2024 Rasor-Bareis examination problems

1. Let a_{1}, \ldots, a_{1013} be positive integers not exceeding 2024. Prove that $a_{i} \mid a_{j}$ for some $i \neq j$.
2. For a real number x, let $\lfloor x\rfloor$ be the integer part of x (the largest integer not exceeding $x)$. Define the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x)=\sin \lfloor x\rfloor$; is f periodic?
3. Solve the equation $\sqrt{x+\sqrt{4 x+\sqrt{16 x+\cdots+\sqrt{4^{n} x+3}}}}-\sqrt{x}=1$.
4. Suppose that a polynomial f with real coefficients has degree n and n distinct real roots a_{1}, \ldots, a_{n}. Let b_{1}, \ldots, b_{n-1} be the roots of the derivative f^{\prime}. Prove that $\sum_{i=1}^{n} \sum_{j=1}^{n-1} \frac{1}{a_{i}-b_{j}}=$ 0 .
5. Suppose 2024 points are given in the plane with the property that every triangle formed from any three of those 2024 points has area ≤ 1. Prove that all of these points lie in a triangle of area ≤ 4.
6. Let T be a triangle in \mathbb{R}^{3} and let $T_{x, y}, T_{y, z}, T_{x, z}$ be the projections of T onto the three coordinate planes of \mathbb{R}^{3}. Prove that area $(T)^{2}=\operatorname{area}\left(T_{x, y}\right)^{2}+\operatorname{area}\left(T_{y, z}\right)^{2}+\operatorname{area}\left(T_{x, z}\right)^{2}$.
