Solutions to 2024 Gordon examination problems

1. Suppose that n = 111...11 is an integer divisible by 7; prove that n is divisible by 13 as well.

Solution. Let the number of 1s in n be k, then n = (10¥ —1)/9, so n is divisible by 7 iff 10¥ = 1 mod 7 and by
13 iff 10* = 1 mod 13. Under multiplication modulo 7, 10 has order 6: 10 = 3,10> = 2,...,10° =5 # 1mod 7,
10% = 1mod 7, so n is divisile by 7 iff k is divisible by 6. But 10° = 1mod 13 as well, so when n is divisible
by 7 then n is divisible by 13.

Another solution. Let n1 = 1, no = 11, ng = 111, etc. ny is not divisible by 7 for 1 < k < 5 and is divisible
by 7 for k = 6, ng = 3-7-11-13-37. Since for any k, ny = ng(10¥76 + 10¥712 ... + 10") + n, where
r € {0,...,5} is the residue of k modulo 6, it follows that nj is divisible by 7 iff » = 0, that is, iff &k is
divisible by 6. But in this case ng | ng, and since ng is divisible by 13, ny is divisible by 13 too.

2. The Fibonacci sequence is defined recursively by Fo =1, Fy = 1, Fo = 2, and Fy40 = F,, + Fy,41 for
n=1,2,.... Prove that for every n, {/F,11 > 1+ 1/3/F,.
Solution. By the (generalized) arithmetic-geometric mean (AGM) inequality,
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3. Suppose that complex numbers z1, ..., z5 satisfy |z;| = 1 for all i and Z?Zl z; = Z?Zl 2?2 = 0. Prove that
21,...,25 are the vertices of a regular pentagon.

Solution. Let p(z) = H?:1(Z —2;) = 2° + agz* + a32® + a22? + a1z + ap be the polynomial having z1, ..., 25
as its roots. Then as = 72;11 z; = 0 and az = Z?§i<j§5 2izj = %((Zle zi)Q - 25’:1 z2) = 0. The
polynomial 2°p(1/z) = 1 + asz + azz? + az2® + a;2* + ap2® has roots zfl, e ,zgl, the polynomial p(z) =
2Pt a2t +a323 + 0022 +a12+ap has roots Z;. . . ., Zs; since for any 7 we have z;l = Z;, these two polynomials
are equal up to scaling, so a; = @4 = 0 and as = @3 = 0 as well. Hence, p(z) = z° + ag. Let a be one of
the roots of p; then the five roots of p are a, aw, aw?, aw?, aw?, where w = €2™/5 and are the vertices of a

regular 5-gon.

4. Suppose that all the vertices of an n-gon P in the Euclidean plane have integer coordinates and that the
length of all sides of P are also integral. Prove that the perimeter of P is an even integer.
Solution. Let the vertices of P be (a;,b;) € Z?,i = 1,...,n; to simplify notation let’s also put (an+1,bnt1) =
(a1,b1). For every i the length of the ith side of P is [; = \/(ai_H —a;)? + (b1 — b;)? and is given to be
integral; thus I; = (a;4+1 — a;) + (bj+1 — b;) mod 2. Hence, modulo 2, the perimeter of P is

n

> hi= Z<(ai+1 —a;) + (b1 — bi)) = (ant1 —a1) + (bpy1 — b)) = 0.
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5. Prove that the square of the area of a triangle in R™ is equal to the sum of the squares of the areas of its

projections to the (721) two-dimensional coordinate planes in R™.
N

.
Solution. Let A, B, and C be the vetrices of the triangle, let v = AB = (ay,...,a,) and v = AC =
(b1,...,bn). The area S of the triangle equals %|u| - |v|sin @, where § = /BAC, so

45% = Ju*|v|*sin® 0 = (u-u)(v-v)(1 —cos? ) = (u-u)(v-v) — (u-v)>
Thus
n n n 2
45% = (Zi:1 af) (Zizl sz) - (Zi:1 aibi) = Zl§i<j§n(a12b§ + a?b? —2a;bja;b;) = Z1gi<jgn(aibj —a;b;)?.

And, for any i # j, the projection of AABC onto the (7, j)th coordinate plane has sides (a;,b;), (a;j,b;) and
area %|aibj - a]’bi|.



Another solution. Let A, B, and C be the vetrices of the triangle, let P be the parallelogram formed by
— —
the vectors u = AB and v = AC. The area of P (which is twice the area of AABC) equals the length of

u A v, an element of the (g)—dimensional space R® AR™. (In more details: The 4-linear form F: (R")* — R
defined by F(uy,v1,us,v2) = (u1 - u2)(vy - v2) — (uy1 - v2)(v1 - ug) vanishes when u; = vy or ug = wa,
so induces a bilinear form (an inner product) B:(R™ A R")2 —s R. The corresponding quadratic form
Q(uAv) = BluAv,uAv) = |ul?|v|> — (u-v)? is the square of the area of the parallelogram formed by u and
v, and the length Q(u A v)*/? of u A v with respect to Q equals area(P).) The basis {e; A ej, 1<i<j<n}
is orthonormal in R™ A R™ with respect to B, so |u A v|? = Zl§i<j§n sij where s; ; are the coordinates of
u A v with respect to this basis. For every i < j, 57, = Q(T:j(u) ANT; ;(v)) where T; ; is the projection to

the (4, j)th coordinate plane, so, s7 ; = area(T; ;(P))?.

6. Prove that for any two n X n complex matrices A and B, the characteristic polynomials of AB and BA
are equal.

Solution. If A is invertible, then AB and BA are similar, BA = A7!(AB)A, and their characteristic poly-
nomials coincide. The set U of nondegenerate matrices A (that is, with det A # 0) is open and dense in the
n?-dimensional C-vector space of the entries of A, and the coefficients of the characteristic polynomials of
AB and BA are polynomial functions on this space; since they coincide on U, they coincide everywhere.
Another solution. For variables x, y we have (A —yI) — (A—yl)B(A—yl) = (A—yl)(x — B(A—yl)) =
(x = (A—yI)B)(A — yI), so det(A — yI)det(z] — B(A — yI)) = det(axl — (A — yI)B)det(A — yI). Since
det(A — yI) is a nonzero polynomial, this implies that det(zI — B(A — yI)) = det(z] — (A — yI)B), and
putting y = 0 we get that det(x] — BA) = det(z] — AB).

Yet another solution. Consider the “generic” n x n matrices X = (z; ;) and Y = (y; ;) whose 2n? entries
are independent commuting variables. Over the field K = Q(wi7j,yi7j)2j:1, X and Y are invertible, and
thus XY and YX have the same characteristic polynomial f(t) € Z[z; j, i ]} ;—1[t]. Now, given a ring R
with elements a; j,b; ; € R, 1,5 = 1,...,n, replacing in f all 2; ; by a;; and y; ; by b; ; we obtain that the
matrices A = (a; ;) and B = (b; ;) have equal characteristic polynomials as well.



