of the n+1 points $p_1, \ldots, p_{n+1} \in \mathbb{R}^n$. The n-dimensional volume of S is given by

$$\operatorname{Vol}_n^2(S) = \frac{(-1)^{n+1}}{2^n(n!)^2} \Delta(p_1, \dots, p_{n+1}).$$

- For $p_1, ..., p_{n+2} \in \mathbb{R}^n$, $\Delta(p_1, ..., p_{n+2}) = 0$.
- When n=2, the Cayley-Menger determinant gives Heron's formula for the area of a triangle A with side lengths a,b,c [DS05]

$$16A^{2} = -\Delta(p_{1}, p_{2}, p_{3})$$

= $(a + b + c)(-a + b + c)(a - b + c)(a + b - c).$

$$\operatorname{Vol}_n^2(S) = \frac{(-1)^{n+1}}{2^n(n!)^2} \Delta(p_1, \dots, p_{n+1}).$$

- Given a finite metric space (X, d_X) , there exists an isometric embedding $X \hookrightarrow \mathbb{R}^n$ if and only if there exist $p_1, \ldots, p_{n+1} \in X$ such that:
 - $(-1)^k \Delta(p_1, ..., p_k) \ge 0$, for every k = 2, ..., n + 1,
 - $\Delta(p_1, \dots, p_{n+1}, x) = \Delta(p_1, \dots, p_{n+1}, y) = \Delta(p_1, \dots, p_{n+1}, x, y) = 0$ for all $x, y \in X$.

See [Blu70, Thm 42.2].

A related matrix

Let $X = \{p_1, p_2, ..., p_n\}$ be a finite metric space with distances $d_{ij} = d_X(p_i, p_j)$. Let

$$P(p_1,\ldots,p_n) = \left(egin{array}{cccc} 0 & d_{12}^2 & \cdots & d_{1n}^2 \ d_{21}^2 & 0 & \cdots & d_{2n}^2 \ dots & dots & dots \ d_{n1}^2 & d_{n2}^2 & \cdots & 0 \end{array}
ight).$$

Denote its determinant as $\gamma(p_1,\ldots,p_n)=\det\big(P(p_1,\ldots,p_n)\big)$.

Facts about this matrix

• The points $p_1, \ldots, p_{n+2} \in \mathbb{R}^n$ lie on an (n-1)-sphere or a (n-1)-hyperplane if, and only if,

$$\gamma(p_1,\ldots,p_{n+2})=0.$$

Facts about this matrix

• The points $p_1, \ldots, p_{n+2} \in \mathbb{R}^n$ lie on an (n-1)-sphere or a (n-1)-hyperplane if, and only if,

$$\gamma(p_1,\ldots,p_{n+2})=0.$$

• If n = 2, $\gamma(p_1, p_2, p_3, p_4)$ factors as

$$\gamma(p_1, p_2, p_3, p_4) = -(d_{13}d_{24} + d_{12}d_{34} + d_{23}d_{41})$$

$$\cdot (-d_{13}d_{24} + d_{12}d_{34} + d_{23}d_{41})$$

$$\cdot (+d_{13}d_{24} - d_{12}d_{34} + d_{23}d_{41})$$

$$\cdot (+d_{13}d_{24} + d_{12}d_{34} - d_{23}d_{41}).$$

Table of Contents

- Historical context
 - Using Ptolemy's theorem
- ② Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry
- 3 R-trees

Figure: From "A Journey into Gravity and Spacetime" by J. A. Wheeler.

Given $x, y \in \mathbb{R}^{d+1}$, let

$$\langle x,y \rangle = x_0 y_0 + x_1 y_1 + \dots + x_d y_d$$
, and $\langle x|y \rangle = -x_0 y_0 + x_1 y_1 + \dots + x_d y_d$.

Given $x, y \in \mathbb{R}^{d+1}$, let

$$\langle x, y \rangle = x_0 y_0 + x_1 y_1 + \dots + x_d y_d$$
, and $\langle x | y \rangle = -x_0 y_0 + x_1 y_1 + \dots + x_d y_d$.

Define M_{κ}^d , the d-dimensional space with constant curvature κ , as

$$M_{\kappa}^{d} = \left\{ x \in \mathbb{R}^{d+1} \mid \langle x, x \rangle = \frac{1}{\kappa} \right\}, \text{if } \kappa > 0,$$

$$M_{\kappa}^{d} = \left\{ x \in \mathbb{R}^{d+1} \mid \langle x | x \rangle = \frac{1}{\kappa} \text{ and } x_{0} > 0 \right\}, \text{if } \kappa < 0.$$

Given $x, y \in \mathbb{R}^{d+1}$, let

$$\langle x, y \rangle = x_0 y_0 + x_1 y_1 + \dots + x_d y_d$$
, and $\langle x | y \rangle = -x_0 y_0 + x_1 y_1 + \dots + x_d y_d$.

