
Solutions to 2024 Gordon examination problems

1. Suppose that n = 111 . . . 11 is an integer divisible by 7; prove that n is divisible by 13 as well.

Solution. Let the number of 1s in n be k, then n = (10k−1)/9, so n is divisible by 7 iff 10k ≡ 1mod 7 and by
13 iff 10k ≡ 1mod 13. Under multiplication modulo 7, 10 has order 6: 10 ≡ 3, 102 ≡ 2, . . . , 105 = 5 6≡ 1mod 7,
106 ≡ 1mod 7, so n is divisile by 7 iff k is divisible by 6. But 106 ≡ 1mod 13 as well, so when n is divisible
by 7 then n is divisible by 13.

Another solution. Let n1 = 1, n2 = 11, n3 = 111, etc. nk is not divisible by 7 for 1 ≤ k ≤ 5 and is divisible
by 7 for k = 6, n6 = 3 · 7 · 11 · 13 · 37. Since for any k, nk = n6(10

k−6 + 10k−12 + · · · + 10r) + nr where
r ∈ {0, . . . , 5} is the residue of k modulo 6, it follows that nk is divisible by 7 iff r = 0, that is, iff k is
divisible by 6. But in this case n6

∣

∣ nk, and since n6 is divisible by 13, nk is divisible by 13 too.

2. The Fibonacci sequence is defined recursively by F0 = 1, F1 = 1, F2 = 2, and Fn+2 = Fn + Fn+1 for

n = 1, 2, . . .. Prove that for every n, n

√

Fn+1 ≥ 1 + 1/ n

√
Fn.

Solution. By the (generalized) arithmetic-geometric mean (AGM) inequality,
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. Applying the AGM inequality again, we obtain that 1− n
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3. Suppose that complex numbers z1, . . . , z5 satisfy |zi| = 1 for all i and
∑5

i=1
zi =

∑5

i=1
z2i = 0. Prove that

z1, . . . , z5 are the vertices of a regular pentagon.

Solution. Let p(z) =
∏5

i=1
(z − zi) = z5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0 be the polynomial having z1, . . . , z5

as its roots. Then a4 = −∑5

i=1
zi = 0 and a3 =

∑5

1≤i<j≤5
zizj = 1

2

((
∑5

i=1
zi
)2 − ∑5

i=1
z2i
)

= 0. The

polynomial z5p(1/z) = 1 + a4z + a3z
2 + a2z

3 + a1z
4 + a0z

5 has roots z−1

1 , . . . , z−1

5 , the polynomial p(z) =
z5+a4z

4+a3z
3+a2z

2+a1z+a0 has roots z1. . . . , z5; since for any i we have z−1

i = zi, these two polynomials
are equal up to scaling, so a1 = a4 = 0 and a2 = a3 = 0 as well. Hence, p(z) = z5 + a0. Let α be one of
the roots of p; then the five roots of p are α, αω, αω2, αω3, αω4, where ω = e2πi/5, and are the vertices of a
regular 5-gon.

4. Suppose that all the vertices of an n-gon P in the Euclidean plane have integer coordinates and that the

length of all sides of P are also integral. Prove that the perimeter of P is an even integer.

Solution. Let the vertices of P be (ai, bi) ∈ Z2, i = 1, . . . , n; to simplify notation let’s also put (an+1, bn+1) =
(a1, b1). For every i the length of the ith side of P is li =

√

(ai+1 − ai)2 + (bi+1 − bi)2 and is given to be
integral; thus li ≡ (ai+1 − ai) + (bi+1 − bi)mod 2. Hence, modulo 2, the perimeter of P is

n
∑

i=1

li =

n
∑

i=1

(

(ai+1 − ai) + (bi+1 − bi)
)

= (an+1 − a1) + (bn+1 − b1) = 0.

5. Prove that the square of the area of a triangle in Rn is equal to the sum of the squares of the areas of its

projections to the
(

n
2

)

two-dimensional coordinate planes in Rn.

