Notations

· Guiven a matrix A we will Bay

- A > 0 if each entry of A is positive.
 A > 0 x non-negative
- $IN = \{1, 2, ...\}$ and $IN_0 = IN \cup \{0\}$.
- $\pi_{\mathcal{K}} : \mathbb{R}^{\mathcal{K}} \longrightarrow \mathbb{R}$ $(\mathfrak{X}_{i})_{i=1}^{\mathcal{K}} \longmapsto \mathcal{X}_{\mathcal{K}}$
- · et is ith unit vector in IRK and IR=IR Ufoo].
- Guien $K \ge 2$, $\overline{\chi}, \overline{\chi} \in \mathbb{R}^K$ we write $\overline{\chi} \stackrel{k}{=} \overline{\chi}^*$ iff $\overline{J} \subset \neq 0$ s.t. $\overline{\chi} = C \overline{\chi}$.

$$\frac{1}{2} \qquad \text{continued fractions} (C.f.)$$

Expression $\mathcal{X} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n + \frac{1}$

For
$$m \neq 0$$
, $\frac{lm}{9m} = [a_0; a_1, \dots, a_m]$ is called
 $\frac{g_m}{9m}$
m-th convergent; which has properties.
Inderties:
 $\frac{lim}{m \to \infty} \frac{lm}{9m} = \chi$.
 $\frac{m}{m \to \infty} \frac{lm}{9m} = \chi$.
 $\frac{m}{m \to \infty} \frac{lm}{9m} = \chi$.

$$= \begin{pmatrix} 0 & 1 \\ 1 & a_0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \times \cdots \times \begin{pmatrix} 0 & 1 \\ 1 & a_m \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

At so,
$$\begin{pmatrix} q_m \\ p_m \end{pmatrix} \stackrel{k}{=} \begin{pmatrix} l \\ p_m \\ q_m \end{pmatrix}$$
 so,
 $\begin{pmatrix} l \\ \chi \end{pmatrix} = \lim_{m \to \infty} \begin{pmatrix} l \\ p_m \\ q_m \end{pmatrix}$
 $\stackrel{k}{=} \lim_{m \to \infty} \left[D_1(a_0) \cdots D_1[a_m] \times \begin{pmatrix} 0 \\ l \end{pmatrix} \right]$

ie 2 has 1 D C.f. 2 = [ao; ay, ...] iff

$$\lim_{m \to \infty} \left(\mathcal{D}_{1}[\alpha_{0}] \times \mathcal{D}_{1}[\alpha_{1}] \times \dots \times \mathcal{D}_{n}[\alpha_{m}] \right) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{k}{=} \begin{pmatrix} 1 \\ \chi \end{pmatrix}$$
How to transition from matrix to 1 dimensional continued fraction?
For any mENO, define $G[m]: \mathbb{R} \longrightarrow \mathbb{R}$
such that $G_{1}[m](\chi) = m + \frac{1}{\chi}, \forall \chi \in \mathbb{R}$.
A simple computation yields that
 $\mathcal{D}_{1}[m] \begin{pmatrix} 1 \\ \chi \end{pmatrix} \stackrel{k}{=} \begin{pmatrix} 1 \\ G[m](\chi) \end{pmatrix}$
Easy lemma: $\chi \in \mathbb{R}$ has Idimensional C·f.
 $\chi = [\alpha_{0}; \alpha_{1}, \alpha_{21} \dots]$ if and only if
 $\chi \stackrel{k}{=} \lim_{m \to \infty} G[\alpha_{0}] \times G[\alpha_{1}] \times \dots \times G[\alpha_{m}](\infty)$

Euler, lagrange & Periodic 1D
continued fractions
>Euler proved that if
$$x \in \mathbb{R}$$
 has an eventually
periodic
1D continued fraction, then x must be a
quadratic invational.
• Eventually periodic means $c \cdot f \cdot of$ the
form $[a_{0}, a_{1}, ..., a_{s}, \frac{a_{s+1}, ..., a_{s+p}}{a_{s+1}, ..., a_{s+p}}]$
for some $s \ge 0$ and $p \ge 0$.
> lagrange proved the converse of Euler's
result, which established that
 $x \in \mathbb{R}$ has eventually periodic continued fraction
iff x is a quadratic invational.

Multidimensional continued fractions are alognithms that attempt to generalize this fact to IR", analogously. One example of such desired generalization is the following statement: $\begin{cases} \text{et } n \neq 2 \notin \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{R}^n. \text{ we want } \text{fo} \\ \text{associate } \quad \text{fo } \neq n, \\ \text{a sequence of vectors} \\ \text{in } \mathbb{R}^n. \end{cases}$ in \mathbb{R}^n , say $\{\vec{y}^{(i)}\}_{i=1}^{\infty}$ such that the sequence is eventually periodic Iff both the following are satisfied: 1 24, 22, ..., 2n are irrationals of degree at most (n+1). (1) The set $\{1, 2, 3_2, \dots, 2_n\}$ is Q-linearly independent.