Define M_{κ}^d , the d-dimensional space with constant curvature κ , as

$$M_{\kappa}^{d} = \left\{ x \in \mathbb{R}^{d+1} \mid \langle x, x \rangle = \frac{1}{\kappa} \right\}, \text{if } \kappa > 0,$$

$$M_{\kappa}^{d} = \left\{ x \in \mathbb{R}^{d+1} \mid \langle x | x \rangle = \frac{1}{\kappa} \text{ and } x_{0} > 0 \right\}, \text{if } \kappa < 0.$$

The geodesic distance is given by

$$d_{\kappa}(x,y) = \begin{cases} \frac{1}{\sqrt{+\kappa}}\arccos(\kappa\langle x,y\rangle), & \text{if } \kappa>0,\\ \frac{1}{\sqrt{-\kappa}}\arccos(\kappa\langle x|y\rangle), & \text{if } \kappa<0. \end{cases}$$

Notice that

$$\operatorname{diam}(M_{\kappa}^d) = egin{cases} rac{\pi}{\sqrt{\kappa}}, & ext{if } \kappa > 0, \\ \infty, & ext{if } \kappa \leq 0. \end{cases}$$

Notice that

$$\mathbf{diam}(M_{\kappa}^d) = \begin{cases} \frac{\pi}{\sqrt{\kappa}}, & \text{if } \kappa > 0, \\ \infty, & \text{if } \kappa \leq 0. \end{cases}$$

Define the functions

$$c_{\kappa}(t) = egin{cases} \cos\left(\sqrt{\kappa}t
ight), & ext{if } \kappa > 0, \\ \cosh\left(\sqrt{-\kappa}t
ight), & ext{if } \kappa < 0, \end{cases}$$

and

$$s_{\kappa}(t) = egin{cases} \sin\left(\sqrt{\kappa}t
ight), & ext{if } \kappa > 0, \\ \sinh\left(\sqrt{-\kappa}t
ight), & ext{if } \kappa < 0. \end{cases}$$

Generalized Cayley-Menger determinant

Let $p_1, \ldots, p_n \in M_{\kappa}^d$. Define

$$\mathsf{CM}_{\kappa}(p_1,\ldots,p_n) = \left(egin{array}{ccc} c_{\kappa}(d_{11}) & \cdots & c_{\kappa}(d_{1n}) \ dots & \ddots & dots \ c_{\kappa}(d_{n1}) & \cdots & c_{\kappa}(d_{nn}) \end{array}
ight),$$

and

$$P_{\kappa}(p_1,\ldots,p_n) = \begin{pmatrix} s_{\kappa}^2(d_{11}/2) & \cdots & s_{\kappa}^2(d_{1n}/2) \\ \vdots & \ddots & \vdots \\ s_{\kappa}^2(d_{n1}/2) & \cdots & s_{\kappa}^2(d_{nn}/2) \end{pmatrix}.$$

Denote their determinants by $\Delta_{\kappa}(p_1,\ldots,p_n)=\det(\mathsf{CM}_{\kappa}(p_1,\ldots,p_n))$ and $\gamma_{\kappa}(p_1,\ldots,p_n)=\det(P_{\kappa}(p_1,\ldots,p_n)).$

Properties of non-Euclidean Cayley-Menger determinants

- If $\kappa > 0$, $\mathsf{CM}_{\kappa}(p_1, \dots, p_n)$ is positive semi-definite.
- If $\kappa < 0$, $(-1)^{n+1} \Delta_{\kappa}(p_1, \dots, p_n) \ge 0$.
- If $n \ge d + 2$, $\Delta_{\kappa}(p_1, \dots, p_n) = 0$.

Properties of non-Euclidean Cayley-Menger determinants

- If $\kappa > 0$, $CM_{\kappa}(p_1, \ldots, p_n)$ is positive semi-definite.
- If $\kappa < 0$, $(-1)^{n+1} \Delta_{\kappa}(p_1, \dots, p_n) \ge 0$.
- If $n \ge d + 2$, $\Delta_{\kappa}(p_1, \dots, p_n) = 0$.
- Let $\kappa > 0$. Given a finite metric space (X, d_X) , there exists an isometric embedding $X \hookrightarrow M_{\kappa}^n$ if and only if $\operatorname{diam}(X) \leq D_{\kappa}$ and there exist $p_1, \ldots, p_{n+1} \in X$ such that:
 - $(-1)^k \Delta_{\kappa}(p_1,\ldots,p_k) \geq 0$, for every $k=2,\ldots,n+1$,
 - $\Delta_{\kappa}(p_1,\ldots,p_n,x)=\Delta_{\kappa}(p_1,\ldots,p_n,y)=\Delta_{\kappa}(p_1,\ldots,p_n,x,y)=0$ for all $x,y\in X$.

There is no direct analogue of this theorem in hyperbolic geometry. See Theorems 63.1 and 111.6 in [Blu70].

