2024 Gordon examination problems

1. Suppose that $n=111 \ldots 11$ is an integer divisible by 7 ; prove that n is divisible by 13 as well.
2. The Fibonacci sequence is defined recursively by $F_{0}=1, F_{1}=1, F_{2}=2$, and $F_{n+2}=$ $F_{n}+F_{n+1}$ for $n=1,2, \ldots$ Prove that for every $n, \sqrt[n]{F_{n+1}} \geq 1+1 / \sqrt[n]{F_{n}}$.
3. Suppose that complex numbers z_{1}, \ldots, z_{5} satisfy $\left|z_{i}\right|=1$ for all i and $\sum_{i=1}^{5} z_{i}=$ $\sum_{i=1}^{5} z_{i}^{2}=0$. Prove that z_{1}, \ldots, z_{5} are the vertices of a regular pentagon.
4. Suppose that all the vertices of an n-gon P in the Euclidean plane have integer coordinates and that the length of all sides of P are also integral. Prove that the perimeter of P is an even integer.
5. Prove that the square of the area of a triangle in \mathbb{R}^{n} is equal to the sum of the squares of the areas of its projections to the $\binom{n}{2}$ two-dimensional coordinate planes in \mathbb{R}^{n}.
6. Prove that for any two $n \times n$ complex matrices A and B, the characteristic polynomials of $A B$ and $B A$ are equal.