We will present one such a dimensional
continued fraction algorithm, which
occurs as a natural generalization of
matrix form of 1D continued fraction.
Defining Multidimensional
continued Fractions
? Given
$$n \ge 1$$
 and $\overline{y} = (y_1, y_{2_1}, \dots, y_n) \in IN_0^n$
define
 $D_n [\overline{y}] := \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & y_1 \\ 0 & 1 & 0 & y_2 \\ \vdots & 0 & \vdots & y_{n-1} \\ 0 & 0 & i & y_{n-1} \end{pmatrix} \in G_{1L}(n+1,\mathbb{R})$
we say that we \mathbb{R}^n has n-dimensional
continued fraction $[\overline{y}^{(1)}, \overline{y}^{(2)}, \dots, \overline{y}]$ for
some sequence $[\overline{y}^{(1)}, \overline{y}^{(2)}, \dots, \overline{y}]$ iff

$$\binom{1}{\omega} \stackrel{\stackrel{\text{p}}{=}}{\underset{m \to \infty}{\lim}} \left(\frac{m}{\prod} \frac{p_{n}}{\sum} \frac{p_{i}}{\sum} \frac{p_{i$$

Caution: (1) Not every $\Im \in \mathbb{R}^n$ has a n-dimensional continued fraction. (2) Not every $(\overline{y}^{(i)})_{i=1}^{\infty} \in \mathbb{IN}_0^n$ yields a

limit in

$$\lim_{m\to\infty} \left(\left(\prod_{i=1}^{m} D_n \left[\frac{1}{y}^{(i)} \right] \right) \begin{pmatrix} 0 \\ e_n \end{pmatrix} \right)$$
We just generalized D_i to D_n . Similarly, we can generalize the map G_i to G_n .

For any
$$\vec{y} = (y_1, y_2, ..., y_n) \in IN_0^n$$
, define
 $C_n[\vec{y}]: A \subseteq (\overline{R})^n \longrightarrow IR^n$
 $\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \longrightarrow \begin{pmatrix} y_1 + \frac{1}{z_n} \\ y_2 + \frac{z_1/z_n}{z_n} \\ \vdots \\ y_n + \frac{z_{n-1}}{z_n} \end{pmatrix}$
A simple computation can verify:
 $D_n[\vec{y}] \begin{pmatrix} 1 \\ w \end{pmatrix} \stackrel{p}{=} \begin{pmatrix} 1 \\ C_n[\vec{y}](w) \end{pmatrix}$
New, we want to prove a theorem; we need
some definitions:

Perron-Frobenius Matrices
A matrix
$$M \in G(L(n, \mathbb{R}))$$
 is called P-F if
 $M \not\equiv 0$ and M is not of the form
 $\begin{bmatrix} A & 0 \\ B & C \end{bmatrix}$.
Iheorem (Bauer, M. (1992)):
 $(t = n \not\equiv 1, M \text{ be a } P - F \text{ matrix such that}$
for some $p \in \mathbb{N}$ and $\vec{y}^{(0)}, \vec{y}^{(2)}, \dots, \vec{y}^{(p)} \in \mathbb{IN}_0^n$
 $M = Dn [\vec{y}^{(0)}] \cdot Dn [\vec{y}^{(2)}] \cdot \dots \cdot Dn [\vec{y}^{(p)}]$.
Ihen,
the spectral radius λ and eigenvector
 $\chi^* = (1 \quad \vec{\omega})^T$ associated with λ are
given as follows:
 $\vec{U} = [\vec{y}^{(0)}, \vec{y}^{(2)}, \dots, \vec{y}^{(p)}]$ and

(1)
$$\lambda = \int_{-\infty}^{p} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty$$

$$\begin{split} & [emma (hower Method)] \\ & If M is a lerron-Frobenius (P.F.) matrix \\ & with spectral radius λ and z^{\star} is the corresponding eigenvector, then $\forall z \in \mathbb{R}^n$ with $z \geqslant 0$ we have, $\lim_{m \to \infty} M^m z \stackrel{P}{=} z^{\star}$. $\lim_{m \to \infty} M^m z \stackrel{P}{=} z^{\star}$. $\underbrace{\lim_{m \to \infty} M^m z \stackrel{P}{=} z^{\star}}_{s \to \infty} \frac{1}{m e^{t}} e^{t} \ln theorem : \\ et A_1 := D [\overline{y}^{(l)}] \text{ and for } s \neq 2 \text{ inductively} \\ e choose m & \forall e(l_1 2, \dots, p) \text{ such that} \\ s = pm + \vartheta \\ & \text{Define } A_s := A_{s-1} \left(D [\overline{y}^{(\nu)}] \right) \\ & we want to prove that \\ & \left(\stackrel{l}{w} \right) \stackrel{P}{=} \lim_{k \to \infty} A_k \begin{pmatrix} 0 \\ e_n \end{pmatrix} - (\star) \end{split}$$$