The Earth is round

Figure: Four cities on Earth: London, Los Angeles, Tokyo and Dubai.

See [Tao19] for further discussion. Map generated on mapcustomizer.com.

The Earth is round

Figure: Four cities on Earth: London, Los Angeles, Tokyo and Dubai.

Figure: Sign of the determinant $\Delta_{\kappa}(P_1, P_2, P_3, P_4)$. [Tao19]

See [Tao19] for further discussion. Map generated on mapcustomizer.com.

Table of Contents

- Historical context
 - Using Ptolemy's theorem
- ② Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry
- 3 R-trees

Desnanot-Jacobi identity

Let M be an n-by-n matrix.

- Denote by $M_{\sim i,\sim j}$ the submatrix obtained by deleting the *i*-th row and *j*-th columns of M.
- If i < j and h < k, let $M_{\sim i,j,\sim h,k} = (M_{\sim j,\sim k})_{\sim i,\sim h}$.

Theorem ([Gri20])

$$\det(M)\det(M_{\sim 1,n,\sim 1,n})$$

$$= \det(M_{\sim 1,\sim 1})\det(M_{\sim n,\sim n}) - \det(M_{\sim 1,\sim n})\det(M_{\sim n,\sim 1}).$$

Desnanot-Jacobi identity

Let M be an n-by-n matrix.

- Denote by $M_{\sim i,\sim j}$ the submatrix obtained by deleting the *i*-th row and *j*-th columns of M.
- If i < j and h < k, let $M_{\sim i,j,\sim h,k} = (M_{\sim j,\sim k})_{\sim i,\sim h}$.

Theorem ([Gri20])

$$\det(M)\det(M_{\sim 1,n,\sim 1,n})$$

$$= \det(M_{\sim 1,\sim 1})\det(M_{\sim n,\sim n}) - \det(M_{\sim 1,\sim n})\det(M_{\sim n,\sim 1}).$$

This equation is also known as the Lewis Carroll identity.

Let
$$p_1, \ldots, p_{n+2} \in M_{\kappa}^n$$
.

$$-\Delta_{\kappa}(p_1,\ldots,p_{n+2})=\detegin{pmatrix} -1&0&\cdots&0\ \hline 0&c_{\kappa}(d_{11})&\cdots&c_{\kappa}(d_{1,n+2})\ dots&dots&\ddots&dots\ 0&c_{\kappa}(d_{n+2,1})&\cdots&c_{\kappa}(d_{n+2,n+2}) \end{pmatrix}$$

Let
$$p_1, \ldots, p_{n+2} \in M_{\kappa}^n$$
.

$$0=\detegin{pmatrix} -1&1&\cdots&0\ \hline 0&c_{\kappa}(d_{11})&\cdots&c_{\kappa}(d_{1,n+2})\ dots&dots&\ddots&dots\ 0&c_{\kappa}(d_{n+2,1})&\cdots&c_{\kappa}(d_{n+2,n+2}) \end{pmatrix}$$

Let
$$p_1, \ldots, p_{n+2} \in M_{\kappa}^n$$
.

$$0=\detegin{pmatrix} -1&1&\cdots&1\ \hline 0&c_{\kappa}(d_{11})&\cdots&c_{\kappa}(d_{1,n+2})\ dots&dots&\ddots&dots\ 0&c_{\kappa}(d_{n+2,1})&\cdots&c_{\kappa}(d_{n+2,n+2}) \end{pmatrix}$$

Let
$$p_1, \ldots, p_{n+2} \in M_{\kappa}^n$$
.

$$0 = \det \begin{pmatrix} -1 & 1 & \cdots & 1 \\ \hline 1 & c_{\kappa}(d_{11}) - 1 & \cdots & c_{\kappa}(d_{1,n+2}) - 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & c_{\kappa}(d_{n+2,1}) & \cdots & c_{\kappa}(d_{n+2,n+2}) \end{pmatrix}$$

Let
$$p_1, \ldots, p_{n+2} \in M_{\kappa}^n$$
.

$$0 = \det egin{pmatrix} -1 & 1 & \cdots & 1 \ \hline 1 & c_{\kappa}(d_{11}) - 1 & \cdots & c_{\kappa}(d_{1,n+2}) - 1 \ dots & dots & \ddots & dots \ 1 & c_{\kappa}(d_{n+2,1}) - 1 & \cdots & c_{\kappa}(d_{n+2,n+2}) - 1 \end{pmatrix}$$

Let $p_1, \ldots, p_{n+2} \in M_{\kappa}^n$.

$$0 = \det \left(egin{array}{c|cccc} -1 & 1 & \cdots & 1 \ \hline 1 & c_{\kappa}(d_{11}) - 1 & \cdots & c_{\kappa}(d_{1,n+2}) - 1 \ dots & dots & \ddots & dots \ 1 & c_{\kappa}(d_{n+2,1}) - 1 & \cdots & c_{\kappa}(d_{n+2,n+2}) - 1 \end{array}
ight)$$

By the sum of angles formula, $c_{\kappa}(t)-1=-2\varepsilon_{\kappa}s_{\kappa}^2(t/2)$, where $\varepsilon_{\kappa}=\mathrm{sgn}(\kappa)$.

