
Mikey Reilly “What is?” Seminar 6/6/2024

What Is Uniform Convexity?
Abstract

In the L1 and L∞ norms, the unit balls are not “round” in the way that the other
Lp norms are. As a consequence of this, the L1 and L∞ spaces do not have many of
the nice properties that the other Lp spaces have; for example, they are not reflexive.
In this talk, we will make these feelings precise by defining uniform convexity and
discussing how it allows us to prove useful properties of functional spaces.

Figure 1 shows the unit balls in R2 under the Lp norms, for 1 ≤ p ≤ ∞.

Figure 1: Image due to Quartl on Wikipedia page “Lp space”

The L1 and L∞ norms are not “round” in the sense that their unit balls can be drawn
with straight lines, but we can also phrase this by saying that there are norm 1 vectors x ̸= y
for which the triangle inequality is an equality. I.e. if x = (1, 0) and y = (0, 1), then

2 = ∥x+ y∥1 = ∥x∥1 + ∥y∥1

and if x = (1, 1) and y = (1,−1) then

2 = ∥x+ y∥∞ = ∥x∥∞ + ∥y∥∞ .

Norms for which the triangle inequality is always a strict inequality (when x, y are not
colinear) are called strictly convex.
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Definition 1

A norm ∥·∥ is strictly convex if for all x ̸= y with ∥x∥ , ∥y∥ ≤ 1, we have∥∥∥∥x+ y

2

∥∥∥∥ < 1.

(Equivalently, each point on the boundary of the ∥·∥-unit ball is an extreme point.)

Strictly convex norms usually make our lives much easier, and make proofs more conve-
nient.

Proposition 2

Let K be a (nonempty) convex, closed and bounded set in a normed vector space.
Suppose that this norm is strictly convex. Then K has an extreme point, i.e. a point
which is not the average of two other points in K.

Proof:
WLOG K is contained in the closed unit ball and there is an x ∈ K with ∥x∥ = 1.

Suppose that there are y, z ∈ K such that
y + z

2
= x. By the triangle inequality, it must be

that ∥y∥ = ∥z∥ = 1, but then by strict convexity, both y and z must be equal to x. Hence
x is an extreme point of K.

Q.E.D.
For the remainder of the talk, we will use X to denote an arbitrary Banach space.

Proposition 3

If X is separable, we can always find an equivalent norm for X which is strictly convex.

The idea here is to start with some norm on X and add to it a norm which is small enough
to not change the topology, but will make it strictly convex. For example, if X = ℓ1(N) then
define a new norm by

|x| := ∥x∥1 + ∥x∥2 .

Proposition 3 means that we cannot use strict convexity to tell us anything about the
topology of the space.

This suggests that we need a stronger notion.
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Definition 4

A norm ∥·∥ is uniformly convex if for each ϵ > 0 there is a δ > 0 such that if x, y have
∥x∥ , ∥y∥ ≤ 1 and ∥∥∥∥x+ y

2

∥∥∥∥ > 1− ϵ then ∥x− y∥ < δ.

Equivalently, if xn, yn are sequences in the (closed) unit ball of ∥·∥ with ∥xn + yn∥ → 2,
then ∥xn − yn∥ → 0.

Exercise (Easy)

A uniformly convex norm is strictly convex. Also, in a finite dimensional space, these
two definitions are the same.

Exercise (Also Easy)

Any Hilbert space norm is uniformly convex.

Proposition 5

If X has a uniformly convex norm then any (nonempty) closed convex set will contain
an element of minimal norm.

Proof:
Let K be a closed, convex set and WLOG assume inf

x∈K
∥x∥ = 1. Let xn be a sequence in

K with ∥xn∥ → 1. For each n,m,

∥∥∥∥xn + xm

2

∥∥∥∥ ≥ 1 since
xn + xm

2
∈ K. But by the triangle

inequality, lim sup
n,m→∞

∥∥∥∥xn + xm

2

∥∥∥∥ ≤ 1. So

∥∥∥∥xn + xm

2

∥∥∥∥ → 1 as n,m → ∞.

Hence ∥xn − xm∥ → 0 by uniform convexity. So (xn) is Cauchy and so it converges in K.
Q.E.D.

The ideology here is that for convex optimization purposes, strict convexity gives unique-
ness, and uniform convexity gives existence (and also uniqueness).

Exercise (Bonus)

The Lp norm is uniformly convex for 1 < p < ∞, with δ = (1− (ϵ/2)r)
1
r , where r = p

if p ≥ 2 and r =
p

p− 1
if 1 < p < 2.

Hint: Google Clarkson’s inequalities.

Now let’s take a look at some examples of how arguments using uniform convexity usually
go.
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Lemma 6

Let X be a uniformly convex space and let A ∈ B(X) have operator norm 1. If∥∥∥∥IdX +A

2

∥∥∥∥
B(X)

is also equal to 1, then for each ϵ > 0 there is a v ∈ X with ∥v∥X = 1

such that ∥Av − v∥ < ϵ.

