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Abstract. Every introductory analysis textbook defines uniform continuity of a function on its entire do-
main. It is also worthwhile to define uniform continuity of a function on a subset of its domain. To my
surprise, I have been unable to find a single textbook that defines this in the way that is most useful in ap-
plications. In this “What Is?” seminar talk, I explained how this concept should be defined and, to illustrate
the value of defining it that way, I sketched the proof that the Fourier series of a function f of bounded
variation on [0, 1] converges to f uniformly on each compact subset of the set of points of continuity of
f . This is a refinement of the Dirichlet-Jordan theorem. Along the way, I discussed Fejér’s theorem and
Hardy’s Tauberian theorem, and an elementary proof for the rate of decay of the Fourier coefficients of a
function of bounded variation on [0, 1].

Remark. Notes covering the contents of this talk follow. They consist of a concatenation of pdfs that I
already had written up in the course of the many times that I have taught real analysis, so the page numbers
that appear are not consecutive throughout, but are the ones from the original separate pdfs.
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Let X and Y be topological spaces, let f : X → Y , and let H ⊆ X . What should it mean to say that f
is continuous on H ? Some textbooks, such as Apostol, Mathematical Analysis, Second Edition, or Royden,
Real Analysis, First, Second, or Third Edition,1 define it to mean that for each a ∈ H , f is continuous at a .
This is the definition I prefer.2 Unfortunately, some textbooks instead define continuity of f on H to mean
that the restriction of f to H is continuous. Note that this is a strictly weaker condition. For instance, the
so-called Dirichlet function 1Q is discontinuous at each point of R but its restriction to Q is continuous
because it is constant.

Now let (X, ρX) and (Y, ρY ) be metric spaces, let f : X → Y , and let H ⊆ X . What should it mean
to say that f is uniformly continuous on H ? By analogy with my preferred definition of continuity on H ,
I would say that it should mean that for each ε > 0, there exists δ > 0 such that for each a ∈ H , for each
x ∈ X , if ρX(a, x) < δ , then ρY (f(a), f(x)) < ε . Note that here a is required to be in H but x is not.
However, I am not aware of any textbook that adopts this definition. Most textbooks either define uniform
continuity of f on H only when H is the entire domain of f or define it to mean uniform continuity of
the restriction of f to H . I think this is regrettable, because the usual proofs that continuity on a compact
set implies uniform continuity establish the stronger notion of uniform continuity on H that I prefer and
because this stronger notion is what is needed for certain important applications of uniform continuity, such
as Fejér’s theorem and the Dirichlet-Jordan theorem. (See below.)

Remark. Since the “right” definition of uniform continuity on H is not the usual definition, it is prudent
to formulate the theorem about uniform continuity on a compact set in a way that avoids the possibility of
confusion, as follows.

Theorem on Uniform Continuity on a Compact Set. Let (X, ρX) and (Y, ρY ) be metric spaces, let
f : X → Y , let C be the set of points in X at which f is continuous, and let H be a compact subset of C .
Then f is continuous at a uniformly for a in H . In other words, for each ε > 0 , there exists δ > 0 such
that for each a ∈ H , for each x ∈ X , if ρX(a, x) < δ , then ρY (f(a), f(x)) < ε .

Proof. Let ε > 0. Let E = { (x, r) ∈ H × (0,∞) : f [BX(x, 2r)] ⊆ BY (f(x), ε/2) } . By assumption, for
each x ∈ H , f is continuous at x , so there exists r ∈ (0,∞) such that (x, r) ∈ E . Thus the collection
{BX(x, r) : (x, r) ∈ E } is an open cover of H . Hence, since H is compact, there exists n ∈ N and there
exist (x1, r1), . . . , (xn, rn) ∈ E such that H ⊆

⋃n
j=1

BX(xj , rj). Let δ = min { r1, . . . , rn } . Then δ > 0.
Let a ∈ H and let x ∈ X with ρX(a, x) < δ . Then a ∈ BX(xj , rj) for some j ∈ { 1, . . . , n } . Now

ρX(x, xj) ≤ ρX(x, a) + ρX(a, xj) < δ + rj ≤ rj + rj = 2rj .

Thus a and x both belong to BX(xj , 2rj), so f(a) and f(x) both belong to BY (f(xj), ε/2), so

ρY (f(a), f(x)) ≤ ρY (f(a), f(xj)) + ρY (f(xj), f(x)) <
ε

2
+

ε

2
= ε.

This completes the proof. !

The Dirichlet-Jordan Theorem and Fejér’s Theorem.

The Dirichlet-Jordan theorem (Dirichlet, 1829; Jordan, 1881) says in part that for each f : R → C , if f is
1-periodic and locally of bounded variation and if C is the set of points at which f is continuous, then for
each compact set H ⊆ C , Snf → f uniformly on H , where Snf is the n-th symmetric partial sum of the
Fourier series for f . Note that the set of points at which such a function f is discontinuous is countable
but may be dense.

Fejér’s theorem (1904) says in part that for each f : R → C , if f is 1-periodic and locally integrable and
if C is the set of points at which f is continuous, then for each compact set H ⊆ C , σnf → f uniformly
on H , where σnf is the average of the first n+1 symmetric partial sums S0f, . . . , Snf of the Fourier series

1 but not Royden and Fitzpatrick, Real Analysis, Fourth Edition,
2 Here are two other books that also use the definition I prefer: Bartle and Sherbert, Introduction to Real Analysis; Ross,

Elementary Analysis: The Theory of Calculus. These happen to be the two textbooks currently prescribed for our regular
undergraduate analysis sequence Math 4547 and 4548.
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for f . In other words, under the stated assumptions, the sequence (Snf) is uniformly Cesàro-convergent
to f on H . The proof of this portion of Fejér’s theorem, and the proof of the portion of the Dirichlet-
Jordan theorem just stated, both depend on the theorem on uniform continuity on a compact set in the form
presented above. It would not be enough to know that the restriction of f to H is uniformly continuous.

Hardy (1910) showed how to derive the Dirichlet-Jordan theorem from Fejér’s theorem. He did this
by proving a general summability result that is now known as Hardy’s Tauberian theorem and which says
that if the sequence (sn) of partial sums of (uk) is Cesàro-convergent to s and uk = O(1/k), then (sn) is
convergent to s . Here s, u1, u2, . . . may be elements of any normed linear space.

