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The Cantor Space, 2N

2N := {0, 1}N = {(an)∞n=1; an ∈ {0, 1}∀n}.

We give it the product topology, so it is compact.

Basic open sets: for any w = w0w1 . . .wk finite word,

Ow := {(an)n; a1 . . . ak = w1 . . .wk}.

The sets Ow are actually clopen.

2N = O0 ∪ O1 = O00 ∪ O01 ∪ O10 ∪ O11

= O000 ∪ O001 ∪ O010 ∪ O011 ∪ O100 ∪ O101 ∪ O110 ∪ O111 = . . .

Points of 2N can be expressed in terms of this topology:

2N ←→
{

Decreasing sequences Ow1 ⊇ Ow2 ⊆ Ow3 ⊇ . . .
With wn having length n.

}



The Ternary Cantor Set, C

C :=

{ ∞∑
n=1

(2an)3
−n; an ∈ {0, 1}∀n

}
⊆ [0, 1].

The ternary Cantor set also has a basis of clopen sets
{Aw ;w finite word} (draw picture).
We also have a bijection

C ←→
{

Decreasing sequences Aw1 ⊇ Aw2 ⊆ Aw3 ⊇ . . .
With wn having length n.

}
2N and C are homeomorphic via

⋂
n Awn 7→

⋂
n Own .



Brouwer’s theorem (1910)

Theorem (Brouwer,1910)

Let X ̸= ∅ be any compact, totally disconnected metric space
without isolated points. Then X is homeomorphic to 2N.

Sketch of proof.

As X is disconnected, we can divide it into two nonempty clopen
subspaces A0,A1.
A0,A1 also are compact, totally disconnected without isolated
points, so we can subdivide them into A00,A01,A10,A11.
Repeating this process infinitely, we obtain clopens Aw for each w
finite {0, 1}-word.
One can construct in this manner a family (Aw )w such that for
each sequence a := (an)n ∈ 2N, the intersection of the decreasing
sequence Aa1 ⊇ Aa1a2 ⊇ Aa1a2a3 . . . is one point pa (see next slide
for details if interested).
The map pa 7→ a is then a homeomorphism from 2N to X , because
it is a continuous bijection from compact to Hausdorff.



Construction of the family {Aw}w .

Here are steps one can follow to prove that the sets Aw from the
previous proof can be constructed in such a way that the decreasing
sequences

⋂
n Awn of clopens have intersection just one point:

1. If X is a compact, Hausdorff space, then connected
components and quasi-components coincide in X .

2. A space X satisfying the hypotheses of Brouwer’s theorem has
a basis formed by clopen sets.

3. A space X satisfying the hypotheses of Brouwer’s theorem has
a countable basis (Cn)n formed by clopen sets.

4. Construct the sets Aw such that, if w has length n, then
either Aw ⊆ Cn or Aw ⊆ X \ Cn.



Examples of Cantor Spaces

Let X ̸= ∅ be any compact, totally disconnected metric space
without isolated points. Then X is homeomorphic to 2N.

We say a topological space X is a Cantor Space if it is
homeomorphic to 2N. For example,

▶ 2N, C.
▶ Countable products of finite discrete spaces∗ (e.g. 3N).

▶ C2 ⊆ [0, 1]2.

▶ Countable products of Cantor spaces (e.g. CN).
▶ 2N × X , where X is any compact, totally disconnected metric

space.



Continuous images of 2N

Theorem (Hausdorff-Alexandroff,1927)

Let X ̸= ∅ be a compact metric space. Then there is a surjective
map f : 2N → X.

Proof.
For n ∈ N let Fn be a finite, 1

2n -dense subspace of X .
Let Y :=

∏
n Fn = {(pn)n; pn ∈ Fn for all n}. Y is compact,

totally disconnected.
Let Z = {(pn)n ∈ Y ; d(pn, pn+1) <

1
2n−1∀n}. Z is closed in Y , so

it is compact, totally disconnected.
The map Z → X ; (pn)n 7→ limn pn is surjective.
The projection 2N × Z → Z is also surjective, and 2N × Z is a
Cantor space, so we are done.



Space filling curves

Theorem
Let A ⊆ Rn compact, convex set. Then there is a surjective curve
c : [0, 1]→ A.

Proof sketch.
As A is compact, there is a surjective map f : C → A. We can
extend it to a map f : [0, 1]→ A by interpolating linearly in the
connected components of [0, 1] \ C.
What topological spaces X have a surjective curve [0, 1]→ X?

Definition
A Peano continuum is a compact, connected, locally connected
metrizable topological space X ̸= ∅.

Theorem (Hahn-Mazurkiewicz, 1920)

A Hausdorff topological space is a continuous image of [0, 1] iff it is
a Peano continuum. (Also, any locally compact, connected, locally
connected metrizable topological space X ̸= ∅ is an image of R.)



For more nice consequences of the Hausdorff-Alexandroff theorem,
see Yoav Benyamini’s ‘Applications of the universal surjectivity of
the Cantor Set’.



Subspaces of 2N

Theorem
A Hausdorff space X is homeomorphic to some subspace of 2N iff
it has a countable base formed by clopen sets.

Sketch of proof.

Let (Cn)n be the basis of X formed by clopen sets. To any point
x ∈ X we can associate a {0, 1}-sequence ax given by ax(n) = 0 if
x ∈ Cn and ax(n) = 1 if x ̸∈ Cn.
The map x 7→ ax is an imbedding of X into 2N.

Also:

▶ Any nonempty clopen subspace of 2N is a Cantor space.

▶ Any nonempty open subspace of 2N is either a Cantor space
or homeomorphic to 2N \ {∗}.



Homogeneity properties of Cantor Spaces

▶ 2N is a topological group, so it is homogeneous.

▶ 2N is n-homogeneous for all n.

A separable topological space X is countable dense homogeneous if
for any two dense countable dense subsets E ,D of X there is a
homeomorphism f : X → X with f (D) = E .

Theorem
2N is countable dense homogeneous. (Proof similar to Brouwer
theorem.)

Stronger statement: (En)n and (Dn)n sequences of pairwise
disjoint countable dense subsets of 2N, then there is a homeo
2N → 2N sending En to Dn for all n.

Corollary (Sierpinski Theorem, 1920)

Any countable metric space X without isolated points is
homeomorphic to Q.

So Q ∼= Q ∩ [0, 1] ∼= Qn ∼= A.



The Baire space, NN

It is homeomorphic to R \Q.

Theorem (Hausdorff, 1937)

If a topological space X is completely metrizable, not locally
compact at any point and has a countable basis of clopen sets,
then it is homeomorphic to NN.

(Proof similar to Brouwer’s theorem)

▶ A Hausdorff space X is homeomorphic to some subspace of
NN iff it has a countable base formed by clopen sets.

▶ NN is homeomorphic to any open nonempty subset of itself.

▶ NN is also countable dense homogeneous.

▶ Nice homeomorphism NN → (1,∞) \Q:

(an)n 7→ a1 +
1

a2 +
1

a3+
1

a4+...


