
2023 Rasor-Bareis exam solutions

1. Subdivide the regular hexagon into 8 congruent quadrilaterals.

Solution. (Assuming the sides
of the hexagon have
length 1, all eight quadri-
laterals are trapezoids
with sides 1, 1

2
, 1
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, 1

2

and angles π
3
, π
3
, 2π

3
, 2π

3
.)

Another solution.

2. If every point of the plane is painted in one of three colors, do there necessarily exist two points of the
same color that are exactly one inch apart? (You have to justify your answer, of course.)

Solution. The answer is ”Yes”. Suppose the plane is colored red, blue, and green
so that no two points at distance 1 have the same color. We then claim that
any two points at the distance of

√
3 from each other have same color. Indeed,

for any two points A and B with |AB| =
√
3, let C and D be the points on

the midperpendicular of the segment AB at the distance 1/2 from AB. Then
|CD| = |CA| = |DA| = |CB| = |DB| = 1 so, under our assumption, if, say, A is
red, then C and D must be blue and green, and B is also red.
Now choose any point O; w.l.o.g. assume that O is red. Then all points of the circle
R centered at O and of radius

√
3 are red. There are two points on R at distance

1 from each other, which leads to contradiciton.
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3. Prove that any triangle ABC whose sides all have length ≤ 1 can be covered by the three discs with centers
at A, B, and C and radius 1/

√
3.

Solution. Suppose there is a point P inside the triangle that is not covered
by the discs, so that |AP |, |BP |, |CP | > 1/

√
3. At least one of the angles

6 APB, 6 BPC, 6 CPA is ≥ 2π/3; without loss of generality, assume that
6 APB ≥ 2π/3, so that cos( 6 APB) ≤ −1/2. Then by the cosine theorem,
|AB|2 = |AP |2 + |BP |2 − 2|AP | |BP | cos( 6 APB) > 1/3 + 1/3 + 1/3 = 1.
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4. Suppose a polynomial f(x) = xn + an−1x
n−1 + · · · + a1x + a0 with nonzero integer coefficients has n

distinct integer roots that are pairwise coprime. Prove that the integers a0 and a1 are also coprime.

Solution. If n = 1, a1 = 0 and so, a0, a1 are coprime. Let n ≥ 2. Let r1, . . . , rn be the roots of f , then
a0 = ±r1 · · · rn and a1 = ∓∑n

i=1
r1 · · · ri−1ri+1 · · · rn. Let p be a prime that divides a0, then p divides ri for

some i, and since the integers r1, . . . , rn are pairwise coprime, there is exactly one such i. Hence, p divides
all the summands of a1 except for r1 · · · ri−1ri+1 · · · rn, and so, doesn’t divide a1.

5. Evaluate
∫ 2π

0

⌊

2023 sinx
⌋

dx (where ⌊a⌋ denotes the integer part of a, i.e. the maximal intger not exceeding
a, so that, for example, ⌊π⌋ = 3 and ⌊−1.2⌋ = −2).

Solution. For any y 6= 0, ⌊y⌋+ ⌊−y⌋ = −1, and for any x ∈ (0, π), sin(π + x) = − sinx 6= 0. So,

∫ 2π

0

⌊

2023 sinx
⌋

dx =

∫ π

0

⌊

2023 sinx
⌋

dx+

∫ 2π

π

⌊

2023 sinx
⌋

dx =

∫ π

0

⌊

2023 sinx
⌋

+
⌊

−2023 sinx
⌋

dx

=

∫ π

0

−1 dx = −π.

(More exactly, the function under the last integral is f(x) =

{

−1, x 6= 0, π
0, x = 0, π

, but
∫ π

0
f = −π anyway.)

6. Determine all functions f :Z −→ Z satisfying f(2x) + 2f(y) = f(f(x+ y)) for all x, y ∈ Z.
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Solution. For any x, y ∈ Z we have f(2(x−1))+2f(y+1) = f(f(x+y)) = f(2x)+2f(y), so 2(f(y+1)−f(y)) =
f(2x)−f(2x−2). Taking x = 0 we obtain that for all y ∈ Z, f(y+1)−f(y) = c where c = (f(0)−f(−2))/2.
Thus, f is linear, f(y) = cy + d for d = f(0). The equation f(2x) + 2f(y) = f(f(x + y)) takes the form
2cx+d+2cy+2d = c(cx+ cy+d)+d, so 2cx+2cy+2d = c2x+ c2y+ cd for all x, y, so c2 = 2c and cd = 2d.
Hence either c = d = 0 or c = 2 and d is arbitrary, that is, f = 0 or f(x) = 2x+ d with d ∈ Z.
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