Let $p_1, \ldots, p_{n+2} \in M_{\kappa}^n$.

$$0 = \det \begin{pmatrix} \frac{-1}{1} & \frac{1}{-2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2)} & \cdots & \frac{1}{-2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

By the sum of angles formula, $c_{\kappa}(t)-1=-2\varepsilon_{\kappa}s_{\kappa}^2(t/2)$, where $\varepsilon_{\kappa}=\mathrm{sgn}(\kappa)$.

$$0 = \det \begin{pmatrix} \frac{-1}{1} & \frac{1}{-2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2)} & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

$$\begin{split} \det(M)\det(M_{\sim 1,n,\sim 1,n}) \\ &= \det(M_{\sim 1,\sim 1})\det(M_{\sim n,\sim n}) - \det(M_{\sim 1,\sim n})\det(M_{\sim n,\sim 1}). \end{split}$$

$$0 = \det \begin{pmatrix} \frac{-1}{1} & \frac{1}{-2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2)} & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

$$0 = \det(M) \det(M_{\sim 1, n, \sim 1, n})$$

= \det(M_{\sigma 1, \sigma 1}) \det(M_{\sigma n, \sigma n}) - \det(M_{\sigma 1, \sigma n}) \det(M_{\sigma n, \sigma 1}).

$$0 = \det \begin{pmatrix} \frac{-1 & 1 & \cdots & 1}{1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

$$0 = \det(M) \det(M_{\sim 1, n, \sim 1, n})$$

= \det(M_{\sigma 1, \sigma 1}) \det(M_{\sigma n, \sigma n}) - \det(M_{\sigma 1, \sigma n})^2.

$$0 = \det \begin{pmatrix} \frac{-1 & 1 & \cdots & 1}{1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

$$0 = \det(M) \det(M_{\sim 1, n, \sim 1, n})$$

= $(-2\varepsilon_{\kappa})^{n+2} \gamma_{\kappa}(p_1, \dots, p_{n+2}) \det(M_{\sim n, \sim n}) - \det(M_{\sim 1, \sim n})^2$.

$$0 = \det \begin{pmatrix} \frac{-1}{1} & \frac{1}{-2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2)} & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

$$0 = \det(M) \det(M_{\sim 1, n, \sim 1, n})$$

= $-(-2\varepsilon_{\kappa})^{n+2} \gamma_{\kappa}(p_1, \dots, p_{n+2}) \Delta_{\kappa}(p_1, \dots, p_{n+1}) - \det(M_{\sim 1, \sim n})^2$.

Let $p_1,\ldots,p_{n+2}\in M_\kappa^n$.

$$0 = \det \begin{pmatrix} \frac{-1 & 1 & \cdots & 1}{1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{11}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{1,n+2}/2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,1}/2) & \cdots & -2\varepsilon_{\kappa}s_{\kappa}^{2}(d_{n+2,n+2}/2) \end{pmatrix}$$

$$0 = \det(M) \det(M_{\sim 1, n, \sim 1, n})$$

= $-(-2\varepsilon_{\kappa})^{n+2} \gamma_{\kappa}(p_1, \dots, p_{n+2}) \Delta_{\kappa}(p_1, \dots, p_{n+1}) - \det(M_{\sim 1, \sim n})^2.$

Theorem

$$\gamma_{\kappa}(p_1,\ldots,p_{n+2})$$
 is 0 or has sign $(-1)^{n+1}$.

This theorem was proved for n=4 in [Val70a] (for $\kappa>0$) and [Val70b] (for $\kappa<0$).

If
$$n = 2$$
, $P(p_1, p_2, p_3, p_4) = \det \begin{pmatrix} d_{11}^2 & \cdots & d_{14}^2 \\ \vdots & \ddots & \vdots \\ d_{41}^2 & \cdots & d_{44}^2 \end{pmatrix}$ factors as
$$P(p_1, p_2, p_3, p_4) = -(d_{13}d_{24} + d_{12}d_{34} + d_{23}d_{41}) \\ \cdot (-d_{13}d_{24} + d_{12}d_{34} + d_{23}d_{41}) \\ \cdot (+d_{13}d_{24} - d_{12}d_{34} + d_{23}d_{41}) \\ \cdot (+d_{13}d_{24} + d_{12}d_{34} - d_{23}d_{41}) \cdot (+d_{13}d_{24} + d_{12}d_{34} - d_{23}d_{41}).$$