Appendix: Lebesgue Numbers.

The first half of the proof of the theorem on uniform continuity on a compact set can be adapted into a
proof of the theorem on Lebesgue numbers, a result that is useful for many purposes.

Definition: Lebesgue Numbers. Let (X, ρ) be a metric space, let H be a subset of X , and let U be a
collection of subsets of X which covers H . To say that δ is a Lebesgue number for U and H means that
δ > 0 and for each a ∈ H , there exists U ∈ U such that B(a, δ) ⊆ U .

Theorem on Lebesgue Numbers. Let (X, ρ) be a metric space, let H be a compact subset of X , and
let U be a collection of open subsets of X which covers H . Then there exists a Lebesgue number δ for U

and H .

Proof. Let E = { (x, r) ∈ H × (0,∞) : B(x, 2r) ⊆ U for some U ∈ U } . For each x ∈ H , we have x ∈ U
for some U ∈ U , and since U is open, B(x, 2r) ⊆ U for some r ∈ (0,∞), so (x, r) ∈ E , and of course
x ∈ B(x, r). Thus {B(x, r) : (x, r) ∈ E } is an open cover of H . Since H is compact, H ⊆

⋃n
j=1

B(xj , rj)
for some n ∈ N and some (x1, r1), . . . , (xn, rn) ∈ E . Let δ = min { r1, . . . , rn } . Then δ > 0. Let a ∈ H .
Then a ∈ B(xj , rj) for some j ∈ { 1, . . . , n } . By the definition of E , B(xj , 2rj) ⊆ U for some U ∈ U . Let
x ∈ B(a, δ). Then

ρ(x, xj) ≤ ρ(x, a) + ρ(a, xj) < δ + rj ≤ rj + rj = 2rj ,

so x ∈ B(xj , 2rj). Since B(xj , 2rj) ⊆ U , it follows that x ∈ U . This holds for each x ∈ B(a, δ). Therefore
B(a, δ) ⊆ U . !

Remark. Next, we present an alternate proof of the theorem on uniform continuity on a compact set, based
on the theorem on Lebesgue numbers.

Alternate Proof of Theorem on Uniform Continuity on a Compact Set. Let ε > 0. For each b ∈ H , let
Vb = BY (f(b),

ε
2
), let Ub be the interior of f−1[Vb] in X , and observe that b ∈ Ub because f is continuous

at b . Let U = {Ub : b ∈ H } . Then U is a collection of open subsets of X which covers H . Since H is
compact, there exists a Lebesgue number δ for U and A . Then δ > 0. Let x ∈ X and a ∈ H . Suppose
ρX(a, x) < δ . Then x ∈ BX(a, δ). Since δ is a Lebesgue number for U and A , we have BX(a, δ) ⊆ Ub

for some b ∈ H . Then a and x both belong to Ub , so f(a) and f(x) both belong to Vb = BY (f(b), ε
2
), so

ρY (f(a), f(x)) ≤ ρY (f(a), f(b)) + ρY (f(b), f(x)) <
ε
2
+ ε

2
= ε . !

Remark. Finally, we present an alternate proof of the theorem on Lebesgue numbers. It is less elementary
than the proof above, but it provides additional insight into why the theorem is true.

Alternate Proof of the Theorem on Lebesgue Numbers. If some U ∈ U is equal to X , then we may take δ = 1.
Suppose no U ∈ U is equal to X . Since H is compact, there exists n ∈ N and there exist U1, . . . , Un ∈ U

such that H ⊆
⋃n

j=1
Uj . For j = 1, . . . , n , define fj on H by fj(x) = inf { ρ(x, x′) : x′ ∈ X \ Uj } and

observe that fj ≥ 0, that Uj = { fj > 0 } (because X \ Uj is closed), that { fj = ∞ } = Ø (because
X \ Uj (= Ø), and that fj is continuous (because, as is easy to check, |fj(x1) − fj(x2)| ≤ ρ(x1, x2) for all
x1, x2 ∈ H .). Define f on H by f(x) = max { f1(x), . . . , fn(x) } . Then f is continuous, so f achieves a
minimum at some point x∗ ∈ K . Now x∗ ∈ Uj∗ for some j∗ ∈ { 1, . . . , n } , so f(x∗) ≥ fj∗(x∗) > 0. Let
δ = f(x∗). Then δ > 0. For each x ∈ H , there exists j ∈ { 1, . . . , n } such that f(x) = fj(x), so fj(x) ≥ δ ,
so for each x′ ∈ X \ Uj , ρ(x, x′) ≥ fj(x) ≥ δ , so B(x, δ) ⊆ Uj . !

2
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Fourier Series Motivated Modern Analysis.

This is a course on the general topic of real analysis, so you might well ask “Why begin with the specific
topic of Fourier series?” One answer is that while the tools of modern analysis have found widely varied
uses, many of these tools were first developed in order to better understand Fourier series.

Preliminary Remarks about Fourier Series.

For each k ∈ Z , define ek : R → C by ek(x) = e2πikx , where of course i =
√
−1. These functions ek satisfy

the following orthogonality relations:

∫ 1

0
ek(x)e"(x) dx =

{
0 if k %= !,

1 if k = !,
(1)

where ek(x) denotes the complex conjugate of ek(x). Consider a function f : R → C of the form

f(x) =
∑

k∈Z

ckek(x), (2)

where the coefficients ck are complex numbers. Suppose these coefficients are such that the series (2)
converges in some suitable sense.1 Then, as Euler (1777) observed, it follows from the orthogonality2

relations (1) that for each k ∈ Z , we have

ck = f̂(k), where f̂(k) =

∫ 1

0
e−2πikxf(x) dx. (3)

Thus the coefficients ck are uniquely determined3 by the function f . Conversely, it is natural to ask which
functions f can be represented in the form (2). Of course f should be 1-periodic,4 since each ek is. In the
years between 1807 and 1822, Fourier, in his studies of heat conduction, was led to consider series of the form
(2) and he made the claim that any 1-periodic function f could be represented in the form of such a series
with the coefficients ck defined by (3). For the next century or so, much of the development of analysis, and
especially of the theory of integration, was motivated by efforts to make sense of Fourier’s astonishing claim.

