1. Define T on ℓ^∞ by $(Tf)(n) = \frac{1}{n} f(n)$. Clearly $T : \ell^\infty \to \ell^\infty$. Let

$$B = \{ f \in \ell^\infty : \|f\|_\infty \leq 1 \}.$$

Prove that $T[B]$ is a compact subset of ℓ^∞.

2. Let X and Y be normed linear spaces, let $T : X \to Y$ be a linear map, let X_w be X with its weak topology, and let Y_w be Y with its weak topology.

 (a) Prove that if T is continuous from X to Y, then T is continuous from X_w to Y_w.

 (b) Prove that if T is continuous from X to Y_w, then T is continuous from X to Y.

3. Let m be Lebesgue measure on $[0,1]$. Show that $L^2(m)$ is separable and $L^\infty(m)$ is not separable.

4. Let (X, \mathcal{A}, μ) be a measure space, let $L^p = L^p(\mu)$ for $1 \leq p \leq \infty$, and let $g \in L^\infty$. Let $p \in [1, \infty)$. Define T on L^p by $Tf = gf$.

 (a) Prove that T is a continuous linear map from L^p into L^p.

 (b) Suppose μ is semifinite. Prove that $\|T\| = \|g\|_\infty$.

5. Let X be a Hausdorff space, let \mathcal{G} be the collection of open subsets of X, and let \mathcal{K} be the collection of compact subsets of X. Let μ be a Radon outer measure on X. Let $A \subseteq X$ such that A is μ-measurable and $\mu(A) < \infty$. Prove that $\mu(A) = \sup \{ \mu(C) : A \supseteq C \in \mathcal{K} \}$.

6. Let $f \in L^1(\mathbb{T})$. For each $k \in \mathbb{Z}$, let $\hat{f}(k) = \int_0^1 e^{-2\pi i k x} f(x) \, dx$ be the k-th Fourier coefficient of f. Prove that $\hat{f}(k) \to 0$ as $|k| \to \infty$. In other words, prove the Riemann-Lebesgue lemma for Fourier series.

1 To say that μ is semifinite means that for each $B \in \mathcal{A}$, if $\mu(B) = \infty$, then there exists $A \in \mathcal{A}$ such that $A \subseteq B$ and $0 < \mu(A) < \infty$.

2 To say that μ is a Radon outer measure on X means that (a) μ is an outer measure on X, (b) for each $G \in \mathcal{G}$, G is μ-measurable and $\mu(G) = \sup \{ \mu(K) : G \supseteq K \in \mathcal{K} \}$, (c) for each $E \subseteq X$, $\mu(E) = \inf \{ \mu(G) : E \subseteq G \in \mathcal{G} \}$, and (d) for each $x \in X$, $\mu(\{x\}) < \infty$.