Corollary 7

Let X be a uniformly convex space and let A0, A1, · · · : X → X each have operator
norm 1, with A0 = IdX . If for each N ,∥∥∥∥∥ 1

N

N∑
n=0

An

∥∥∥∥∥
B(X)

= 1

then there is a sequence of vectors (vn) such that sup
n≤N

∥AnvN − vN∥ → 0 as N → ∞.

In particular, we can take X = ℓ2(Z) and An = Ln, where L is the left shift, so that∥∥∥∥∥ 1

N

N∑
n=0

An

∥∥∥∥∥
B(X)

= 1 by Kesten’s criterion for amenability.

Theorem 8 (Milman–Pettis)

If X is uniformly convex, then X is reflexive, i.e. X∗∗ = X.

Proof:
Let ξ ∈ X∗∗. WLOG ∥ξ∥X∗∗ = 1. We need to show two facts:

• X ↪→ X∗∗ and moreover, the closed unit ball of X is weak∗ dense in the closed unit
ball of X∗∗

• For each ϵ > 0, there is an x ∈ X ↪→ X∗∗ such that ∥x− ξ∥X∗∗ ≤ ϵ.

The first fact is a statement of Goldstine’s Theorem. For the second fact pick any ϵ > 0,
and pick δ from the uniform convexity of X. Since ∥ξ∥X∗∗ = 1, we can find f ∈ X∗ with

∥f∥X∗ = 1 such that |ξ(f)| > 1− δ

2
. Now consider the weak∗ open ball

U = {η ∈ X∗∗ : |(η − ξ)(f)| < δ

2
}.

By the first fact above, there is an x ∈ X ∩ U . To show that this x satisfies ∥x− ξ∥X∗∗ ≤ ϵ,
we will suppose for the sake of contradiction that it does not.
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Then X ∩U is not contained in a closed ball of radius ϵ (in ∥·∥X∗∗) around x, so there is
a point y ∈ X ∩ U with ∥x− y∥X∗∗ = ∥x− y∥X ≥ ϵ. By uniform convexity, this means that∥∥∥∥x− y

2

∥∥∥∥
X

≤ 1− δ. But U is convex and so
x+ y

2
∈ U . This means that

|(x+ y

2
−ξ)(f)| < δ

2
and

|ξ(f)| > 1− δ

2
so

(
x+ y

2
)(f) > 1− δ

But this is impossible since

∥∥∥∥x− y

2

∥∥∥∥
X

≤ 1 − δ and ∥f∥X∗ = 1. This is the desired contra-

diction and the statement of the theorem follows from the second fact and the fact that X
is norm closed in X∗∗.

Q.E.D.

Corollary 9

IfX is uniformly convex, then every closed, bounded, convex set inX is weakly compact.

Theorem 10 (Kadets–Klee)

Suppose that X is uniformly convex. If xn → x weakly in X and ∥xn∥ → ∥x∥ then
∥x− xn∥ → 0.

Proof:
First recall the following fact: If xn → x weakly, then ∥x∥ ≤ lim inf

n
∥xn∥. This is true

since for each f ∈ X∗ we have f(xn) → f(x) and so |f(x)| = lim inf
n

|f(xn)| ≤ lim inf
n

∥f∥ ·
∥xn∥. But the fact follows since ∥x∥ = sup

f∈X∗

∥f∥X∗=1

|f(x)|.

WLOG each xn has norm 1 (divide by ∥xn∥ if necessary).

Now to show the statement of the theorem. We know that
xn + x

2
→ x weakly, and so

1 = ∥x∥ ≤ lim inf
n

∥∥∥∥xn + x

2

∥∥∥∥ .
But each

xn + x

2
has norm at most 1, so

∥∥∥∥xn + x

2

∥∥∥∥ → 1. By uniform convexity, this means

that ∥xn − x∥ → 0.
Q.E.D.
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Theorem 11 (Browder’s Fixed Point Theorem)

Let X be a uniformly convex space and let K be a (nonempty) convex, closed, bounded
subset of X. Let U : K → K be a weak contraction, meaning ∥U(x)− U(y)∥ ≤ ∥x− y∥
for all x, y ∈ K. Then U has a fixed point.

Proof:
Let F be the collection of nonempty, closed, convex subsets of K which are U invariant,

ordered by inclusion. K ∈ F and if (Cλ) is a descending chain in F then we may use

Cantor’s theorem to say that
⋂
λ

Cλ is nonempty since each Cλ is weakly compact. By Zorn’s

lemma, F has a minimal element, call it C. Now let’s show that C is a singleton, since this
will complete the proof of the theorem.

First note that by minimality, the closure of the convex hull of U(C) is C, i.e. Conv(U(C)) =
C.

Suppose that C has nonzero diameter. WLOG C has diameter 1.
Claim: We can find an x ∈ C and r < 1 such that each point y ∈ C has ∥x− y∥ ≤ r.