Development of the Theory of Integration.

In the years between 1814 and 1823, Augustin Cauchy came to realize the importance of giving a mathe-
matical definition to the notion of an integral.5 Cauchy used suitable limits of sums to define the integral
of a continuous function. Bernhard Riemann (1854) took the next natural step and defined the integral as
the limit of such sums whenever the limit existed, whether or not the function was continuous. However,
Riemann’s definition was still too restricted. Henri Lebesgue (1902) finally discovered the ideal formulation
of the theory of integration. While Lebesgue’s theory is powerful, it is also difficult. Lebesgue himself, when
asked which theory of integration a student should study first, answered “Riemann’s, of course.” We shall
assume that the reader is already familiar with the Riemann integral.

1 Uniform convergence would suffice though, as we shall see in due time, much less than this can still be good enough.
2 For Euler, the equations (1) were just convenient algebraic relations. He did not call them orthogonality relations. The

geometrical interpretation of such equations as expressing the orthogonality of the functions ek , k ∈ Z , was popularized by
Erhard Schmidt, a student of David Hilbert, beginning around 1905, and can be found in papers published by Schmidt in
1907 and 1908, by F. Riesz in 1906 and 1907, and by Ernst Fischer in 1907, for instance. Schmidt (1908) thanks a certain
Kowalewski, presumably Gerhard Kowalewski of Bonn, where Schmidt was at the time, for this idea. See page 46 in Michael
Bernkopf, The development of function spaces with particular reference to their origins in integral equation theory, Arch. Hist.
Exact Sci. 3 (1966), 1-96. See also page 352 in Thomas Hawkins, Emergence of the theory of Lie groups: an essay in the
history of mathematics, 1869-1926, Springer, 2000.

3 Earlier, Clairaut (1757) had shown this by a more involved argument.
4 To say that f is 1-periodic means that for each x ∈ R , we have f(x+ 1) = f(x) . More generally, if T ∈ (0,∞) , then to

say that f is T -periodic means that for each x ∈ R , we have f(x + T ) = f(x) .
5 By the way, it was in 1818 that Cauchy became aware of Fourier’s work.
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Fourier Series from the Perspective of the Riemann Integral.

Although Lebesgue’s theory of integration is essential for a truly satisfactory treatment of Fourier series, it
is valuable to study Fourier series first using just Riemann’s theory of integration. By doing so, we shall
develop a better appreciation for the ways in which Lebesgues’s theory of integration is an improvement over
Riemann’s.

A Remark on 1-Periodic Riemann-Integrable Functions.

Let f : R → C be 1-periodic. Let u, v ∈ R . Suppose f is Riemann-integrable over [u, u + 1]. Then, since
f is 1-periodic, f is also Riemann-integrable over [v, v + 1] and

∫ u+1

u
f(x) dx =

∫ v+1

v
f(x) dx.

Let’s see why this is so. First, it is obvious by 1-periodicity that for all a, b ∈ R with a ≤ b and for
each n ∈ Z , if f is Riemann-integrable over [a, b] , then f is Riemann-integrable over [a + n, b + n] and∫ b
a f(x) dx =

∫ b+n
a+n f(x) dx . Let n be an integer such that u ≤ v−n ≤ u+1. Note that v ≤ u+1+n ≤ v+1.

Since f is Riemann-integrable over [u, u+1], f is also Riemann-integrable over any subinterval of [u, u+1].
Thus f is Riemann-integrable over [u, v − n] and also over [v − n, u + 1]. Hence f is Riemann-integrable
over [u+ 1 + n, v + 1] and also over [v, u+ 1 + n] and we have

∫ v−n

u
f(x) dx =

∫ v+1

u+1+n
f(x) dx and

∫ u+1

v−n
f(x) dx =

∫ u+1+n

v
f(x) dx.

Adding, we find that f is Riemann-integrable over [v, v+1] and
∫ u+1
u f(x) dx =

∫ v+1
v f(x) dx , as desired. It

follows in particular that for each a ∈ R , f is Riemann-integrable over [a, a+1] iff f is Riemann-integrable
over [0, 1] and that in this case, ∫ a+1

a
f(x) dx =

∫ 1

0
f(x) dx.

Two Spaces of 1-Periodic Functions.

We shall write C(T) for the vector space of continuous, complex-valued, 1-periodic functions on R . Also,
we shall write R(T) for the vector space of complex-valued, 1-periodic functions f on R such that f is
Riemann-integrable over [0, 1]. Note that C(T) is a proper linear subspace of R(T).

Some Notation Concerning Fourier Series.

Let the functions ek , k ∈ Z , be as defined in our preliminary remarks about Fourier series. For each
f ∈ R(T), we define f̂ : Z → C by

f̂(k) =

∫ 1

0
e−2πikxf(x) dx

for all k ∈ Z . For each integer k , the number f̂(k), which was already mentioned in (3), is called the k-th
Fourier coefficient of f . For each f ∈ R(T), the Fourier series for f is the series

∞∑

k=−∞

f̂(k)ek.

In merely writing this series, we make no claims about whether or not it converges. We shall write ω for
the set { 0, 1, 2, 3, . . .} of nonnegative integers. For each f ∈ R(T) and each n ∈ ω , the n-th symmetric
partial sum of the Fourier series for f is the function Snf defined on R by

Snf =
n∑

k=−n

f̂(k)ek.

2
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The Dirichlet-Jordan Theorem.

The first rigorous, reasonably general result on convergence of Fourier series was proved by Dirichlet (1829).
He showed that if f : R → C is 1-periodic, piecewise continuous, and piecewise monotone, and if x ∈ R , then
as n → ∞ , we have Snf(x) → f(x) if f is continuous at x , while Snf(x) → 1

2

(
f(x−) + f(x+)

)
otherwise.