Let
$$s_{ij} = s_{\kappa}(d_{ij}/2)$$
. If $n = 2$, $\gamma_{\kappa}(p_1, p_2, p_3, p_4) = \det\begin{pmatrix} s_{11}^2 & \cdots & s_{14}^2 \\ \vdots & \ddots & \vdots \\ s_{41}^2 & \cdots & s_{44}^2 \end{pmatrix}$ factors as

$$\gamma_{\kappa}(p_1, p_2, p_3, p_4) = -[s_{13}s_{24} + s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [-s_{13}s_{24} + s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [+s_{13}s_{24} - s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [+s_{13}s_{24} + s_{12}s_{34} - s_{23}s_{41}]$$

Let
$$s_{ij} = s_{\kappa}(d_{ij}/2)$$
. If $n = 2$, $\gamma_{\kappa}(p_1, p_2, p_3, p_4) = \det\begin{pmatrix} s_{11}^2 & \cdots & s_{14}^2 \\ \vdots & \ddots & \vdots \\ s_{41}^2 & \cdots & s_{44}^2 \end{pmatrix}$ factors as

$$\gamma_{\kappa}(p_1, p_2, p_3, p_4) = -[s_{13}s_{24} + s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [-s_{13}s_{24} + s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [+s_{13}s_{24} - s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [+s_{13}s_{24} + s_{12}s_{34} - s_{23}s_{41}] \le 0.$$

Let
$$s_{ij} = s_{\kappa}(d_{ij}/2)$$
. If $n = 2$, $\gamma_{\kappa}(p_1, p_2, p_3, p_4) = \det\begin{pmatrix} s_{11}^2 & \cdots & s_{14}^2 \\ \vdots & \ddots & \vdots \\ s_{41}^2 & \cdots & s_{44}^2 \end{pmatrix}$ factors as

$$\gamma_{\kappa}(p_{1}, p_{2}, p_{3}, p_{4}) = -[s_{13}s_{24} + s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [-s_{13}s_{24} + s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [+s_{13}s_{24} - s_{12}s_{34} + s_{23}s_{41}]$$

$$\cdot [+s_{13}s_{24} + s_{12}s_{34} - s_{23}s_{41}] \leq 0.$$

Theorem (Ptolemy's Theorem [Val70a, Val70b])

Let $\kappa \neq 0$. For any $p_1, p_2, p_3, p_4 \in M_{\kappa}^2$,

$$s_{\kappa}(d_{13}/2)s_{\kappa}(d_{24}/2) \leq s_{\kappa}(d_{12}/2)s_{\kappa}(d_{34}/2) + s_{\kappa}(d_{23}/2)s_{\kappa}(d_{41}/2).$$

Overview

- Historical context
 - Using Ptolemy's theorem
- ② Generalizing Ptolemy's inequality
 - Cayley-Menger determinant
 - Spherical and hyperbolic CM determinant
 - Ptolemy's inequality in spherical and hyperbolic geometry

Graphs and trees

Definition

A tree is a graph with no cycles.

Figure: A collection of trees. Image from https://ptwiddle.github.io/MAS34 1-Graph-Theory-2017/lecturenotes/lecture6.html.

Metric trees

4-point condition

Let X be a finite metric space. If

$$d_{13} + d_{24} \le \max\{d_{12} + d_{34}, d_{23} + d_{41}\}$$

for every $x_1, x_2, x_3, x_4 \in X$, there exists a metric tree T such that $X \hookrightarrow T$.

Figure: Image from:

https://commons.wikimedia.org/wiki/File:Four_point_condition.png

Embeddings into trees

Figure: A tree of life by Haeckel. Image from https://en.wikipedia.org/wiki/File:Haeckel_arbol_bn.png

Ptolemy's inequality and the 4-point condition

4-point condition:

$$d_{13} + d_{24} \le \max\{d_{12} + d_{34}, d_{23} + d_{41}\}$$

Ptolemy's inequality:

$$d_{13} \cdot d_{24} \leq d_{12} \cdot d_{34} + d_{23} \cdot d_{41}$$
.

Ptolemy's inequality and the 4-point condition

4-point condition:

$$d_{13} + d_{24} \le \max\{d_{12} + d_{34}, d_{23} + d_{41}\}$$

Ptolemy's inequality:

$$d_{13} \cdot d_{24} \leq d_{12} \cdot d_{34} + d_{23} \cdot d_{41}$$
.

Question

Is there a link between these inequalities?

CAT spaces and hyperbolicity

- A CAT(κ) space is a geodesic metric space where geodesic triangles are "thinner" than those in M_{κ}^2 .
- A metric space (X, d_X) is called δ -hyperbolic if

$$d_{13} + d_{24} \le \max(d_{12} + d_{34}, d_{23} + d_{41}) + 2\delta \tag{1}$$

for all $x_1, x_2, x_3, x_4 \in X$. Define the *hyperbolicity* of X, denoted by hyp(X), as the infimal δ such that (1) holds.

- An \mathbb{R} -tree is a geodesic metric space with hyperbolicity 0.
- ullet Metric trees are locally finite \mathbb{R} -trees.

