1 Isoperimetric Inequality in \mathbb{R}^{2}

1.1 Prerequisite Information

Definition 1.1.1: let $S \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a C^{2} simple closed curve $c(t): \mathbb{R} \rightarrow \mathbb{R}^{2}$ with period ℓ. Then we can define the perimiter of S to be,

$$
\mathrm{P}(S)=\int_{0}^{\ell}\left\|c^{\prime}(t)\right\| d t
$$

Likewise if $c(t)=(x(t), y(t))$ we can define the area of S to be,

$$
\mathrm{A}(S)=\frac{1}{2} \int_{0}^{\ell} x(t) y^{\prime}(t)-x^{\prime}(t) y(t) d t
$$

Remark 1.1.2: Note that our formula for area is a direct corrolary of Greens theorem because

$$
\frac{1}{2} \int_{0}^{\ell} x(t) y^{\prime}(t)-x^{\prime}(t) y(t) d t=\frac{1}{2} \int_{c(t)} x d y-y d x=\iint_{S} 1 d A=\mathrm{A}(S)
$$

Theorem 1.1.3: For all C^{2} periodic functions $f(x): \mathbb{R} \rightarrow \mathbb{C}$ with period 2π there exists a sequence c_{k} such that,

$$
\mathscr{F}_{N}(x)=\sum_{k=-N}^{N} c_{k} e^{i k x}
$$

Converges uniformly to $f(x)$ as $N \rightarrow \infty$. So we will notate this as,

$$
\mathscr{F}(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}=f(x)
$$

Remark 1.1.4: Let $\Re(z)$ is the Real part of z and $\Im(z)$ is the imaginary part of z. The complex plane \mathbb{C} can be identified with \mathbb{R}^{2} by identifying $(x, y) \in \mathbb{R}^{2}$ with z by $(x, y)=(\Re(z), \Im(z))$.

1.2 Proof of The Isoperimetric Inequality in \mathbb{R}^{2}

Theorem 1.2.1: Let $S \subset \mathbb{R}^{2}$ be a bounded set which has a boundary that is a C^{2} simple closed curve then,

$$
4 \pi \mathrm{~A}(S) \leq \mathrm{P}(S)^{2}
$$

Where equality holds if and only if S is a circle.
Proof. Firstly let $c(t)=(x(t), y(t))$ parametrize the boundary of S by arc length and let $\mathrm{P}(t)=\ell$ be the arc length of $c(t)$. This means that $c(t)$ is ℓ periodic, so define $z(t)=x\left(\frac{\ell t}{2 \pi}\right)+i y\left(\frac{\ell t}{2 \pi}\right)$ which means $z(t)$ is 2π periodic. Now we will express ℓ^{2} in terms of the fourier coefficents of z. We can see,

$$
\int_{0}^{2 \pi}\left\|z^{\prime}(t)\right\|^{2} d t=\int_{0}^{2 \pi} \frac{\ell^{2}}{4 \pi^{2}}\left\|c^{\prime}(t)\right\|^{2} d t=\frac{\ell^{2}}{2 \pi}
$$

Now in terms of the fourier coefficents we have,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left\|z^{\prime}(t)\right\|^{2} d t=\int_{0}^{2 \pi} z^{\prime}(t) \cdot \overline{z^{\prime}(t)} d t & =\int_{0}^{2 \pi} \sum_{k, j=-\infty}^{\infty} k j c_{k} \overline{c_{j}} e^{i(k-j) t}=\sum_{k, j=-\infty}^{\infty} \int_{0}^{2 \pi} k j c_{k} \overline{c_{j}} e^{i(k-j) t} d t \\
& =2 \pi \sum_{k=-\infty}^{\infty} k^{2}\left\|c_{k}\right\|^{2}
\end{aligned}
$$

Now we can see,

$$
\begin{aligned}
& \int_{0}^{2 \pi} i \cdot z(t) \cdot \overline{z^{\prime}(t)} d t=\int_{0}^{2 \pi}\left(i x\left(\frac{\ell t}{2 \pi}\right)-i y\left(\frac{\ell t}{2 \pi}\right)\right) \frac{\ell}{2 \pi}\left(x^{\prime}\left(\frac{\ell t}{2 \pi}\right)-i y\left(\frac{\ell t}{2 \pi}\right)\right) d t \\
& =\int_{0}^{\ell} x(s) y^{\prime}(s)-x^{\prime}(s) y(s) d s+i \int_{0}^{\ell} x(s) x^{\prime}(s)+y(s) y^{\prime}(s) d s=2 \mathrm{~A}(S)
\end{aligned}
$$