Jordan (1881) introduced functions of bounded variation and, observing that a function of bounded variation
on an interval is a difference of two increasing functions on that interval, he extended Dirichlet’s result to
the case where f ∈ R(T) and f is of bounded variation in a neighborhood of x . Though Jordan’s extension
of Dirichlet’s theorem was easy, it is quite significant, because a function of bounded variation need not
be monotone on any nondegenerate interval and even a monotone function need not be continuous on any
nondegenerate interval.

Convolution of Functions on a Finite Group.

Let (G, ·) be a finite group. Let f, g : G → C . Then we may consider the corresponding formal linear
combinations

∑
z∈G f(z)z and

∑
y∈G g(y)y of elements of G . Formally multiplying these two expressions

and grouping like terms, we get

(
∑

z∈G

f(z)z

)


∑

y∈G

g(y)y



 =
∑

(z,y)∈G×G

f(z)g(y)zy =
∑

x∈G

(
∑

zy=x

f(z)g(y)

)

x =
∑

x∈G

h(x)x,

where
h(x) = (f ∗ g)(x) =

∑

y∈G

f(xy−1)g(y)

for all x ∈ G . The function h = f ∗ g is called the convolution of f and g . Thus convolution is how we
would naturally multiply functions on G if we think of such functions as formal linear combinations of the
group elements. In this sense, the operation of convolution is the natural “extension” of the group operation
to the vector space of complex-valued functions on G . Since the group operation is associative, it is always
the case that the operation of convolution of functions on G is associative. The operation of convolution of
functions on G is commutative iff G is abelian.

Convolution of 1-Periodic Functions on R.

Consider the group (R,+). Let f, g ∈ R(T). Since f and g are 1-periodic, they may be thought of
as functions on the quotient group (R/Z,+). Since this is a continuous group, not a finite one, for all
f, g ∈ R(T), we define the convolution of f and g not by a sum but by an integral, specifically

(f ∗ g)(x) =
∫ 1

0
f(x− y)g(y) dy

for all x ∈ R . For all f, g ∈ R(T), it is clear that f ∗ g is 1-periodic and, by approximating f and g by
step functions, it is not too hard to show that f ∗ g is continuous (though we don’t need this for now). It
is not hard to check that for all f, g ∈ R(T), we have f ∗ g = g ∗ f (and we shall use this soon). And of
course, one can also check that for all f, g, h ∈ R(T), we have f ∗ (g ∗ h) = (f ∗ g) ∗ h (though we don’t
need this for now either).

Translations of Functions on R.

Let f : R → C and let a ∈ R . Then the translation of f by a is the function τaf defined on R by
τaf(x) = f(x− a). Notice that if E ⊆ R , then τa1E = 1E+a , where E + a = {x+ a : x ∈ E } .

Remark. It is clear that if f ∈ R(T), then so is τaf , for each a ∈ R .

Exercise 1. Let f, g ∈ R(T) and let a ∈ R . Prove that (τaf) ∗ g = τa(f ∗ g) = f ∗ (τag).

3
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Remark. It may be enlightening to explain Exercise 1 in another way, even though we are not yet in a
position to make rigorous sense of this other way. Let δa denote a (1-periodic) Dirac delta function centered
at a . (If you have no idea what that means, feel free to skip this remark.) Then by the associativity of
convolution, (δa ∗ f) ∗ g = δa ∗ (f ∗ g). But δa ∗ f = τaf and δa ∗ (f ∗ g) = τa(f ∗ g), as one may easily check
formally. This shows that (τaf) ∗ g = τa(f ∗ g). Similarly, (f ∗ g) ∗ δa = f ∗ (g ∗ δa). But since (R/Z,+) is
an abelian group, (f ∗ g) ∗ δa = δa ∗ (f ∗ g) = τa(f ∗ g) and g ∗ δa = δa ∗ g = τag . Hence τa(f ∗ g) = f ∗ (τag).
(In a non-abelian group, we should distinguish between left translation La and right translation Ra . Then
(Laf) ∗ g = (δaf) ∗ g = δa ∗ (f ∗ g) = La(f ∗ g) and f ∗ (Rag) = f ∗ (g ∗ δa) = (f ∗ g) ∗ δa = Ra(f ∗ g).) As
we said, this explanation must be considered nonrigorous for now because there is actually no such function
as δa . Eventually, though, we shall be able to give this explanation a rigorous interpretation.

The Dirichlet Kernel.

For each n ∈ ω , the Dirichlet kernel of order n is the 1-periodic function Dn defined on R by

Dn =
n∑

k=−n

ek. (4)

The observation in the next exercise is one of the ingredients in the proof of the Dirichlet-Jordan theorem.

Exercise 2. Let f ∈ R(T).

(a) Verify that for each k ∈ Z , we have ek ∗ f = f̂(k)ek .
(b) Deduce that for each n ∈ ω , we have Snf = Dn ∗ f .

Remark. It follows from Exercise 2(b) and Exercise 1 that Sn(τaf) = τa(Snf) for all a ∈ R , all n ∈ ω ,
and all f ∈ R(T).

Remark. For each x ∈ R , we have e0(x) = 1. Hence
∫ 1/2
−1/2 e0(x) dx = 1. For each nonzero integer k , we

have
∫ 1/2
−1/2 ek(x) dx = 0. It follows that for each n ∈ ω ,

∫ 1/2

−1/2
Dn(x) dx = 1. (5)

Remark. From (5) and from Exercise 2(b), it follows that for each f ∈ R(T), for each n ∈ ω , and for each
constant function C : R → C , we have Sn(f + C) = (Snf) + C .

A Closed-Form Expression for the Dirichlet Kernel.

Let n ∈ ω . For each k ∈ Z and for each x ∈ Z , we have ek(x) = 1. From this, it is clear that at each
integer point, Dn takes the value 2n+ 1. Thus to find a closed-form expression for Dn , the main thing is
to investigate the value of Dn at noninteger points.

Exercise 3. Let n ∈ ω and let x ∈ R \ Z . Prove that

Dn(x) =
sin(2n+ 1)πx

sinπx
.

Suggestion: To save writing, let w = eπix . Note that Dn(x) =
∑n

k=−n(w
2)k . Verify that

(w − w−1)Dn(x) = w2n+1 − w−(2n+1). (6)

Explain why w − w−1 %= 0.