CAT spaces and hyperbolicity

Facts:

- Let $\kappa < 0$. Every CAT (κ) space X is δ -hyperbolic for $\delta = \ln(2)/\sqrt{-\kappa}$.
- For all $\kappa \in \mathbb{R}$, the κ -Ptolemy inequality holds in CAT(κ).
- The class of \mathbb{R} -trees coincides with the geodesic metric spaces that are CAT(κ) for all $\kappa \in \mathbb{R}$.

Figure: Triangles in spaces with constant curvature.

Ptolemy's inequality for metric trees

If $a, b, c, d \ge 0$ and $c + d \le a + b$,

$$\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right]$$

Ptolemy's inequality for metric trees

If $a, b, c, d \ge 0$ and $c + d \le a + b$,

$$\begin{split} &\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right] \\ &= \lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \ln \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right] \end{split}$$

Ptolemy's inequality for metric trees

If $a, b, c, d \ge 0$ and $c + d \le a + b$,

$$\begin{split} &\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right] \\ &= \lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \ln \left[\frac{\exp \left(\frac{\sqrt{-\kappa}}{2} a \right) - \exp \left(- \frac{\sqrt{-\kappa}}{2} a \right)}{2} \cdot \frac{\exp \left(\frac{\sqrt{-\kappa}}{2} b \right) - \exp \left(- \frac{\sqrt{-\kappa}}{2} b \right)}{2} \right. \\ &\quad + \frac{\exp \left(\frac{\sqrt{-\kappa}}{2} c \right) - \exp \left(- \frac{\sqrt{-\kappa}}{2} c \right)}{2} \cdot \frac{\exp \left(\frac{\sqrt{-\kappa}}{2} d \right) - \exp \left(- \frac{\sqrt{-\kappa}}{2} d \right)}{2} \right] \end{split}$$

$$\begin{split} &\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right] \\ &= \lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \ln \left[\exp \left(\frac{\sqrt{-\kappa}}{2} (a+b) \right) \left(\frac{1 - \exp(-\sqrt{-\kappa}a)}{2} \cdot \frac{1 - \exp(-\sqrt{-\kappa}b)}{2} + \frac{\exp\left(\frac{\sqrt{-\kappa}}{2} (c+d) \right)}{\exp\left(\frac{\sqrt{-\kappa}}{2} (a+b) \right)} \cdot \frac{1 - \exp(-\sqrt{-\kappa}c)}{2} \cdot \frac{1 - \exp(-\sqrt{-\kappa}d)}{2} \right) \right] \end{split}$$

$$\begin{split} &\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right] \\ &= \lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \ln \left[\exp \left(\frac{\sqrt{-\kappa}}{2} (a+b) \right) \right] \\ &+ \lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \ln \left[\frac{1 - \exp(-\sqrt{-\kappa}a)}{2} \cdot \frac{1 - \exp(-\sqrt{-\kappa}b)}{2} + \frac{\exp\left(\frac{\sqrt{-\kappa}}{2} (c+d) \right)}{\exp\left(\frac{\sqrt{-\kappa}}{2} (a+b) \right)} \cdot \frac{1 - \exp(-\sqrt{-\kappa}c)}{2} \cdot \frac{1 - \exp(-\sqrt{-\kappa}d)}{2} \right] \end{split}$$

$$\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right]$$

$$= a + b$$

$$\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right]$$

$$= a + b = \max(a + b, c + d).$$

If $a, b, c, d \ge 0$ and $c + d \le a + b$,

$$\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right]$$

$$= a + b = \max(a + b, c + d).$$

Thus, if $p_1, p_2, p_3, p_4 \in X$ satisfy

$$s_{\kappa}(d_{13}/2)s_{\kappa}(d_{24}/2) \le s_{\kappa}(d_{12}/2)s_{\kappa}(d_{34}/2) + s_{\kappa}(d_{23}/2)s_{\kappa}(d_{41}/2)$$

for all κ , the above calculation gives:

If $a, b, c, d \ge 0$ and $c + d \le a + b$,

$$\lim_{\kappa \to -\infty} \frac{2}{\sqrt{-\kappa}} \operatorname{arcsinh} \left[\sinh \left(\frac{\sqrt{-\kappa}}{2} a \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} b \right) + \sinh \left(\frac{\sqrt{-\kappa}}{2} c \right) \cdot \sinh \left(\frac{\sqrt{-\kappa}}{2} d \right) \right]$$

$$= a + b = \max(a + b, c + d).$$

Thus, if $p_1, p_2, p_3, p_4 \in X$ satisfy

$$s_{\kappa}(d_{13}/2)s_{\kappa}(d_{24}/2) \le s_{\kappa}(d_{12}/2)s_{\kappa}(d_{34}/2) + s_{\kappa}(d_{23}/2)s_{\kappa}(d_{41}/2)$$

for all κ , the above calculation gives:

4-point condition

$$d_{13} + d_{24} \leq \max(d_{12} + d_{34}, d_{23} + d_{41}).$$

This calculation was obtained joint with F. Mémoli. See [GM21].