Also notice that,

$$
\int_{0}^{2 \pi} i \cdot z(t) \cdot \overline{z^{\prime}(t)} d t=\int_{0}^{2 \pi} \sum_{k, j=-\infty}^{\infty} c_{k} \overline{c_{j}} j e^{i(k-j) t}=\sum_{k, j=-\infty}^{\infty} \int_{0}^{2 \pi} c_{k} \overline{c_{j}} j e^{i(k-j) t}=2 \pi \sum_{k=-\infty}^{\infty} k\left\|c_{k}\right\|^{2}
$$

Thus we have the chain of Inequalities,

$$
2 \mathrm{~A}(S)=2 \pi \sum_{k=-\infty}^{\infty} k\left\|c_{k}\right\|^{2} \leq 2 \pi \sum_{k=-\infty}^{\infty} k^{2}\left\|c_{k}\right\|^{2}=\frac{\ell^{2}}{2 \pi}
$$

Which gives,

$$
4 \pi \mathrm{~A}(S) \leq \mathrm{P}(S)^{2}
$$

Note that we have, $\sum_{k=-\infty}^{\infty} k\left\|c_{k}\right\|^{2}=2 \pi \sum_{k=-\infty}^{\infty} k^{2}\left\|c_{k}\right\|^{2}$ if and only if $\left\|c_{k}\right\|=0$ for all $k \neq 0,1$. Which means that $4 \pi \mathrm{~A}(S)=\mathrm{P}(S)^{2}$ if and only if the boundary of S is parametrized by $c_{0}+c_{1} e^{i t}$ which is the equation of a circle in \mathbb{C}.

2 Isoperimetric Inequality on Convex subsets of \mathbb{R}^{n}

2.1 Introduction to Convex Geometry

Definition 2.1.1: We call $S \subset \mathbb{R}^{n}$ Convex if for all $x, y \in S$ we have,

$$
(1-\lambda) x+\lambda y \in S, \quad 0 \leq \lambda \leq 1
$$

Additionally we can see that if $A, B \subset \mathbb{R}^{n}$ are convex then,

$$
\lambda B=\left\{x \in \mathbb{R}^{n}: \exists b \in B \text { where } x=\lambda b\right\}
$$

and,

$$
A+B=\left\{x \in \mathbb{R}^{n}: \exists a \in A, b \in B \text { where } x=a+b\right\}
$$

are also convex. The second operation will be refered to as the Minkowski sum of A and B.
Definition 2.1.2: Let $A \subset \mathbb{R}^{n}$ is a Convex Body if A is non-empty, compact, convex. We will denote the set of all convex bodies in \mathbb{R}^{n} as \mathscr{K}^{n} and all of the convex bodies with non-empty interior as \mathscr{K}_{0}^{n}.

Definition 2.1.3: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if for all $x, y \in \mathbb{R}^{n}$ and all $0 \leq \lambda \leq 1$ f satisfies,

$$
f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)
$$

Likewise a function f is concave if for all $x, y \in \mathbb{R}^{n}$ and all $0 \leq \lambda \leq 1 f$ satisfies,

$$
f((1-\lambda) x+\lambda y) \geq(1-\lambda) f(x)+\lambda f(y)
$$

Notice that if f is convex iff $-f$ is concave.

