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1 Isoperimetric Inequality in R2

1.1 Prerequisite Information
Definition 1.1.1: let S ⊂ R2 be a bounded region whose boundary is a C2 simple closed curve
c(t) : R → R2 with period ℓ. Then we can define the perimiter of S to be,

P(S) =
∫ ℓ

0

||c′(t)||dt

Likewise if c(t) = (x(t), y(t)) we can define the area of S to be,

A(S) = 1

2

∫ ℓ

0

x(t)y′(t)− x′(t)y(t)dt

Remark 1.1.2: Note that our formula for area is a direct corrolary of Greens theorem because

1

2

∫ ℓ

0

x(t)y′(t)− x′(t)y(t)dt =
1

2

∫
c(t)

xdy − ydx =

∫∫
S

1dA = A(S)

Theorem 1.1.3: For all C2 periodic functions f(x) : R → C with period 2π there exists a
sequence ck such that,

FN(x) =
N∑

k=−N

cke
ikx

Converges uniformly to f(x) as N → ∞. So we will notate this as,

F (x) =
∞∑

k=−∞

cke
ikx = f(x)

Remark 1.1.4: Let ℜ(z) is the Real part of z and ℑ(z) is the imaginary part of z. The complex
plane C can be identified with R2 by identifying (x, y) ∈ R2 with z by (x, y) = (ℜ(z),ℑ(z)).



1.2 Proof of The Isoperimetric Inequality in R2

Theorem 1.2.1: Let S ⊂ R2 be a bounded set which has a boundary that is a C2 simple closed
curve then,

4πA(S) ≤ P(S)2

Where equality holds if and only if S is a circle.

Proof. Firstly let c(t) = (x(t), y(t)) parametrize the boundary of S by arc length and let P(t) = ℓ
be the arc length of c(t). This means that c(t) is ℓ periodic, so define z(t) = x( ℓt

2π
)+ iy( ℓt

2π
)which

means z(t) is 2π periodic. Now we will express ℓ2 in terms of the fourier coefficents of z. We can
see, ∫ 2π

0

||z′(t)||2dt =
∫ 2π

0

ℓ2

4π2
||c′(t)||2dt = ℓ2

2π

Now in terms of the fourier coefficents we have,∫ 2π

0

||z′(t)||2dt =
∫ 2π

0

z′(t) · z′(t)dt =
∫ 2π

0

∞∑
k,j=−∞

kjckcje
i(k−j)t =

∞∑
k,j=−∞

∫ 2π

0

kjckcje
i(k−j)tdt

= 2π
∞∑

k=−∞

k2||ck||2

Now we can see,∫ 2π

0

i · z(t) · z′(t)dt =
∫ 2π

0

(
ix(

ℓt

2π
)− iy(

ℓt

2π
)

)
ℓ

2π

(
x′(

ℓt

2π
)− iy(

ℓt

2π
)

)
dt

=

∫ ℓ

0

x(s)y′(s)− x′(s)y(s)ds+ i

∫ ℓ

0

x(s)x′(s) + y(s)y′(s)ds = 2A(S)

Also notice that,∫ 2π

0

i · z(t) · z′(t)dt =
∫ 2π

0

∞∑
k,j=−∞

ckc̄jje
i(k−j)t =

∞∑
k,j=−∞

∫ 2π

0

ckc̄jje
i(k−j)t = 2π

∞∑
k=−∞

k||ck||2

Thus we have the chain of Inequalities,

2A(S) = 2π
∞∑

k=−∞

k||ck||2 ≤ 2π
∞∑

k=−∞

k2||ck||2 =
ℓ2

2π

Which gives,
4πA(S) ≤ P(S)2

Note that we have,
∑∞

k=−∞ k||ck||2 = 2π
∑∞

k=−∞ k2||ck||2 if and only if ||ck|| = 0 for all k ̸= 0, 1.
Which means that 4πA(S) = P(S)2 if and only if the boundary of S is parametrized by c0+ c1e

it

which is the equation of a circle in C.
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2 Isoperimetric Inequality on Convex subsets of Rn

2.1 Introduction to Convex Geometry
Definition 2.1.1: We call S ⊂ Rn Convex if for all x, y ∈ S we have,

(1− λ)x+ λy ∈ S, 0 ≤ λ ≤ 1

Additionally we can see that if A,B ⊂ Rn are convex then,

λB = {x ∈ Rn : ∃b ∈ B where x = λb}

and,
A+B = {x ∈ Rn : ∃a ∈ A, b ∈ B where x = a+ b}

are also convex. The second operation will be refered to as the Minkowski sum of A and B.

Definition 2.1.2: Let A ⊂ Rn is a Convex Body if A is non-empty, compact, convex. We will
denote the set of all convex bodies in Rn as K n and all of the convex bodies with non-empty
interior as K n

0 .

Definition 2.1.3: A function f : Rn → R is called convex if for all x, y ∈ Rn and all 0 ≤ λ ≤ 1
f satisfies,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

Likewise a function f is concave if for all x, y ∈ Rn and all 0 ≤ λ ≤ 1 f satisfies,

f((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y)

Notice that if f is convex iff −f is concave.