Summary

- Ptolemy's inequality is a relationship that involves the distances between 4 points in the Euclidean plane.
- It is attributed to Claudius Ptolemy (c. 100-170 AD), who used it, among other mathematical innovations, to construct the most thorough and precise table of chords of his time.
- Ptolemy's Almagest was an authoritative text for over a millennium.

Summary

- Ptolemy's inequality can be generalized to non-Euclidean geometries. The proof involves properties of the Cayley-Menger determinant and a matrix identity known as the Lewis Carroll identity.
- The degenerate case of Ptolemy's inequality in $\kappa=-\infty$ is the 4-point condition, an inequality that characterizes \mathbb{R} -trees.

References I

C. D'Andrea and M. Sombra.

The Cayley-Menger determinant is irreducible for $n \ge 3$. Siberian Mathematical Journal, 46(1):71-76, Jan 2005.

Martin Bridson and André Haefliger.

Metric Spaces of Non-Positive Curvature, volume 319. 01 2009.

L.M. Blumenthal.

Theory and Applications of Distance Geometry.

Chelsea Publishing Company, 1970.

Darij Grinberg.

Notes on the combinatorial fundamentals of algebra. arXiv preprint arXiv:2008.09862v2, 2020.

Mario Gómez and Facundo Mémoli.

An interpretation of the 4-point condition of metric trees via Ptolemy's inequality. *arXiv preprint arXiv:2111.10328*, 2021.

References II

Olaf Pedersen.

A Survey of the Almagest.

Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, NY, 2011.

Terrence Tao.

The spherical Cayley-Menger determinant and the radius of the Earth. What's new. 2019. Retrieved 07/04/2022 from

https://terrytao.wordpress.com/2019/05/25/the-spherical-cayley-menger-determinant-and-the-radius-of-the-earth/

Joseph E. Valentine.

An analogue of Ptolemy's theorem in spherical geometry.

The American Mathematical Monthly, 77(1):47–51, 1970.

Joseph E. Valentine.

An analogue of Ptolemy's theorem and its converse in hyperbolic geometry.

Pacific Journal of Mathematics, 34(3):817 - 825, 1970.

Questions

Thanks for your attention!

Let
$$\kappa>0$$
. Recall that $d_{ij}=\frac{1}{\sqrt{\kappa}}\arccos(\sqrt{\kappa}\langle p_i,p_j\rangle)$, so $c_{\kappa}(d_{ii})=\cos(\sqrt{\kappa}d_{ii})=\sqrt{\kappa}\langle p_i,p_i\rangle$.

Let $\kappa>0$. Recall that $d_{ij}=\frac{1}{\sqrt{\kappa}}\arccos(\sqrt{\kappa}\langle p_i,p_j\rangle)$, so

$$c_{\kappa}(d_{ij}) = \cos(\sqrt{\kappa}d_{ij}) = \sqrt{\kappa}\langle p_i, p_j \rangle.$$

Then:

$$\mathsf{CM}_{\kappa}(p_1,\ldots,p_n) = \sqrt{\kappa} \left(egin{array}{ccc} \langle p_1,p_1
angle & \cdots & \langle p_1,p_n
angle \\ dots & \ddots & dots \\ \langle p_n,p_1
angle & \cdots & \langle p_n,p_n
angle \end{array}
ight)$$

Let $\kappa>0$. Recall that $d_{ij}=\frac{1}{\sqrt{\kappa}}\arccos(\sqrt{\kappa}\langle p_i,p_j\rangle)$, so

$$c_{\kappa}(d_{ij}) = \cos(\sqrt{\kappa}d_{ij}) = \sqrt{\kappa}\langle p_i, p_j \rangle.$$

Then:

$$\mathsf{CM}_{\kappa}(p_1,\ldots,p_n) = \sqrt{\kappa} \left(egin{array}{ccc} \langle p_1,p_1
angle & \cdots & \langle p_1,p_n
angle \\ dots & \ddots & dots \\ \langle p_n,p_1
angle & \cdots & \langle p_n,p_n
angle \end{array}
ight) = \sqrt{\kappa} \Sigma^T \Sigma,$$

where $\Sigma = (p_1|\cdots|p_n) \in \mathbb{R}^{d+1\times n}$. Thus:

Let $\kappa > 0$. Recall that $d_{ij} = \frac{1}{\sqrt{\kappa}} \arccos(\sqrt{\kappa} \langle p_i, p_j \rangle)$, so

$$c_{\kappa}(d_{ij}) = \cos(\sqrt{\kappa}d_{ij}) = \sqrt{\kappa}\langle p_i, p_j \rangle.$$

Then:

$$\mathsf{CM}_{\kappa}(p_1,\ldots,p_n) = \sqrt{\kappa} \left(\begin{array}{ccc} \langle p_1,p_1 \rangle & \cdots & \langle p_1,p_n \rangle \\ \vdots & \ddots & \vdots \\ \langle p_n,p_1 \rangle & \cdots & \langle p_n,p_n \rangle \end{array} \right) = \sqrt{\kappa} \Sigma^T \Sigma,$$

where $\Sigma = (p_1|\cdots|p_n) \in \mathbb{R}^{d+1\times n}$. Thus:

• $\Delta_{\kappa}(p_1,\ldots,p_n)\geq 0$.