4
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Warning: Fourier Series Can Behave Badly.

As we shall see eventually, there exist functions f ∈ C(T) such that for certain points x ∈ R , the sequence
(Snf(x)) does not converge to f(x). It is even possible for the set of such bad points x to be dense in
R . The fact that this can happen is related to the fact that the graph of a general continuous function can
“wiggle” a lot.

In fact, we shall see eventually that for “most” functions f ∈ C(T), for “most” points x ∈ R , the
sequence (Snf(x)) is unbounded. Here “most” means “for all but a meager set of.” A meager set is a set of
the first category, in Baire’s terminology. This notion will be discussed in detail later.

Fejér’s Theorem and Some of Its Consequences.

The preceding warning sounds like very bad news for convergence of Fourier series of continuous functions.
Happily, there is something positive we can say. Recall that a sequence of numbers (sn) is said to be Cesàro-
convergent to a number s if the average of the first n terms of the sequence converges to s in the ordinary
sense as n tends to infinity. Recall also that while ordinary convergence implies Cesàro convergence, a
sequence can be Cesàro convergent without being convergent in the ordinary sense.6

Fejér (1904) showed that for each f ∈ C(T), the partial sums (Snf) of the Fourier series for f are
uniformly Cesàro-convergent to f . Let us formulate this precisely. For each f ∈ R(T), for each n ∈ ω , the
n-th Fejér sum for f is the function σnf defined on R by

σnf =
1

n+ 1

n∑

m=0

Smf,

so that for each x ∈ R , σnf(x) is the average of the n+1 numbers S0f(x), . . . , Snf(x). What Fejér proved
is that for each f ∈ C(T), we have σnf → f uniformly on R as n → ∞ .

In fact, Fejér showed more. For instance, let f ∈ R(T) and let Γ be the set of all x ∈ R such that f
is continuous at x . Let K be a compact subset of Γ . Then σnf → f uniformly on K . And for instance,
let f ∈ R(T) and let x ∈ R such that the one-sided limits f(x−) and f(x+) both exist in C . Then
σnf(x) → 1

2

(
f(x−) + f(x+)

)
.

Exercise 4. Here are some simple but important consequences of Fejér’s theorem.
(a) Let f, g ∈ C(T). Suppose f̂ = ĝ . Prove that f = g .
(b) Let f ∈ R(T) and let x ∈ R such that f is continuous at x . Suppose a ∈ C and Snf(x) → a .

Prove that a = f(x).
(c) Let f ∈ R(T) and let x ∈ R such that the one-sided limits f(x−) and f(x+) both exist in C .

Suppose a ∈ C and Snf(x) → a . Then a = 1
2

(
f(x−) + f(x+)

)
.

The Fejér Kernel.

For each n ∈ ω , the Fejér kernel of order n is the 1-periodic function Kn defined on R by

Kn =
1

n+ 1

n∑

m=0

Dm. (7)

Obviously, for each n ∈ ω and for each x ∈ R , Kn(x) is the average of the n+1 numbers D0(x), . . . , Dn(x).
The observation in the next exercise is one of the ingredients in the proof of Fejér’s theorem.

Exercise 5. Let f ∈ R(T) and let n ∈ ω . Verify that σnf = Kn ∗ f .
Remark. It follows from Exercise 5 and Exercise 1 that σn(τaf) = τa(σnf) for all a ∈ R , all n ∈ ω , and
all f ∈ R(T).

Remark. From (5) and (7), it is clear that for each n ∈ ω ,
∫ 1/2

−1/2
Kn(x) dx = 1. (8)

Remark. From (8) and from Exercise 5, we see that for each f ∈ R(T), for each n ∈ ω , and for each
constant function C : R → C , we have σn(f + C) = (σnf) + C

6 For instance, 1
n+1

∑n
m=0(−1)m → 0 as n → ∞ .

5
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A Closed-Form Expression for the Fejér Kernel.

Let n ∈ ω . We know for each m ∈ Z , for each x ∈ Z , Dm(x) = 2m+1. From this, it is easy to see that for
each x ∈ Z , Kn(x) = n+ 1. Thus to find a closed-form expression for Kn , the main thing is to investigate
the value of Kn at noninteger points.

Exercise 6. Let n ∈ ω and let x ∈ R \ Z . Prove that

Kn(x) =
sin2(n+ 1)πx

(n+ 1) sin2 πx
. (9)

Suggestion: Let w = eπix , as in Exercise 3. Begin by using (6) to show that

(n+ 1)(w − w−1)Kn(x) = (w + w3 + · · ·+ w2n+1)− (w−1 + w−3 + · · ·+ w−(2n+1)).

Then multiply both sides of this equation by w − w−1 and simplify.

Two Nice Properties of the Fejér Kernel.

It follows from Exercise 6 that Kn ≥ 0 for each n ∈ ω and that Kn → 0 uniformly on compact subsets
of R \ Z as n → ∞ , These two properties are crucial for the proof of Fejér’s theorem. Neither of these
properties is obvious from the definition of Kn and neither of them is shared by Dn .

Another Way to Look at the Fejér Kernel and at Fejér’s Theorem.

From (4), we see that e0 occurs in Dm for each m , e1 and e−1 occur in Dm for each m ≥ 1, e2 and e−2

occur in Dm for each m ≥ 2, and so on. From this we see that for each n ∈ ω ,

n∑

m=0

Dm =
n∑

k=−n

(
(n+ 1)− |k|

)
ek, (10)

so

Kn =
n∑

k=−n

(
1− |k|

n+ 1

)
ek,

so for each f ∈ R(T),

σnf =
n∑

k=−n

(
1− |k|

n+ 1

)
f̂(k)ek,

so σnf is like Snf except that it is “regularized” by making the terms with larger values of |k| less heavily
weighted, while for each fixed k , these weights tend to 1 as n → ∞ . Fejér’s theorem tells us that for each
f ∈ C(T), this “regularized” version of Snf converges uniformly to f .

Yet Another Way to Look at the Fejér Kernel.