Solution. Let A, B, and C be the vetrices of the triangle, let u =
−→

AB = (a1, . . . , an) and v =
−→

AC =
(b1, . . . , bn). The area S of the triangle equals 1

2
|u| · |v| sin θ, where θ = 6 BAC, so

4S2 = |u|2|v|2 sin2 θ = (u · u)(v · v)(1− cos2 θ) = (u · u)(v · v)− (u · v)2.
Thus

4S2 =
(
∑n

i=1
a2i
)(
∑n

i=1
b2i
)

−
(
∑n

i=1
aibi

)2
=

∑

1≤i<j≤n(a
2
i b

2
j + a2jb

2
i − 2aibjajbi) =

∑

1≤i<j≤n(aibj − ajbi)
2.

And, for any i 6= j, the projection of △ABC onto the (i, j)th coordinate plane has sides (ai, bi), (aj , bj) and
area 1

2
|aibj − ajbi|.
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Another solution. Let A, B, and C be the vetrices of the triangle, let P be the parallelogram formed by

the vectors u =
−→

AB and v =
−→

AC. The area of P (which is twice the area of △ABC) equals the length of
u∧ v, an element of the

(

n
2

)

-dimensional space Rn ∧Rn. (In more details: The 4-linear form F : (Rn)4 −→ R

defined by F (u1, v1, u2, v2) = (u1 · u2)(v1 · v2) − (u1 · v2)(v1 · u2) vanishes when u1 = v1 or u2 = v2,
so induces a bilinear form (an inner product) B: (Rn ∧ Rn)2 −→ R. The corresponding quadratic form
Q(u∧ v) = B(u∧ v, u∧ v) = |u|2|v|2 − (u · v)2 is the square of the area of the parallelogram formed by u and
v, and the length Q(u∧ v)1/2 of u∧ v with respect to Q equals area(P ).) The basis {ei ∧ ej , 1 ≤ i < j ≤ n}
is orthonormal in Rn ∧ Rn with respect to B, so |u ∧ v|2 =

∑

1≤i<j≤n s
2
i,j where si,j are the coordinates of

u ∧ v with respect to this basis. For every i < j, s2i,j = Q
(

Ti,j(u) ∧ Ti,j(v)
)

where Ti,j is the projection to

the (i, j)th coordinate plane, so, s2i,j = area(Ti,j(P ))2.

6. Prove that for any two n × n complex matrices A and B, the characteristic polynomials of AB and BA
are equal.

Solution. If A is invertible, then AB and BA are similar, BA = A−1(AB)A, and their characteristic poly-
nomials coincide. The set U of nondegenerate matrices A (that is, with detA 6= 0) is open and dense in the
n2-dimensional C-vector space of the entries of A, and the coefficients of the characteristic polynomials of
AB and BA are polynomial functions on this space; since they coincide on U , they coincide everywhere.

Another solution. For variables x, y we have x(A− yI)− (A− yI)B(A− yI) = (A− yI)(x−B(A− yI)) =
(x − (A − yI)B)(A − yI), so det(A − yI) det(xI − B(A − yI)) = det(xI − (A − yI)B) det(A − yI). Since
det(A − yI) is a nonzero polynomial, this implies that det(xI − B(A − yI)) = det(xI − (A − yI)B), and
putting y = 0 we get that det(xI −BA) = det(xI −AB).

Yet another solution. Consider the “generic” n × n matrices X = (xi,j) and Y = (yi,j) whose 2n2 entries
are independent commuting variables. Over the field K = Q(xi,j , yi,j)

n
i,j=1, X and Y are invertible, and

thus XY and Y X have the same characteristic polynomial f(t) ∈ Z[xi,j , yi,j ]
n
i,j=1[t]. Now, given a ring R

with elements ai,j , bi,j ∈ R, i, j = 1, . . . , n, replacing in f all xi,j by ai,j and yi,j by bi,j we obtain that the
matrices A = (ai,j) and B = (bi,j) have equal characteristic polynomials as well.
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