Let $\kappa > 0$. Recall that $d_{ij} = \frac{1}{\sqrt{\kappa}} \arccos(\sqrt{\kappa} \langle p_i, p_j \rangle)$, so

$$c_{\kappa}(d_{ij}) = \cos(\sqrt{\kappa}d_{ij}) = \sqrt{\kappa}\langle p_i, p_j \rangle.$$

Then:

$$\mathsf{CM}_{\kappa}(p_1,\ldots,p_n) = \sqrt{\kappa} \left(\begin{array}{ccc} \langle p_1,p_1 \rangle & \cdots & \langle p_1,p_n \rangle \\ \vdots & \ddots & \vdots \\ \langle p_n,p_1 \rangle & \cdots & \langle p_n,p_n \rangle \end{array} \right) = \sqrt{\kappa} \Sigma^T \Sigma,$$

where $\Sigma = (p_1|\cdots|p_n) \in \mathbb{R}^{d+1\times n}$. Thus:

- $\Delta_{\kappa}(p_1,\ldots,p_n) \geq 0.$
- If $n \ge d+2$, $\operatorname{rk}(\mathsf{CM}_{\kappa}(p_1,\ldots,p_n)) \le d-1 < n$, so $\Delta_{\kappa}(p_1,\ldots,p_n) = 0$.

With some more work, we can show analogous properties for $\kappa < 0$, so that:

- $\Delta_{\kappa}(p_1,\ldots,p_n)$ is 0 or has sign $(\operatorname{sgn}(\kappa))^{n+1}$.
- If $n \ge d + 2$, $\Delta_{\kappa}(p_1, \ldots, p_n) = 0$.

$CAT(\kappa)$ spaces

Proposition ([BH09])

Let X be a complete metric space. Then X is a $CAT(\kappa)$ space if, and only if, two conditions are satisfied:

- Every pair $x, x' \in X$ with $d_X(x, x') < D_{\kappa}$ has approximate midpoints.
- For every 4-tuple $(x_1, y_1, x_2, y_2) \in X$ such that $d_X(x_1, y_1) + d_X(y_1, x_2) + d_X(x_2, y_2) + d(y_2, x_1) < 2D_{\kappa}$, there exists a 4-tuple $(\overline{x}_1, \overline{y}_1, \overline{x}_2, \overline{y}_2) \in M_{\kappa}^2$ such that:

$$\begin{aligned} &d_X(x_i,y_j) = d_{M_\kappa^2}(\overline{x}_i,\overline{y}_j) \text{ for } i,j \in \{1,2\}, \\ &d_X(x_1,x_2) \leq d_{M_\kappa^2}(\overline{x}_1,\overline{x}_2), \text{ and} \\ &d_X(y_1,y_2) \leq d_{M_\kappa^2}(\overline{y}_1,\overline{y}_2). \end{aligned}$$

Ptolemy's inequality in $CAT(\kappa)$ spaces

Theorem,

Let X be a CAT(κ) space and $p_1, p_2, p_3, p_4 \in X$ such that $d_{12} + d_{23} + d_{34} + d_{41} < 2D_{\kappa}$. Then

$$s_{\kappa}(d_{13}/2)s_{\kappa}(d_{24}/2) \leq s_{\kappa}(d_{12}/2)s_{\kappa}(d_{34}/2) + s_{\kappa}(d_{41}/2)s_{\kappa}(d_{23}/2).$$

By the CAT(κ) 4-point condition, there exist $\overline{p}_i \in M_{\kappa}^2$ with

$$d_{i,i+1} = \overline{d}_{i,i+1}, ext{ and}$$
 $d_{i,i+2} \leq \overline{d}_{i,i+2}.$

Then:

$$\begin{split} s_{\kappa}(d_{13}/2)s_{\kappa}(d_{24}/2) &\leq s_{\kappa}(\overline{d}_{13}/2)s_{\kappa}(\overline{d}_{24}/2) \\ &\leq s_{\kappa}(\overline{d}_{12}/2)s_{\kappa}(\overline{d}_{34}/2) + s_{\kappa}(\overline{d}_{23}/2)s_{\kappa}(\overline{d}_{41}/2) \\ &= s_{\kappa}(d_{12}/2)s_{\kappa}(d_{34}/2) + s_{\kappa}(d_{23}/2)s_{\kappa}(d_{41}/2). \end{split}$$

4/4