Let n ∈ ω . Notice that
∣∣∑n

j=0 ej
∣∣2 =

(∑n
j=0 ej

)(∑n
j′=0 ej′

)
=
(∑n

j=0 e−j

)(∑n
j′=0 ej′

)
=
∑n

j,j′=0 ej′−j =
∑n

k=−n

(
(n+1)− |k|

)
ek =

∑n
m=0 Dm , where we have used (10) in the last step. Thus Kn = 1

n+1

∣∣∑n
j=0 ej

∣∣2 ,
which already shows that Kn ≥ 0, and which can also be used to obtain (9), because for each x ∈ R \ Z ,∑n

j=0 ej(x) is easy to evaluate, since it is the sum of a finite geometric progression.

Trigonometric Polynomials.

A trigonometric polynomial is a function on R which is a linear combination of finitely many of the functions
ek . For each f ∈ C(T) and each n ∈ ω , it is clear that the functions Snf and σnf are trigonometric
polynomials. Thus a particular consequence of Fejér’s theorem is that each function f ∈ C(T) is the limit
of a uniformly convergent sequence of trigonometric polynomials.

6
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Theorem (Leopold Fejér, 1904).
(a) Let f ∈ C(T) . Then as n → ∞ , σnf → f uniformly on R .
(b) Let f ∈ R(T) , let C be the set of all x ∈ R such f is continuous at x, and let H be a compact

subset of C . Then as n → ∞ , σnf → f uniformly on H .
(c) Let x ∈ R such that the one-sided limits f(x−) and f(x+) exist in C . Then as n → ∞ ,

σnf(x) →
1
2

(

f(x−) + f(x+)
)

.

Proof. By periodicity, to prove (a), it suffices to show that σnf → f uniformly on [0, 1]. Thus (a) follows from
(b) with H = [0, 1]. Before proving (b), we make some observations. For each n ∈ ω , σnf = f ∗Kn , where

Kn is the Fejér kernel of order n . Now Kn ∈ C(T),
∫ 1/2
−1/2 Kn(x) dx = 1, Kn ≥ 0, and for each δ ∈ (0, 1/2),

letting E(δ) = [−1/2,−δ]∪[δ, 1/2], we have Kn → 0 uniformly on E(δ) as n → ∞ . Consider any x ∈ R , any

δ ∈ (0, 1/2), and any n ∈ ω . Then f(x) =
∫ 1/2
−1/2 f(x)Kn(y) dy and (f ∗Kn)(x) =

∫ 1/2
−1/2 f(x− y)Kn(y) dy ,

so
∣

∣f(x)− (f ∗Kn)(x)
∣

∣ ≤

∫ 1/2

−1/2
|f(x)− f(x− y)|Kn(y) dy = I1(x, δ, n) + I2(x, δ, n),

where

I1(x, δ, n) =

∫

|y|<δ
|f(x)− f(x− y)|Kn(y) dy and I2(x, δ, n) =

∫

E(δ)
|f(x)− f(x− y)|Kn(y) dy.

Now let us prove (b). Let ε > 0. Since f is continuous at each point of the compact set H , f is continuous
at x uniformly for x ∈ H . Hence there exists δ ∈ (0, 1/2) such that for each x ∈ H , for each t ∈ R , if
|x− t| < δ , then |f(x)− f(t)| < ε

2 . Hence for each x ∈ H and for each n ∈ ω , we have

I1(x, δ, n) ≤
ε

2

∫

|y|<δ
Kn(y) dy ≤

ε

2
.

Now let us consider I2(x, δ, n). Since f is 1-periodic and locally Riemann-integrable, f is bounded on R .
However, in anticipation of our study of the Lebesgue integral, we wish to arrange our proof so that it would
also apply if f were 1-periodic and locally Lebesgue-integrable. Accordingly, let us not rely on the fact that
f is bounded on R . It is nevertheless true that f is bounded on H , since f is continuous at each point
of the compact set H . Let M = supH |f | . Then M < ∞ . Since Kn → 0 uniformly on E(δ), there exists
N ∈ ω such that for each n ≥ N , for each y ∈ E(δ), we have

Kn(y) ≤
ε

1 + 2M + 2‖f‖1
,

where ‖f‖1 =
∫ 1
0 |f(t)| dt . Then for each n ≥ N and for each x ∈ H , we have

I2(x, δ, n) ≤

∫

E(δ)

(

M + |f(x− y)|
)

Kn(y) dy ≤
(

M + ‖f‖1
) ε

1 + 2M + 2‖f‖1
<

ε

2
,

so
∣

∣f(x)− (f ∗Kn)(x)
∣

∣ ≤ I1(x, δ, n)+ I2(x, δ, n) < ε
2 +

ε
2 = ε. This completes the proof of (b). As for (c), by

an argument similar to but a bit simpler than the one we just gave for (b), if x is as in (c), then as n → ∞ ,
we have

∫ 0

−1/2
f(x− y)Kn(y) dy →

f(x+)

2
and

∫ 1/2

0
f(x− y)Kn(y) dy →

f(x−)

2
,

so (f ∗Kn)(x) → 1
2

(

f(x−) + f(x+)
)

, as desired. !

Remark. In the proof of (b), we were careful to avoid using the fact that if f ∈ R(T), then f is bounded.
Hence, once we have the Lebesgue integral, the argument we gave for (b) can be used to establish the same
conclusion under the weaker assumption that f ∈ L1(T).

Biographical Note. Fejér (1880–1959) obtained his doctorate under the direction of Hermann Schwarz.
Fejér’s doctoral students included Paul Erdős, John von Neumann, Pál Turán, George Pólya, Tibor Radó,
Marcel Riesz, and Gábor Szegő. According to the Mathematics Genealogy Project, he has 9914 mathematical
descendants (as of 13 June 2024).
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Let E = C , or more generally, let E be a normed linear space over C . Let (uk) be a sequence in E . For
each n ∈ N , let

Sn =
n
∑

k=1

uk

and let

σn =
1

n

n
∑

!=1

S!.

Notice that σn is the average of S1, S2, . . . , Sn . Let L ∈ E . To say that
∑

∞

k=1
uk = L means that Sn → L .

