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Sets small and large

Theorem
There exists a collection F ⊆ P(N) of subsets of N such that, for
every A,B ⊆ N:
Intuition: A ∈ F means ‘A contains almost all natural numbers’.

1. A ∈ F iff N \ A ̸∈ F .

2. N ∈ F , finite sets are not in F .

3. If A ∈ F and A ⊆ B, then B ∈ F . Equivalently,
If A ̸∈ F and B ⊆ A, then B ̸∈ F .

4. If A,B ∈ F then A ∩ B ∈ F . Equivalently,
If A,B ̸∈ F then A ∪ B ̸∈ F .

Such a collection F is called a ‘non-principal ultrafilter in N’.
There are many (22

ℵ0 ) non-principal ultrafilters in N, but we
cannot construct any of them explicitly. We need the axiom of
choice (AC) to do it (but ultrafilter lemma is weaker than AC).



Big sets - they are basically full measure sets

A non-principal ultrafilter F defines a finitely additive probability
measure µ : P(N) → {0, 1}, by µ(A) = 1 if A ∈ F and µ(A) = 0
otherwise.
We say that ‘F-almost all n ∈ N satisfy some property P’ when

{n ∈ N; n satisfies P} ∈ F .

Ultrafilters have some not so nice properties: e.g. set of even
numbers is in F iff set of odd numbers is not in F (even though
they are translates of each other).



Ultrafilters define limits

Let (xn)n be a sequence of real numbers, let L ∈ R.

Definition
We say that L = limn→∞ xn when for any nhood U = (L− ε, L+ ε)
of L we have xn ∈ U for all n except finitely many.

A bounded sequence of real numbers (xn)n always has
accumulation points, but does not necessarily have a limit. For
example, xn = (−1)n. We can use ultrafilters to ‘force’ any
bounded sequence to have a limit:

Definition
We say that L = limn→F xn when for any nhood U = (L− ε, L+ ε)
of L we have xn ∈ U for F-almost all n.

In particular, L = limn→∞ xn implies L = limn→F xn.



Ultrafilters define limits

Theorem
Every bounded sequence (xn)n of real numbers has an F-limit
L = limn→F xn ∈ R.

Proof.
For each x ∈ R let Ax = {n ∈ N; xn < x}. Note that for some big
constant M, we have A−M = ∅, AM = N. Thus,
L = inf{x ∈ R;Ax ∈ F} is defined.
Then, for each ε > 0, AL+ε ∈ F . Similarly, AL− ε

2
̸∈ F . So

xn < L+ ε for F-almost all n and xn > L− ε for F-almost all n.
So xn ∈ (L− ε, L+ ε) for F-almost all n.

In general, sequences in any compact space have limits along
ultrafilters.
In the case of xn = (−1)n, we will have limn→F (−1)n = 1 if the
set of even numbers is in F , and limn→F (−1)n = −1 if not.



Infinitesimals

An ordered field is a field (K ,+, ·) with a total order ≤ such that,
for all a, b, c ∈ K :

1. If a ≤ b then a+ c ≤ b + c.

2. If 0 ≤ a, b then 0 ≤ ab.

For x ∈ K we denote |x | = x if x ≥ 0 or |x | = −x if x ≤ 0.
We say that an element ε ∈ K is infinitesimal if for all n ∈ N we
have |nε| < 1. An ordered field is said to be Archimedean if it
contains no nonzero infinitesimals. For example, R is Archimedean.

There are many ways to construct a non-Archimedean extension of
R. The construction we will use was introduced by Edwin Hewitt
in 1948.



The hyperreals

Let
∏

n∈ZR be the set of sequences (xn)n of real numbers.

The ordered field of hyperreal numbers, ∗R, is defined as the

quotient
∏

n∈Z R
∼ , where (xn)n ∼ (yn)n if xn = yn for F-almost all n.

We denote by [xn]n ∈∗ R the class of a sequence (xn)n.
The operations are given by

[xn]n + [yn]n = [xn + yn]n

[xn]n · [yn]n = [xn · yn]n.

The order is given by [xn]n ≤ [yn]n if xn ≤ yn for F-almost all n.

The sum identity is [0]n and the product identity is [1]n.

The fact that the operations/order are well defined and ∗R is an
ordered field is a good list of exercises to practice the properties of
ultrafilters.