Definition 2.1.4: Let $S \subset \mathbb{R}^{n}$ be convex then we can denote the Volume of S as,

$$
\operatorname{Vol}(S)=\int \cdots \int_{S} 1 d V
$$

Likewise we can denote the surface area or perimiter of S as,

$$
\mathrm{P}(S)=\lim _{h \rightarrow 0} \frac{\operatorname{Vol}\left(S+h B_{n}\right)-\operatorname{Vol}(S)}{h}
$$

Where $B_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}$ is the unite ball in \mathbb{R}^{n}
Remark 2.1.4: We can notice that we have the following properties:

- $\operatorname{Vol}(\lambda S)=|\lambda|^{n} \operatorname{Vol}(S)$ for all $\lambda \in \mathbb{R}$
- $\operatorname{Vol}(A+B) \leq \operatorname{Vol}(A), \operatorname{Vol}(B)$ for $A, B \in \mathscr{K}_{0}{ }^{n}$

2.2 Volume and Perimiter of B_{n}

This section will detour us from the Isoperimetric Inequality in \mathbb{R}^{n}, but demonstrates our definitions of perimiter and volume.
Proposition 2.2.1: If $B_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}$, then

$$
\mathrm{P}\left(B_{n}\right)=n \operatorname{Vol}\left(B_{n}\right)
$$

Proof. We have that,

$$
\begin{aligned}
\mathrm{P}\left(B_{n}\right) & =\lim _{h \rightarrow 0} \frac{\operatorname{Vol}\left(B_{n}+h B_{n}\right)-\operatorname{Vol}\left(B_{n}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\operatorname{Vol}\left((1+h) B_{n}\right)-\operatorname{Vol}\left(B_{n}\right)}{h} \\
& =\operatorname{Vol}\left(B_{n}\right) \lim _{h \rightarrow 0} \frac{|1+h|^{n}-1}{h} \\
& =n \operatorname{Vol}\left(B_{n}\right)
\end{aligned}
$$

Remark 2.2.2: We can see that this formula agrees with the traditional formula for the surface area and Volume of B_{3} where $\mathrm{P}\left(B_{3}\right)=4 \pi=3 \operatorname{Vol}\left(B_{3}\right)$ with $\operatorname{Vol}\left(B_{3}\right)=\frac{4 \pi}{3}$.

2.3 The Brunn-Minkowski Theorem

The following theorem is an important theorem from convex geometry, which will be crucial in the proof of the Isoperimetric Inequality.

Theorem 2.3.1 Let $K_{0}, K_{1} \in \mathscr{K}^{n}$ be two convex bodies and $\lambda \in[0,1]$ then,

$$
\operatorname{Vol}\left((1-\lambda) K_{0}+\lambda K_{1}\right)^{\frac{1}{n}} \geq(1-\lambda) \operatorname{Vol}\left(K_{0}\right)^{\frac{1}{n}}+\lambda \operatorname{Vol}\left(K_{1}\right)^{\frac{1}{n}}
$$

Where equality holds for $\lambda \in(0,1)$ if and only if K_{0} and K_{1} are contained in parallel hyperplanes or $K_{1}=s K_{0}+t$ for $s \geq 0$ and $t \in \mathbb{R}^{n}$.

Corrolary 2.3.2 Let $K_{0}, K_{1} \in \mathscr{K}^{n}$ and $I=[0,1]$ Then the function $f: I \rightarrow \mathbb{R}$ given by,

$$
f(\lambda)=\operatorname{Vol}\left((1-\lambda) K_{0}+\lambda K_{1}\right)^{1 / n}
$$

Is concave. f is linear if and only if K_{0} and K_{1} are contained in parallel hyperplanes or $K_{1}=$ $s K_{0}+t$ for $s \geq 0$ and $t \in \mathbb{R}^{n}$

Proof.

$$
\begin{aligned}
f((1-\lambda) x+\lambda y) & =\operatorname{Vol}\left((1-(1-\lambda) x-\lambda y) K_{0}+((1-\lambda) x+\lambda y) K_{1}\right)^{1 / n} \\
& =\operatorname{Vol}\left((1-\lambda)(1-x) K_{0}+(1-\lambda) x K_{1}+\lambda(1-y) K_{0}+\lambda y K_{1}\right)^{1 / n} \\
& \geq(1-\lambda) \operatorname{Vol}\left((1-x) K_{0}+x K_{1}\right)^{1 / n}+\lambda \operatorname{Vol}\left((1-y) K_{0}+y K_{1}\right)^{1 / n} \\
& =(1-\lambda) f(x)+\lambda f(y)
\end{aligned}
$$

Lemma 2.3.3 Let $f: I \rightarrow \mathbb{R}$ be a smooth concave function such that $f^{\prime}(0)=f(1)-f(0)$ holds, then f is linear.