To say that (uk) is Cesàro summable to L means that σn → L . To say that (uk) is Abel summable to L
means that

∑

∞

k=1
tkuk converges for 0 < t < 1 and that this sum tends to L as t ↑ 1. It is well known that

ordinary convergence of a sequence implies Cesàro convergence of that sequence to the same limit. Applying
this to the sequence (Sn), we see that if

∑

∞

k=1
uk = L , then (uk) is Cesàro summable to L . Abel1 showed

that if
∑

∞

k=1
uk = L , then (uk) is what we have just defined as Abel summable to L . More generally, it

can be shown2 that if (uk) is Cesàro summable to L , then (uk) is Abel summable to L . In summary,

∞
∑

k=1

uk = L ⇒ (uk) is Cesàro summable to L ⇒ (uk) is Abel summable to L.

Alfred Tauber3 proved a partial converse to Abel’s theorem, namely that if (uk) is Abel summable to L ,
and if in addition uk = o(1/k), then

∑

∞

k=1
uk = L . In particular, if (uk) is Cesàro summable to L , and if

in addition uk = o(1/k), then
∑

∞

k=1
uk = L . This special case of Tauber’s theorem is very easy to prove.

Just notice that

σn =
1

n

n
∑

!=1

!
∑

k=1

uk =
1

n

n
∑

k=1

n
∑

!=k

uk =
1

n

n
∑

k=1

(n− k + 1)uk =
n+ 1

n
Sn −

1

n

n
∑

k=1

kuk

and recall that to say uk = o(1/k) means kuk → 0, so since ordinary convergence implies Cesàro convergence,

1

n

n
∑

k=1

kuk → 0.

G. H. Hardy4 gave the general name Tauberian theorems to such converse results and showed that if (uk)
is Cesàro summable to L , and if in addition uk = O(1/k), then

∑

∞

k=1 uk = L . Thus Hardy improved a
special case of Tauber’s theorem. J. E. Littlewood5 improved Tauber’s theorem itself in the way pointed
to by Hardy’s result. In other words, he showed that if (uk) is Abel summable to L , and if in addition
uk = O(1/k), then

∑

∞

k=1
uk = L . Littlewood’s proof of this was quite difficult. Almost twenty years later,

Karamata6 found a much simpler proof. But even Karamata’s proof is more involved than we wish to present
here. Instead we shall give a proof of Hardy’s result. So suppose that σn → L and that uk = O(1/k). Recall
that to say uk = O(1/k) means there exists M ∈ (0,∞) such that for each k ∈ N , we have ‖uk‖ ≤ M/k .
We wish to show that Sn → L . Since Sn = (Sn−σn)+σn , it suffices to show that Sn−σn → 0. Our strategy
will be to express Sn−σn in terms of σn−σm and the average of the quantities Sn−Sk , k = m+1, . . . , n ,
where m is just a little smaller than n . Consider any natural numbers m and n with m < n . We have

n
∑

k=m+1

Sk =
n
∑

k=1

Sk −
m
∑

k=1

Sk = nσn −mσm,

1 in his famous paper on the binomial series, Journal für die reine und angewandte Mathematik 1 (1826), 311–339.
2 See pages 484 and 489 in Konrad Knopp, Theory and Application of Infinite Series, Blackie & Son, 1952, reprinted by

Dover Publications in 1990.
3 Monatshefte für Mathematik 8 (1897), 273–277. See also Knopp, loc. cit., page 500.
4 Proceedings of the London Mathematical Society (2) 8 (1910), 301–320.
5 Proceedings of the London Mathematical Society (2) 9 (1911), 434–448.
6 Mathematische Zeitschrift 32 (1930), 319–320. See also Knopp, loc. cit., pp. 501–505.
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so
n
∑

k=m+1

(Sn − Sk) = (n−m)Sn − (nσn −mσm) = (n−m)(Sn − σn)−m(σn − σm),

so

Sn − σn =
m

n−m
(σn − σm) +

1

n−m

n
∑

k=m+1

(Sn − Sk). (1)

Now for k = 1, . . . , n , we have

‖Sn − Sk‖ ≤
n
∑

!=k+1

‖u!‖ ≤
n
∑

!=k+1

M

"
≤

(n− k)M

k + 1
.

Hence for k = m+ 1, . . . , n , we have ‖Sn − Sk‖ ≤
(n−m− 1)M

m+ 2
. Thus

∥

∥

∥

∥

∥

1

n−m

n
∑

k=m+1

(Sn − Sk)

∥

∥

∥

∥

∥

≤
1

n−m
(n−m)

(n−m− 1)M

m+ 2
=

(n−m− 1)M

m+ 2
.

Therefore by (1),

‖Sn − σn‖ ≤
m

n−m
‖σn − σm‖+

(n−m− 1)M

m+ 2
.

This holds for all m,n ∈ N with m < n . Consider any ε > 0. Let n ∈ N with n ≥ 1 + ε . Then

n

1 + ε
≥ 1.

Let m =

⌊

n

1 + ε

⌋

, the greatest integer less than or equal to
n

1 + ε
. Then

1 ≤ m ≤
n

1 + ε
< m+ 1.

Since m ≤
n

1 + ε
, we have (1 + ε)m ≤ n , so εm ≤ n−m , so

m

n−m
≤

1

ε
.

Also, since m+ 1 >
n

1 + ε
, we have

n−m− 1

m+ 2
<

n− n

1+ε

n

1+ε
+ 1

=
(1 + ε)n− n

n+ 1 + ε
=

εn

n+ 1+ ε
<

εn

n
= ε.

Therefore

‖Sn − σn‖ <
1

ε
‖σn − σm‖+Mε.

This holds for all natural numbers n ≥ 1 + ε and for m = &n/(1 + ε)' . Now as n → ∞ , we have m → ∞
too, so ‖σn − σm‖ → 0. Thus there exists N ≥ 1 + ε such that for all n > N , we have ‖σn − σm‖ < ε2 .
Then for all n > N , we have ‖Sn − σn‖ < (1 +M)ε . Since M does not depend on ε , this shows that

Sn − σn → 0,

as desired.

Exercise. Let the notation be as above but do not suppose that (σn) converges. Instead, just suppose that
(σn) is bounded. Prove that (Sn) is bounded too. (Hint: This follows easily from part of the proof above.)