To see that this is true pick 0 < ϵ <
1

2
, pick δ from uniform continuity and pick x1, x2 ∈ C

such that ∥x1 − x2∥ > δ. Let x =
x1 + x2

2
. Then for any y ∈ C,

∥x− y∥ =

∥∥∥∥(x1 − y) + (x2 − y)

2

∥∥∥∥
is smaller than 1− ϵ since

∥(x1 − y)− (x2 − y)∥ = ∥x1 − x2∥ > δ.

Taking r = 1− ϵ proves the claim.
Now let

C ′ =
⋂
y∈C

{w ∈ C : ∥w − y∥ ≤ r}.

C ′ is convex, closed and nonempty since x ∈ C ′.
C ′ is also U invariant since if u ∈ C ′ then for any y ∈ C we can show that ∥U(u)− y∥ ≤ r.
To this end, pick y ∈ C and recall that the convex hull of U(C) is dense in C, i.e.

dist(Conv(U(C)), y) = 0. Also recall that U is a weak contraction, which gives that

∥U(u)− y∥ ≤dist(U(u),Conv(U(C))) + dist(Conv(U(C)), y)

=dist(U(u),Conv(U(C))) + 0

≤dist(U(u), U(C)) ≤ dist(u,C) ≤ r

which means that U(u) ∈ C ′. But C ′ is properly contained in C since the diameter of C ′

is r which is less than the diameter of C. This is the desired contradiction, so C must be a
singleton.

Q.E.D.
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Theorem 12 (Browder)

Let X be a uniformly convex space and let K be a (nonempty) convex, closed, bounded
subset of X. Let (Ui)i∈I be an arbitrary family of commuting weak contractions from
K to K. Then there is a point in K which is fixed by each Ui.

Proof:
Claim: For each i, the fixed point set of Ui is convex.
To see why this is true pick a, b ∈ Fix(Ui) and let c be a point on the line between them.

Then

∥a− Ui(c)∥ = ∥Ui(a)− Ui(c)∥ ≤ ∥a− c∥
and

∥b− Ui(c)∥ = ∥Ui(b)− Ui(c)∥ ≤ ∥b− c∥

so Ui(c) is at least as close to both a and b as c is. Additionally,

∥a− b∥ ≤ ∥a− Ui (c)∥+ ∥Ui (c)− b∥ = ∥Ui(a)− Ui (c)∥+ ∥Ui (c)− Ui(b)∥
≤∥a− c∥+ ∥c− b∥ = ∥a− b∥

hence Ui(c) is also on the line between a and b. Hence Ui(c) must be c. This proves the
claim.

Now the collection (Fix(Ui))i∈I is a family of closed, convex, nonempty subsets of X.
That makes each of these sets weakly compact (since K is weakly compact), and so if we
can show that this collection has the finite intersection property, then we are done.

Claim: Let U1, . . . , Un be finitely many elements from this family. Then
n⋂

i=1

Fix(Ui) is

nonempty.
To see that this is true, note that if u ∈ Fix(Ui) then for any j we have

UiUj(u) = UjUi(u) = Uj(u)

meaning that Uj(u) ∈ Fix(Ui). So each Fix(Ui) is invariant under each Uj.
Now we will proceeded by induction on n. Theorem 11 shows the case n = 1. Assuming

that
n−1⋂
i=1

Fix(Ui) is nonempty, we can note that this set is Un invariant and applying Theorem

11 gives that
n⋂

i=1

Fix(Ui) is nonempty.

Q.E.D.

Theorem 13 (Edelstein)

Assume X is only strictly convex and that K is compact and convex. If U : K → K
is a weak contraction then we can find a fixed point of U by picking any x0 ∈ K and

taking the limit of the sequence (xn) where xn+1 =
xn + Uxn

2
.
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Proof:
First note that if u is any fixed point for U (which exists by Schauder’s fixed point

theorem) and if v is any non-fixed point then we have∥∥∥∥v + U(v)

2
− u

∥∥∥∥ =

∥∥∥∥v + Uv

2
− u+ Uu

2

∥∥∥∥ <
∥v − u∥+ ∥Uv − Uu∥

2
≤ ∥v − u∥ . (1)

(this is where we use the assumption of strict convexity)
Since K is compact, (xn) has a limit point p ∈ K. We can suppose that U(xn) ̸= xn for

all n, since otherwise we would be done.
If we can take u = p, then this means that xn converges to p by equation (1).

Suppose for the sake of contradiction that U(p) ̸= p. Let q =
p+ U(p)

2
, let u ∈ K be

any fixed point and let r =
∥p− u∥ − ∥q − u∥

2
, which is positive by equation (1). Let B be

the ball of radius r around q. Since p is a limit point of (xn) there will be arbitrarily large
values of n for which xn+1 is within r of q. But then

∥xn+1 − y∥ ≤ ∥xn+1 − q∥+ ∥q − y∥ < r + ∥q − y∥ =
∥p− u∥+ ∥q − u∥

2

and also

∥xn+1 − p∥ ≥ ∥y − p∥ − ∥xn+1 − y∥ > ∥y − p∥ − ∥p− u∥+ ∥q − u∥
2

= r

This holds for arbitrarily large values of n and so this contradicts the fact that p is a limit
point of (xn). So we are done.

Q.E.D.
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