2.4 Proof of The Isoperimetric Inequality in \mathbb{R}^{n}

Theorem 2.4.1 Let $K \in \mathscr{K}_{0}^{n}$. Then,

$$
\mathrm{P}(K) \geq n \operatorname{Vol}\left(B_{n}\right)^{\frac{1}{n}} \operatorname{Vol}(K)^{1-\frac{1}{n}}
$$

Equality holds iff K is a ball.

Proof. Let $K \in \mathscr{K}_{0}^{n}$. We have $\operatorname{Vol}(K) \neq 0$. Let $\epsilon=\frac{t}{1-t}$ then,

$$
\begin{aligned}
\mathrm{P}(K) & =\lim _{t \rightarrow 0} \frac{\operatorname{Vol}\left(K+\frac{t}{1-t} B_{n}\right)-\operatorname{Vol}(K)}{\frac{t}{1-t}} \\
& =\lim _{t \rightarrow 0} \frac{\operatorname{Vol}\left((1-t) K+t B_{n}\right)-(1-t)^{n} \operatorname{Vol}(K)}{(1-t)^{n-1} t} \\
& =\lim _{t \rightarrow 0}\left(\frac{\operatorname{Vol}\left((1-t) K+t B_{n}\right)-\operatorname{Vol}(K)}{t}+\frac{\left(1-(1-t)^{n}\right) \operatorname{Vol}(K)}{t}\right) \\
& =\lim _{t \rightarrow 0}\left(\frac{\operatorname{Vol}\left((1-t) K+t B_{n}\right)-\operatorname{Vol}(K)}{t}\right)+n \operatorname{Vol}(K)
\end{aligned}
$$

This means,

$$
\mathrm{P}(K)-n \operatorname{Vol}(K)=\lim _{t \rightarrow 0}\left(\frac{\operatorname{Vol}\left((1-t) K+t B_{n}\right)-\operatorname{Vol}(K)}{t}\right)
$$

Now consider the function $f(t):=\operatorname{Vol}\left((1-t) K+t B_{n}\right)^{\frac{1}{n}}$ and see,

$$
f^{\prime}(t)=\frac{1}{n} \operatorname{Vol}\left((1-t) K+t B_{n}\right)^{\frac{1}{n}-1} \cdot \frac{d}{d t}\left(\operatorname{Vol}\left((1-t) K+t B_{n}\right)\right)
$$

Now from the above calculation we have,

$$
f^{\prime}(0)=\frac{1}{n} \operatorname{Vol}(K)^{\frac{1}{n}-1}(\mathrm{P}(K)-n \operatorname{Vol}(K))
$$

Now by corrolary 2.3.2 it follows f is concave on $[0,1]$, hence $f^{\prime}(0) \geq f(1)-f(0)$. This gives us that,

$$
\frac{1}{n} \operatorname{Vol}(K)^{\frac{1}{n}-1} \mathrm{P}(K)-\operatorname{Vol}(K)^{\frac{1}{n}}=\frac{1}{n} \operatorname{Vol}(K)^{\frac{1}{n}-1}(\mathrm{P}(K)-n \operatorname{Vol}(K)) \geq \operatorname{Vol}\left(B_{n}\right)^{\frac{1}{n}}-\operatorname{Vol}(K)^{\frac{1}{n}}
$$

Therefore, we obtain the Isoperimetric Inequality

$$
\mathrm{P}(K) \geq n \operatorname{Vol}\left(B_{n}\right)^{\frac{1}{n}} \operatorname{Vol}(K)^{1-\frac{1}{n}}
$$

Now Proposition 2.2.1 implies that if K is a ball then we have equality. Now if we have equality then $f^{\prime}(0)=f(1)-f(0)$. Since f is concave it follows from Lemma 2.3.3 that f is linear. Thus by corrolary 2.3.2 we have that $K=s B_{n}+t$ for $s \geq 0$ and $t \in \mathbb{R}$. Which means that if we have equality then f is a ball.

3 References

[PG] Penelope Gehring, The Isoperimetric Inequality: Proofs by Convex and Differential Geometry, Rose-Hulman Undergraduate Mathematics Journal, Volume 20 (2019)
[AT] Anderjs Treibergs, Inequalities that Imply the Isoperimetric Inequality, University of Utah (2002)