2
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Proposition. Let f : R → C be 1-periodic. Suppose f is of bounded variation on [0, 1] . Let V be the
variation of f on [0, 1] . Let k ∈ Z \ { 0 }. Then

|f̂(k)| ≤
V

|k|
.

Proof. For 0 ≤ a < b ≤ 1, let V (f, [a, b]) be the variation of f on [a, b] . Recall that for 0 ≤ a < b < c ≤ 1,
we have

V (f, [a, c]) = V (f, [a, b]) + V (f, [b, c]). (1)

Let κ = |k| . For j = 0, 1, . . . ,κ , let

xj =
j

κ
.

Then 0 = x0 < x1 < x2 < · · · < xκ = 1 and for j = 1, . . . ,κ , we have

xj − xj−1 =
1

κ
.

For j = 1, . . . ,κ , let Vj = V (f, [xj−1, xj ]) . It follows from (1) that V =
∑κ

j=1
Vj . For j = 1, . . . ,κ , let

Ij = (xj−1, xj ] , let gj = 1Ij , and observe that ĝj(k) = 0 by inspection, because for each x ∈ R ,

exp
(

−2πik
(

x+ 1

2κ

))

= exp(−2πikx) exp
(

−πi k
κ

)

= − exp(−2πikx).

Let g =
∑κ

j=1
f(xj−1)gj . Then ĝ(k) = 0. Let h = f − g . Since ĝ(k) = 0, we have f̂(k) = ĥ(k). For

j = 1, . . . ,κ , for xj−1 < x ≤ xj , we have |h(x)| = |f(x)− g(x)| = |f(x)− f(xj−1)| ≤ Vj . Therefore

‖h‖1 =

∫ 1

0

|h(x)| dx =
κ
∑

j=1

∫ xj

xj−1

|h(x)| dx ≤
κ
∑

j=1

Vj

κ
=

V

κ
,

so |f̂(k)| = |ĥ(k)| ≤ ‖h‖1 ≤
V

κ
=

V

|k|
. !
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Hardy’s Tauberian Theorem.

Let (vk) be a sequence in a normed linear space V . Let Sm =
∑m

k=1 vk for each m ∈ N , let S ∈ V , and
let σn = 1

n

∑n
m=1 Sm for each n ∈ N . If Sm → S as m → ∞ , then as we know,17 σn → S as n → ∞ .

The converse is not true in general but it is very easy to prove that if σn → S as n → ∞ and if in addition
vk = o(1/k) as k → ∞ , then Sm → S as m → ∞ . This is a special case of a theorem of Tauber (1897).
Such converse results have come to be known as Tauberian theorems. Hardy (1910)18 proved the following
strengthening of the result that we just stated: If σn → S as n → ∞ and if in addition vk = O(1/k) as
k → ∞ , then Sm → S as m → ∞ . This is called Hardy’s Tauberian theorem.

Exercise 38. Let (vk) be a sequence in a normed linear space V . Let Sm =
∑m

k=1 vk for each m ∈ N ,
and let σn = 1

n

∑n
m=1 Sm for each n ∈ N . Suppose (σn) is bounded in V and vk = O(1/k) as k → ∞ .

Prove that (Sm) is bounded in V . (Hint: Adapt part of the proof of Hardy’s Tauberian theorem.)

Convergence of Fourier Series for Functions of Bounded Variation.

Exercise 39.
(a) Let f ∈ BV (T). Let V be the variation of f on [0, 1] and let k ∈ Z \ { 0 } . Prove that

|f̂(k)| ≤
V

|k|
.

(Hint: Let κ = |k| . For j = 0, . . . ,κ , let xj = j/κ and if j ≥ 1, let Ij = (xj−1, xj ] , let gj = 1Ij ,
and notice that ĝj(k) = 0. Let g =

∑κ
j=1 f(xj−1)gj . Then ĝ(k) = 0. Let h = f − g . Then

|f̂(k)| = |ĥ(k)| . Use (23) to show that
∫ 1
0 |h(x)| dx ≤ V/κ . Remember that |ĥ(k)| ≤

∫ 1
0 |h(x)| dx .)

(b) (The Dirichlet-Jordan Theorem.) Let f ∈ BV (T). Prove that for each x ∈ R ,

Snf(x) →
f(x−) + f(x+)

2
.

In particular, for each x ∈ R , if f is continuous at x , then Snf(x) → f(x). Also, let C be
the set of all x in R such that f is continuous at x and let H be a compact subset of C .
Prove that Snf → f uniformly on H . (Hint: By Fejér’s theorem, for each x ∈ R , σnf(x) →
1
2

(
f(x−) + f(x+)

)
. By part (a), f̂(k) = O(1/|k|) as k → ±∞ . To obtain the first desired

conclusion, apply Hardy’s Tauberian theorem to the series
∑∞

k=0 gk(x), where g0 = f̂(0)e0 and

gk = f̂(k)ek + f̂(−k)e−k for k ≥ 1. Again by Fejér’s theorem, σnf → f uniformly on H .
To obtain the second desired conclusion, consider the space C(H) equipped with the uniform
norm and apply Hardy’s Tauberian theorem in this space to the series

∑∞
k=0 hk , where hk is the

restriction of gk to H .)

Warning. In Exercise 39(b), the series
∑∞

k=−∞ f̂(k)ek may only be conditionally convergent and only the

convergence of the symmetric partial sums Snf =
∑n

k=−n f̂(k)ek is asserted. Exercise 39(b) does not tell

us whether the asymmetric partial sums Smnf =
∑n

k=−m f̂(k)ek converge as m,n → ∞ .

Remark. Hardy (1910) himself pointed out that his Tauberian theorem can be applied to obtain the
Dirichlet-Jordan theorem as a simple corollary of Fejér’s theorem, as in Exercise 39.

Exercise 40. Let f ∈ BV (T). Prove that the sequence of functions (Snf)n∈N is uniformly bounded.
(Hint: Use Exercise 38 together with Exercise 39(a).)

17 Remember that ordinary convergence implies Cesàro convergence. The proof that this is so in a normed linear space is
essentially the same as the proof that it holds for numbers.

18 G. H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proceedings of the London
Mathematical Society (2) 8 (1910), 301–320.
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