Definition 2.1.4: Let S ⊂ Rn be convex then we can denote the Volume of S as,

Vol(S) =
∫

· · ·
∫
S

1dV

Likewise we can denote the surface area or perimiter of S as,

P(S) = lim
h→0

Vol(S + hBn)− Vol(S)
h

Where Bn = {(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n ≤ 1} is the unite ball in Rn

Remark 2.1.4: We can notice that we have the following properties:

• Vol(λS) = |λ|nVol(S) for all λ ∈ R

• Vol(A+B) ≤ Vol(A),Vol(B) for A,B ∈ K n
0
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2.2 Volume and Perimiter of Bn

This section will detour us from the Isoperimetric Inequality in Rn, but demonstrates our defini-
tions of perimiter and volume.
Proposition 2.2.1: If Bn = {(x1, . . . , xn) ∈ Rn : x2

1 + · · ·+ x2
n ≤ 1}, then

P(Bn) = nVol(Bn)

Proof. We have that,

P(Bn) = lim
h→0

Vol(Bn + hBn)− Vol(Bn)

h

= lim
h→0

Vol((1 + h)Bn)− Vol(Bn)

h

= Vol(Bn) lim
h→0

|1 + h|n − 1

h
= nVol(Bn)

Remark 2.2.2: We can see that this formula agrees with the traditional formula for the surface
area and Volume of B3 where P(B3) = 4π = 3Vol(B3) with Vol(B3) =

4π
3
.

2.3 The Brunn-Minkowski Theorem
The following theorem is an important theorem from convex geometry, which will be crucial in
the proof of the Isoperimetric Inequality.

Theorem 2.3.1 Let K0, K1 ∈ K n be two convex bodies and λ ∈ [0, 1] then,

Vol((1− λ)K0 + λK1)
1
n ≥ (1− λ)Vol(K0)

1
n + λVol(K1)

1
n

Where equality holds for λ ∈ (0, 1) if and only ifK0 andK1 are contained in parallel hyperplanes
or K1 = sK0 + t for s ≥ 0 and t ∈ Rn.

Corrolary 2.3.2 Let K0, K1 ∈ K n and I = [0, 1]Then the function f : I → R given by,

f(λ) = Vol((1− λ)K0 + λK1)
1/n

Is concave. f is linear if and only if K0 and K1 are contained in parallel hyperplanes or K1 =
sK0 + t for s ≥ 0 and t ∈ Rn

Proof.

f((1− λ)x+ λy) = Vol((1− (1− λ)x− λy)K0 + ((1− λ)x+ λy)K1)
1/n

= Vol((1− λ)(1− x)K0 + (1− λ)xK1 + λ(1− y)K0 + λyK1)
1/n

≥ (1− λ)Vol((1− x)K0 + xK1)
1/n + λVol((1− y)K0 + yK1)

1/n

= (1− λ)f(x) + λf(y)
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Lemma 2.3.3 Let f : I → R be a smooth concave function such that f ′(0) = f(1)− f(0) holds,
then f is linear.

2.4 Proof of The Isoperimetric Inequality in Rn

Theorem 2.4.1 Let K ∈ K n
0 . Then,

P(K) ≥ nVol(Bn)
1
nVol(K)1−

1
n

Equality holds iff K is a ball.

Proof. Let K ∈ K n
0 . We have Vol(K) ̸= 0. Let ϵ = t

1−t
then,

P(K) = lim
t→0

Vol(K + t
1−t

Bn)− Vol(K)
t

1−t

= lim
t→0

Vol((1− t)K + tBn)− (1− t)nVol(K)

(1− t)n−1t

= lim
t→0

(
Vol((1− t)K + tBn)− Vol(K)

t
+

(1− (1− t)n)Vol(K)

t

)
= lim

t→0

(
Vol((1− t)K + tBn)− Vol(K)

t

)
+ nVol(K)

This means,
P(K)− nVol(K) = lim

t→0

(
Vol((1− t)K + tBn)− Vol(K)

t

)
Now consider the function f(t) := Vol((1− t)K + tBn)

1
n and see,

f ′(t) =
1

n
Vol((1− t)K + tBn)

1
n
−1 · d

dt

(
Vol((1− t)K + tBn)

)
Now from the above calculation we have,

f ′(0) =
1

n
Vol(K)

1
n
−1(P(K)− nVol(K))

Now by corrolary 2.3.2 it follows f is concave on [0, 1], hence f ′(0) ≥ f(1)− f(0). This gives us
that,

1

n
Vol(K)

1
n
−1P(K)− Vol(K)

1
n =

1

n
Vol(K)

1
n
−1(P(K)− nVol(K)) ≥ Vol(Bn)

1
n − Vol(K)

1
n

Therefore, we obtain the Isoperimetric Inequality

P(K) ≥ nVol(Bn)
1
nVol(K)1−

1
n

Now Proposition 2.2.1 implies that if K is a ball then we have equality. Now if we have equality
then f ′(0) = f(1) − f(0). Since f is concave it follows from Lemma 2.3.3 that f is linear. Thus
by corrolary 2.3.2 we have that K = sBn + t for s ≥ 0 and t ∈ R. Which means that if we have
equality then f is a ball.
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