Infinitesimals in the hyperreals

Note that the map R →∗ R; x 7→ [x ]n is a homomorphism of fields,
so ∗R is a field extension of R. For any x ∈ R we denote x = [x ]n.
A number x ∈∗ R is an infinitesimal iff for all real ε > 0 we have
−ε < x < ε.
For example, the number x =

[
1
n

]
n
is an infinitesimal, as for all

ε > 0 we have −ε < 1
n < ε for F-almost all n, so

−ε = [−ε]n ≤
[
1

n

]
n

≤ [ε]n = ε.



Limited numbers

Definition
Say ∗R is limited if −N ≤ x ≤ N for some N ∈ N. If not, we say
that x is unlimited.

For example, [n]n is an unlimited number.

Proposition

Every limited hyper-real number is a sum of a real number and an
infinitesimal.

Proof.
Let [xn]n be limited, so that −N ≤ x ≤ N for some N ∈ N. We
may assume |xn| ≤ N for all n, so that (xn)n is bounded. Let
L = limn→F xn.
Then by definition of L, for all ε we have xn ∈ (L− ε, L+ ε) for
F-almost all n. So xn − L ∈ (ε, ε) for all n.
Meaning that the number [xn]n − L = [xn − L]n is infinitesimal, and
[xn]n = L+ ([xn]n − L), concluding the proof.



Limits of probability measure spaces

We can use ultrafilters to construct a natural notion of ‘limit’ of a
sequence of probability measure spaces.
Let (Xn,Bn, µn) be a sequence of measure preserving systems. We
can define a ‘limit’ measure preserving system (X∞,B∞, µ∞) in
the following way.
The set X∞ will be defined by

X∞ =

∏
n∈N Xn

∼
,

where (xn)n ∼ (yn)n if xn = yn for F-almost all n.
We denote by [xn]n ∈ X∞ the class of (xn)n.
In general, if (Xn)n∈N is a sequence of sets, the set X∞ defined
above is known as the ultraproduct of (Xn)n along F .



Internal subsets of X∞

Definition
An internal subset of X∞ is a subset of the form

lim
n→F

An := {[xn]n ∈ X∞; xn ∈ An ∀n},

for some sequence of subsets An ⊆ Xn. Note that

lim
n→F

(An ∩ Bn) =

(
lim
n→F

An

)
∩
(

lim
n→F

Bn

)
lim
n→F

(An ∪ Bn) =

(
lim
n→F

An

)
∪
(

lim
n→F

Bn

)
lim
n→F

(Xn \ An) = X∞ \
(

lim
n→F

An

)
Thus, internal subsets form an algebra of subsets of X∞



A limit probability measure
We will let B∞ ⊆ P(X∞) be the σ-algebra generated by internal
subsets of the form

∏
n→F An, where An ∈ Bn. Then,

Proposition

There is a probability measure µ∞ : B∞ → [0, 1] such that for all
sets An ∈ Bn (n ∈ N) we have

µ∞

(
lim
n→F

An

)
= lim

n→F
µn(An).

We can take limits of uniformly bounded sequences of functions:

Proposition

Let fn : Xn → [0, 1] be measurable for all n. Then, the function
f∞ : X∞ → [0, 1] defined by f∞([xn]n) = limn→F fn(xn) is
measurable, and satisfies∫

X∞

f∞dµ∞ = lim
n→F

∫
Xn

fndµn.



Measure preserving systems

If Tn : Xn → Yn is measure preserving for all n, then we have a
measure preserving map T∞ : X∞ → Y∞ given by
T∞([xn]n) = [Tnxn]n.
Thus, we can take the limit of a sequence of measure preserving
systems.



An application to recurrence

Definition
We say that A ⊆ N is a set of recurrence if, for any probability
m.p.s. (X ,B, µ,T ) and any B ∈ B with B > 0, we have
µ(B ∩ T aB) > 0 for some a ∈ A.

Using limits of probability measures, it is not hard to prove that:

Proposition

If A ⊆ N is a set of recurrence, then for any ε > 0 there exists
A0 ⊆ A finite and δ > 0 such that for any probability m.p.s.
(X ,B, µ,T ) and any B ∈ B with B > ε we have µ(B ∩ T aB) > δ
for some a ∈ A0.
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