let mein and
$$\forall e(1,2,...,p)$$
 be arbitrary.
 $\lim_{m \to \infty} A_{pmt} \vee \begin{pmatrix} 0 \\ en \end{pmatrix}$ inductive deforms
 $af A_{k}$
 $= \lim_{m \to \infty} A_{pm} \begin{pmatrix} A_{\nu} \begin{pmatrix} 0 \\ en \end{pmatrix} \end{pmatrix} \vee \dots = A_{p}$
 $= \lim_{m \to \infty} M^{m} \begin{pmatrix} A_{\nu} \begin{pmatrix} 0 \\ en \end{pmatrix} \end{pmatrix} \stackrel{k}{=} \begin{pmatrix} 1 \\ w \end{pmatrix} \quad Q.E.D.$

Proof of
$$\vec{w} = \left[\overline{y}^{(1)}, \overline{y}^{(2)}, \dots, \overline{y}^{(p)} \right]$$

For i = 1, 2, ..., p define $F_i := C_n \left[\vec{y}^{(i)} \right] \cdot C_n \left[\vec{y}^{(i+1)} \right] \circ \cdots \circ C_n \left[\vec{y}^{(p)} \right]$ Note that if $w \neq 0$, then $C_n \left[\vec{y} \right] (w) \neq 0$ for every $\vec{y} \in \mathbb{N}_0^n$ and hence $F_i(w) \neq 0$.

Also,

$$D_{n}\left[\overline{y}^{(p)}\right]\binom{1}{\omega} = \pi_{n}(\omega)\binom{1}{f_{p}(\omega)} \text{ and }$$

$$D_{n}\left[\overline{y}^{(i-i)}\right]\binom{1}{F_{i}(\omega)} = \pi_{n}\left(F_{i}(\omega)\right)\binom{1}{F_{i-1}(\omega)}$$
for every $i = 2, 3, \dots, p$.

$$\binom{1}{\omega} \text{ is eigenvector associated with } \lambda,$$

$$\lambda\binom{1}{\omega} = M\binom{1}{\omega}$$

$$= D_{n}\left[\overline{y}^{(1)}\right] \times \dots \times D_{n}\left[\overline{y}^{(p)}\right]\binom{1}{\omega}$$

$$= D_{n}\left[\overline{y}^{(1)}\right] \times \dots \times D_{n}\left[\overline{y}^{(p-i)}\right] \pi(\omega)\binom{1}{f_{p}(\omega)}$$

$$= \pi(\omega) \times \pi(f_{\overline{p}}(\omega)) \times \cdots \times \pi(F_{2}(\omega)) \begin{pmatrix} 1 \\ F_{1}(\omega) \end{pmatrix} (A)$$
So,

$$\omega = F_{1}(\omega) \text{ and}$$

$$\lambda = \pi(\omega) \times \pi(f_{\overline{p}}(\omega)) \times \cdots \times \pi(f_{\overline{2}}(\omega))$$

$$= \pi(f_{1}(\omega)) \times \cdots \times \pi(f_{\overline{p}}(\omega)) - \operatorname{call} fhis$$
eq2(**)
For any $j = 1, 2, \dots, p$ we have,
 $\begin{pmatrix} 1 \\ F_{\overline{j}}(\omega) \end{pmatrix} \stackrel{P}{=} P_{n}[\overline{y}^{(j)}] \times \cdots \times P_{n}[\overline{y}^{(p)}] \begin{pmatrix} 1 \\ \omega \end{pmatrix}$

$$= D_{n}[\overline{y}^{(j)}] \times \cdots \times D_{n}[\overline{y}^{(p)}] [\overline{y}^{(1)}, \dots, \overline{y}^{(p)}]$$

$$= [\overline{y}^{(j)}, \dots, \overline{y}^{(p)}]$$

$$= 6^{j-1} \left[\overline{y}^{(i)}, \dots, \overline{y}^{(p)} \right]$$

$$: \left(\begin{pmatrix} 1 \\ F_{j}(w) \end{pmatrix} \right) = 6^{j-1} \left[\overline{y}^{(i)}, \dots, \overline{y}^{(p)} \right]$$

$$\pi_{n} \left(F_{j}(w) \right) = \pi_{n} \left(6^{j-1} \left[\overline{y}^{(i)}, \dots, \overline{y}^{(p)} \right] \right)$$

using above and equation $(* *)$ we have that

$$\int_{ave} f_{n} \left(6^{j-1} \left[\overline{y}^{(i)}, \dots, \overline{y}^{(p)} \right] \right)$$

The Theorem is proved.

Références:

Dener, M. (1992). Dilatations & Continued Fractions. (inear Algebra & its Applications. 174. 183-213.

Dechweiger, F. Multidimensional Continued Fractions. 2000. Oxford University Press Inc. - New York.