1. Subdivide the regular hexagon into 8 congruent quadrilaterals.

Solution.

(Assuming the sides of the hexagon have length 1, all eight quadrilaterals are trapezoids with sides $1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ and angles $\frac{\pi}{3}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{2 \pi}{3}$.)

Another solution.

2. If every point of the plane is painted in one of three colors, do there necessarily exist two points of the same color that are exactly one inch apart? (You have to justify your answer, of course.)
Solution. The answer is "Yes". Suppose the plane is colored red, blue, and green so that no two points at distance 1 have the same color. We then claim that any two points at the distance of $\sqrt{3}$ from each other have same color. Indeed, for any two points A and B with $|A B|=\sqrt{3}$, let C and D be the points on the midperpendicular of the segment $A B$ at the distance $1 / 2$ from $A B$. Then $|C D|=|C A|=|D A|=|C B|=|D B|=1$ so, under our assumption, if, say, A is red, then C and D must be blue and green, and B is also red.
Now choose any point O; w.l.o.g. assume that O is red. Then all points of the circle R centered at O and of radius $\sqrt{3}$ are red. There are two points on R at distance 1 from each other, which leads to contradiciton.

3. Prove that any triangle $A B C$ whose sides all have length ≤ 1 can be covered by the three discs with centers at A, B, and C and radius $1 / \sqrt{3}$.
Solution. Suppose there is a point P inside the triangle that is not covered by the discs, so that $|A P|,|B P|,|C P|>1 / \sqrt{3}$. At least one of the angles $\angle A P B, \angle B P C, \angle C P A$ is $\geq 2 \pi / 3$; without loss of generality, assume that $\angle A P B \geq 2 \pi / 3$, so that $\cos (\angle A P B) \leq-1 / 2$. Then by the cosine theorem, $|A B|^{2}=|A P|^{2}+|B P|^{2}-2|A P||B P| \cos (\angle A P B)>1 / 3+1 / 3+1 / 3=1$.

4. Suppose a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with nonzero integer coefficients has n distinct integer roots that are pairwise coprime. Prove that the integers a_{0} and a_{1} are also coprime.
Solution. If $n=1, a_{1}=0$ and so, a_{0}, a_{1} are coprime. Let $n \geq 2$. Let r_{1}, \ldots, r_{n} be the roots of f, then $a_{0}= \pm r_{1} \cdots r_{n}$ and $a_{1}=\mp \sum_{i=1}^{n} r_{1} \cdots r_{i-1} r_{i+1} \cdots r_{n}$. Let p be a prime that divides a_{0}, then p divides r_{i} for some i, and since the integers r_{1}, \ldots, r_{n} are pairwise coprime, there is exactly one such i. Hence, p divides all the summands of a_{1} except for $r_{1} \cdots r_{i-1} r_{i+1} \cdots r_{n}$, and so, doesn't divide a_{1}.
5. Evaluate $\int_{0}^{2 \pi}\lfloor 2023 \sin x\rfloor d x$ (where $\lfloor a\rfloor$ denotes the integer part of a, i.e. the maximal intger not exceeding a, so that, for example, $\lfloor\pi\rfloor=3$ and $\lfloor-1.2\rfloor=-2$).
Solution. For any $y \neq 0,\lfloor y\rfloor+\lfloor-y\rfloor=-1$, and for any $x \in(0, \pi), \sin (\pi+x)=-\sin x \neq 0$. So,

$$
\begin{array}{r}
\int_{0}^{2 \pi}\lfloor 2023 \sin x\rfloor d x=\int_{0}^{\pi}\lfloor 2023 \sin x\rfloor d x+\int_{\pi}^{2 \pi}\lfloor 2023 \sin x\rfloor d x=\int_{0}^{\pi}\lfloor 2023 \sin x\rfloor+\lfloor-2023 \sin x\rfloor d x \\
=\int_{0}^{\pi}-1 d x=-\pi
\end{array}
$$

(More exactly, the function under the last integral is $f(x)=\left\{\begin{array}{l}-1, x \neq 0, \pi \\ 0, x=0, \pi\end{array}\right.$, but $\int_{0}^{\pi} f=-\pi$ anyway.)
6. Determine all functions $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ satisfying $f(2 x)+2 f(y)=f(f(x+y))$ for all $x, y \in \mathbb{Z}$.

Solution. For any $x, y \in \mathbb{Z}$ we have $f(2(x-1))+2 f(y+1)=f(f(x+y))=f(2 x)+2 f(y)$, so $2(f(y+1)-f(y))=$ $f(2 x)-f(2 x-2)$. Taking $x=0$ we obtain that for all $y \in \mathbb{Z}, f(y+1)-f(y)=c$ where $c=(f(0)-f(-2)) / 2$. Thus, f is linear, $f(y)=c y+d$ for $d=f(0)$. The equation $f(2 x)+2 f(y)=f(f(x+y))$ takes the form $2 c x+d+2 c y+2 d=c(c x+c y+d)+d$, so $2 c x+2 c y+2 d=c^{2} x+c^{2} y+c d$ for all x, y, so $c^{2}=2 c$ and $c d=2 d$. Hence either $c=d=0$ or $c=2$ and d is arbitrary, that is, $f=0$ or $f(x)=2 x+d$ with $d \in \mathbb{Z}$.

